// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/net_util.h"
#include <string.h>
#include <ostream>
#include "base/files/file_path.h"
#include "base/format_macros.h"
#include "base/scoped_native_library.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/sys_byteorder.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "url/gurl.h"
#if defined(OS_WIN)
#include <iphlpapi.h>
#include <objbase.h>
#include "base/win/windows_version.h"
#elif !defined(OS_ANDROID)
#include <net/if.h>
#endif // OS_WIN
using base::ASCIIToUTF16;
using base::WideToUTF16;
namespace net {
namespace {
struct HeaderCase {
const char* header_name;
const char* expected;
};
struct CompliantHostCase {
const char* host;
const char* desired_tld;
bool expected_output;
};
// Fills in sockaddr for the given 32-bit address (IPv4.)
// |bytes| should be an array of length 4.
void MakeIPv4Address(const uint8* bytes, int port, SockaddrStorage* storage) {
memset(&storage->addr_storage, 0, sizeof(storage->addr_storage));
storage->addr_len = sizeof(struct sockaddr_in);
struct sockaddr_in* addr4 = reinterpret_cast<sockaddr_in*>(storage->addr);
addr4->sin_port = base::HostToNet16(port);
addr4->sin_family = AF_INET;
memcpy(&addr4->sin_addr, bytes, 4);
}
// Fills in sockaddr for the given 128-bit address (IPv6.)
// |bytes| should be an array of length 16.
void MakeIPv6Address(const uint8* bytes, int port, SockaddrStorage* storage) {
memset(&storage->addr_storage, 0, sizeof(storage->addr_storage));
storage->addr_len = sizeof(struct sockaddr_in6);
struct sockaddr_in6* addr6 = reinterpret_cast<sockaddr_in6*>(storage->addr);
addr6->sin6_port = base::HostToNet16(port);
addr6->sin6_family = AF_INET6;
memcpy(&addr6->sin6_addr, bytes, 16);
}
// Helper to strignize an IP number (used to define expectations).
std::string DumpIPNumber(const IPAddressNumber& v) {
std::string out;
for (size_t i = 0; i < v.size(); ++i) {
if (i != 0)
out.append(",");
out.append(base::IntToString(static_cast<int>(v[i])));
}
return out;
}
} // anonymous namespace
TEST(NetUtilTest, GetIdentityFromURL) {
struct {
const char* input_url;
const char* expected_username;
const char* expected_password;
} tests[] = {
{
"http://username:password@google.com",
"username",
"password",
},
{ // Test for http://crbug.com/19200
"http://username:p@ssword@google.com",
"username",
"p@ssword",
},
{ // Special URL characters should be unescaped.
"http://username:p%3fa%26s%2fs%23@google.com",
"username",
"p?a&s/s#",
},
{ // Username contains %20.
"http://use rname:password@google.com",
"use rname",
"password",
},
{ // Keep %00 as is.
"http://use%00rname:password@google.com",
"use%00rname",
"password",
},
{ // Use a '+' in the username.
"http://use+rname:password@google.com",
"use+rname",
"password",
},
{ // Use a '&' in the password.
"http://username:p&ssword@google.com",
"username",
"p&ssword",
},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
SCOPED_TRACE(base::StringPrintf("Test[%" PRIuS "]: %s", i,
tests[i].input_url));
GURL url(tests[i].input_url);
base::string16 username, password;
GetIdentityFromURL(url, &username, &password);
EXPECT_EQ(ASCIIToUTF16(tests[i].expected_username), username);
EXPECT_EQ(ASCIIToUTF16(tests[i].expected_password), password);
}
}
// Try extracting a username which was encoded with UTF8.
TEST(NetUtilTest, GetIdentityFromURL_UTF8) {
GURL url(WideToUTF16(L"http://foo:\x4f60\x597d@blah.com"));
EXPECT_EQ("foo", url.username());
EXPECT_EQ("%E4%BD%A0%E5%A5%BD", url.password());
// Extract the unescaped identity.
base::string16 username, password;
GetIdentityFromURL(url, &username, &password);
// Verify that it was decoded as UTF8.
EXPECT_EQ(ASCIIToUTF16("foo"), username);
EXPECT_EQ(WideToUTF16(L"\x4f60\x597d"), password);
}
// Just a bunch of fake headers.
const char* google_headers =
"HTTP/1.1 200 OK\n"
"Content-TYPE: text/html; charset=utf-8\n"
"Content-disposition: attachment; filename=\"download.pdf\"\n"
"Content-Length: 378557\n"
"X-Google-Google1: 314159265\n"
"X-Google-Google2: aaaa2:7783,bbb21:9441\n"
"X-Google-Google4: home\n"
"Transfer-Encoding: chunked\n"
"Set-Cookie: HEHE_AT=6666x66beef666x6-66xx6666x66; Path=/mail\n"
"Set-Cookie: HEHE_HELP=owned:0;Path=/\n"
"Set-Cookie: S=gmail=Xxx-beefbeefbeef_beefb:gmail_yj=beefbeef000beefbee"
"fbee:gmproxy=bee-fbeefbe; Domain=.google.com; Path=/\n"
"X-Google-Google2: /one/two/three/four/five/six/seven-height/nine:9411\n"
"Server: GFE/1.3\n"
"Transfer-Encoding: chunked\n"
"Date: Mon, 13 Nov 2006 21:38:09 GMT\n"
"Expires: Tue, 14 Nov 2006 19:23:58 GMT\n"
"X-Malformed: bla; arg=test\"\n"
"X-Malformed2: bla; arg=\n"
"X-Test: bla; arg1=val1; arg2=val2";
TEST(NetUtilTest, GetSpecificHeader) {
const HeaderCase tests[] = {
{"content-type", "text/html; charset=utf-8"},
{"CONTENT-LENGTH", "378557"},
{"Date", "Mon, 13 Nov 2006 21:38:09 GMT"},
{"Bad-Header", ""},
{"", ""},
};
// Test first with google_headers.
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
std::string result =
GetSpecificHeader(google_headers, tests[i].header_name);
EXPECT_EQ(result, tests[i].expected);
}
// Test again with empty headers.
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
std::string result = GetSpecificHeader(std::string(), tests[i].header_name);
EXPECT_EQ(result, std::string());
}
}
TEST(NetUtilTest, CompliantHost) {
const CompliantHostCase compliant_host_cases[] = {
{"", "", false},
{"a", "", true},
{"-", "", false},
{".", "", false},
{"9", "", true},
{"9a", "", true},
{"a.", "", true},
{"a.a", "", true},
{"9.a", "", true},
{"a.9", "", true},
{"_9a", "", false},
{"-9a", "", false},
{"-9a", "a", true},
{"a.a9", "", true},
{"a.-a9", "", false},
{"a+9a", "", false},
{"-a.a9", "", true},
{"1-.a-b", "", true},
{"1_.a-b", "", false},
{"1-2.a_b", "", true},
{"a.b.c.d.e", "", true},
{"1.2.3.4.5", "", true},
{"1.2.3.4.5.", "", true},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(compliant_host_cases); ++i) {
EXPECT_EQ(compliant_host_cases[i].expected_output,
IsCanonicalizedHostCompliant(compliant_host_cases[i].host,
compliant_host_cases[i].desired_tld));
}
}
TEST(NetUtilTest, ParseHostAndPort) {
const struct {
const char* input;
bool success;
const char* expected_host;
int expected_port;
} tests[] = {
// Valid inputs:
{"foo:10", true, "foo", 10},
{"foo", true, "foo", -1},
{
"[1080:0:0:0:8:800:200C:4171]:11",
true,
"[1080:0:0:0:8:800:200C:4171]",
11,
},
// Invalid inputs:
{"foo:bar", false, "", -1},
{"foo:", false, "", -1},
{":", false, "", -1},
{":80", false, "", -1},
{"", false, "", -1},
{"porttoolong:300000", false, "", -1},
{"usrname@host", false, "", -1},
{"usrname:password@host", false, "", -1},
{":password@host", false, "", -1},
{":password@host:80", false, "", -1},
{":password@host", false, "", -1},
{"@host", false, "", -1},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
std::string host;
int port;
bool ok = ParseHostAndPort(tests[i].input, &host, &port);
EXPECT_EQ(tests[i].success, ok);
if (tests[i].success) {
EXPECT_EQ(tests[i].expected_host, host);
EXPECT_EQ(tests[i].expected_port, port);
}
}
}
TEST(NetUtilTest, GetHostAndPort) {
const struct {
GURL url;
const char* expected_host_and_port;
} tests[] = {
{ GURL("http://www.foo.com/x"), "www.foo.com:80"},
{ GURL("http://www.foo.com:21/x"), "www.foo.com:21"},
// For IPv6 literals should always include the brackets.
{ GURL("http://[1::2]/x"), "[1::2]:80"},
{ GURL("http://[::a]:33/x"), "[::a]:33"},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
std::string host_and_port = GetHostAndPort(tests[i].url);
EXPECT_EQ(std::string(tests[i].expected_host_and_port), host_and_port);
}
}
TEST(NetUtilTest, GetHostAndOptionalPort) {
const struct {
GURL url;
const char* expected_host_and_port;
} tests[] = {
{ GURL("http://www.foo.com/x"), "www.foo.com"},
{ GURL("http://www.foo.com:21/x"), "www.foo.com:21"},
// For IPv6 literals should always include the brackets.
{ GURL("http://[1::2]/x"), "[1::2]"},
{ GURL("http://[::a]:33/x"), "[::a]:33"},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
std::string host_and_port = GetHostAndOptionalPort(tests[i].url);
EXPECT_EQ(std::string(tests[i].expected_host_and_port), host_and_port);
}
}
TEST(NetUtilTest, IPAddressToString) {
uint8 addr1[4] = {0, 0, 0, 0};
EXPECT_EQ("0.0.0.0", IPAddressToString(addr1, sizeof(addr1)));
uint8 addr2[4] = {192, 168, 0, 1};
EXPECT_EQ("192.168.0.1", IPAddressToString(addr2, sizeof(addr2)));
uint8 addr3[16] = {0xFE, 0xDC, 0xBA, 0x98};
EXPECT_EQ("fedc:ba98::", IPAddressToString(addr3, sizeof(addr3)));
}
TEST(NetUtilTest, IPAddressToStringWithPort) {
uint8 addr1[4] = {0, 0, 0, 0};
EXPECT_EQ("0.0.0.0:3", IPAddressToStringWithPort(addr1, sizeof(addr1), 3));
uint8 addr2[4] = {192, 168, 0, 1};
EXPECT_EQ("192.168.0.1:99",
IPAddressToStringWithPort(addr2, sizeof(addr2), 99));
uint8 addr3[16] = {0xFE, 0xDC, 0xBA, 0x98};
EXPECT_EQ("[fedc:ba98::]:8080",
IPAddressToStringWithPort(addr3, sizeof(addr3), 8080));
}
TEST(NetUtilTest, NetAddressToString_IPv4) {
const struct {
uint8 addr[4];
const char* result;
} tests[] = {
{{0, 0, 0, 0}, "0.0.0.0"},
{{127, 0, 0, 1}, "127.0.0.1"},
{{192, 168, 0, 1}, "192.168.0.1"},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
SockaddrStorage storage;
MakeIPv4Address(tests[i].addr, 80, &storage);
std::string result = NetAddressToString(storage.addr, storage.addr_len);
EXPECT_EQ(std::string(tests[i].result), result);
}
}
TEST(NetUtilTest, NetAddressToString_IPv6) {
const struct {
uint8 addr[16];
const char* result;
} tests[] = {
{{0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0xFE, 0xDC, 0xBA,
0x98, 0x76, 0x54, 0x32, 0x10},
"fedc:ba98:7654:3210:fedc:ba98:7654:3210"},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
SockaddrStorage storage;
MakeIPv6Address(tests[i].addr, 80, &storage);
EXPECT_EQ(std::string(tests[i].result),
NetAddressToString(storage.addr, storage.addr_len));
}
}
TEST(NetUtilTest, NetAddressToStringWithPort_IPv4) {
uint8 addr[] = {127, 0, 0, 1};
SockaddrStorage storage;
MakeIPv4Address(addr, 166, &storage);
std::string result = NetAddressToStringWithPort(storage.addr,
storage.addr_len);
EXPECT_EQ("127.0.0.1:166", result);
}
TEST(NetUtilTest, NetAddressToStringWithPort_IPv6) {
uint8 addr[] = {
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0xFE, 0xDC, 0xBA,
0x98, 0x76, 0x54, 0x32, 0x10
};
SockaddrStorage storage;
MakeIPv6Address(addr, 361, &storage);
std::string result = NetAddressToStringWithPort(storage.addr,
storage.addr_len);
// May fail on systems that don't support IPv6.
if (!result.empty())
EXPECT_EQ("[fedc:ba98:7654:3210:fedc:ba98:7654:3210]:361", result);
}
TEST(NetUtilTest, GetHostName) {
// We can't check the result of GetHostName() directly, since the result
// will differ across machines. Our goal here is to simply exercise the
// code path, and check that things "look about right".
std::string hostname = GetHostName();
EXPECT_FALSE(hostname.empty());
}
TEST(NetUtilTest, SimplifyUrlForRequest) {
struct {
const char* input_url;
const char* expected_simplified_url;
} tests[] = {
{
// Reference section should be stripped.
"http://www.google.com:78/foobar?query=1#hash",
"http://www.google.com:78/foobar?query=1",
},
{
// Reference section can itself contain #.
"http://192.168.0.1?query=1#hash#10#11#13#14",
"http://192.168.0.1?query=1",
},
{ // Strip username/password.
"http://user:pass@google.com",
"http://google.com/",
},
{ // Strip both the reference and the username/password.
"http://user:pass@google.com:80/sup?yo#X#X",
"http://google.com/sup?yo",
},
{ // Try an HTTPS URL -- strip both the reference and the username/password.
"https://user:pass@google.com:80/sup?yo#X#X",
"https://google.com:80/sup?yo",
},
{ // Try an FTP URL -- strip both the reference and the username/password.
"ftp://user:pass@google.com:80/sup?yo#X#X",
"ftp://google.com:80/sup?yo",
},
{ // Try a nonstandard URL
"foobar://user:pass@google.com:80/sup?yo#X#X",
"foobar://user:pass@google.com:80/sup?yo",
},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
SCOPED_TRACE(base::StringPrintf("Test[%" PRIuS "]: %s", i,
tests[i].input_url));
GURL input_url(GURL(tests[i].input_url));
GURL expected_url(GURL(tests[i].expected_simplified_url));
EXPECT_EQ(expected_url, SimplifyUrlForRequest(input_url));
}
}
TEST(NetUtilTest, SetExplicitlyAllowedPortsTest) {
std::string invalid[] = { "1,2,a", "'1','2'", "1, 2, 3", "1 0,11,12" };
std::string valid[] = { "", "1", "1,2", "1,2,3", "10,11,12,13" };
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(invalid); ++i) {
SetExplicitlyAllowedPorts(invalid[i]);
EXPECT_EQ(0, static_cast<int>(GetCountOfExplicitlyAllowedPorts()));
}
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(valid); ++i) {
SetExplicitlyAllowedPorts(valid[i]);
EXPECT_EQ(i, GetCountOfExplicitlyAllowedPorts());
}
}
TEST(NetUtilTest, GetHostOrSpecFromURL) {
EXPECT_EQ("example.com",
GetHostOrSpecFromURL(GURL("http://example.com/test")));
EXPECT_EQ("example.com",
GetHostOrSpecFromURL(GURL("http://example.com./test")));
EXPECT_EQ("file:///tmp/test.html",
GetHostOrSpecFromURL(GURL("file:///tmp/test.html")));
}
TEST(NetUtilTest, GetAddressFamily) {
IPAddressNumber number;
EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &number));
EXPECT_EQ(ADDRESS_FAMILY_IPV4, GetAddressFamily(number));
EXPECT_TRUE(ParseIPLiteralToNumber("1:abcd::3:4:ff", &number));
EXPECT_EQ(ADDRESS_FAMILY_IPV6, GetAddressFamily(number));
}
// Test that invalid IP literals fail to parse.
TEST(NetUtilTest, ParseIPLiteralToNumber_FailParse) {
IPAddressNumber number;
EXPECT_FALSE(ParseIPLiteralToNumber("bad value", &number));
EXPECT_FALSE(ParseIPLiteralToNumber("bad:value", &number));
EXPECT_FALSE(ParseIPLiteralToNumber(std::string(), &number));
EXPECT_FALSE(ParseIPLiteralToNumber("192.168.0.1:30", &number));
EXPECT_FALSE(ParseIPLiteralToNumber(" 192.168.0.1 ", &number));
EXPECT_FALSE(ParseIPLiteralToNumber("[::1]", &number));
}
// Test parsing an IPv4 literal.
TEST(NetUtilTest, ParseIPLiteralToNumber_IPv4) {
IPAddressNumber number;
EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &number));
EXPECT_EQ("192,168,0,1", DumpIPNumber(number));
EXPECT_EQ("192.168.0.1", IPAddressToString(number));
}
// Test parsing an IPv6 literal.
TEST(NetUtilTest, ParseIPLiteralToNumber_IPv6) {
IPAddressNumber number;
EXPECT_TRUE(ParseIPLiteralToNumber("1:abcd::3:4:ff", &number));
EXPECT_EQ("0,1,171,205,0,0,0,0,0,0,0,3,0,4,0,255", DumpIPNumber(number));
EXPECT_EQ("1:abcd::3:4:ff", IPAddressToString(number));
}
// Test mapping an IPv4 address to an IPv6 address.
TEST(NetUtilTest, ConvertIPv4NumberToIPv6Number) {
IPAddressNumber ipv4_number;
EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &ipv4_number));
IPAddressNumber ipv6_number =
ConvertIPv4NumberToIPv6Number(ipv4_number);
// ::ffff:192.168.0.1
EXPECT_EQ("0,0,0,0,0,0,0,0,0,0,255,255,192,168,0,1",
DumpIPNumber(ipv6_number));
EXPECT_EQ("::ffff:c0a8:1", IPAddressToString(ipv6_number));
}
TEST(NetUtilTest, IsIPv4Mapped) {
IPAddressNumber ipv4_number;
EXPECT_TRUE(ParseIPLiteralToNumber("192.168.0.1", &ipv4_number));
EXPECT_FALSE(IsIPv4Mapped(ipv4_number));
IPAddressNumber ipv6_number;
EXPECT_TRUE(ParseIPLiteralToNumber("::1", &ipv4_number));
EXPECT_FALSE(IsIPv4Mapped(ipv6_number));
IPAddressNumber ipv4mapped_number;
EXPECT_TRUE(ParseIPLiteralToNumber("::ffff:0101:1", &ipv4mapped_number));
EXPECT_TRUE(IsIPv4Mapped(ipv4mapped_number));
}
TEST(NetUtilTest, ConvertIPv4MappedToIPv4) {
IPAddressNumber ipv4mapped_number;
EXPECT_TRUE(ParseIPLiteralToNumber("::ffff:0101:1", &ipv4mapped_number));
IPAddressNumber expected;
EXPECT_TRUE(ParseIPLiteralToNumber("1.1.0.1", &expected));
IPAddressNumber result = ConvertIPv4MappedToIPv4(ipv4mapped_number);
EXPECT_EQ(expected, result);
}
// Test parsing invalid CIDR notation literals.
TEST(NetUtilTest, ParseCIDRBlock_Invalid) {
const char* bad_literals[] = {
"foobar",
"",
"192.168.0.1",
"::1",
"/",
"/1",
"1",
"192.168.1.1/-1",
"192.168.1.1/33",
"::1/-3",
"a::3/129",
"::1/x",
"192.168.0.1//11"
};
for (size_t i = 0; i < arraysize(bad_literals); ++i) {
IPAddressNumber ip_number;
size_t prefix_length_in_bits;
EXPECT_FALSE(ParseCIDRBlock(bad_literals[i],
&ip_number,
&prefix_length_in_bits));
}
}
// Test parsing a valid CIDR notation literal.
TEST(NetUtilTest, ParseCIDRBlock_Valid) {
IPAddressNumber ip_number;
size_t prefix_length_in_bits;
EXPECT_TRUE(ParseCIDRBlock("192.168.0.1/11",
&ip_number,
&prefix_length_in_bits));
EXPECT_EQ("192,168,0,1", DumpIPNumber(ip_number));
EXPECT_EQ(11u, prefix_length_in_bits);
}
TEST(NetUtilTest, IPNumberMatchesPrefix) {
struct {
const char* cidr_literal;
const char* ip_literal;
bool expected_to_match;
} tests[] = {
// IPv4 prefix with IPv4 inputs.
{
"10.10.1.32/27",
"10.10.1.44",
true
},
{
"10.10.1.32/27",
"10.10.1.90",
false
},
{
"10.10.1.32/27",
"10.10.1.90",
false
},
// IPv6 prefix with IPv6 inputs.
{
"2001:db8::/32",
"2001:DB8:3:4::5",
true
},
{
"2001:db8::/32",
"2001:c8::",
false
},
// IPv6 prefix with IPv4 inputs.
{
"2001:db8::/33",
"192.168.0.1",
false
},
{
"::ffff:192.168.0.1/112",
"192.168.33.77",
true
},
// IPv4 prefix with IPv6 inputs.
{
"10.11.33.44/16",
"::ffff:0a0b:89",
true
},
{
"10.11.33.44/16",
"::ffff:10.12.33.44",
false
},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
SCOPED_TRACE(base::StringPrintf("Test[%" PRIuS "]: %s, %s", i,
tests[i].cidr_literal,
tests[i].ip_literal));
IPAddressNumber ip_number;
EXPECT_TRUE(ParseIPLiteralToNumber(tests[i].ip_literal, &ip_number));
IPAddressNumber ip_prefix;
size_t prefix_length_in_bits;
EXPECT_TRUE(ParseCIDRBlock(tests[i].cidr_literal,
&ip_prefix,
&prefix_length_in_bits));
EXPECT_EQ(tests[i].expected_to_match,
IPNumberMatchesPrefix(ip_number,
ip_prefix,
prefix_length_in_bits));
}
}
TEST(NetUtilTest, IsLocalhost) {
EXPECT_TRUE(net::IsLocalhost("localhost"));
EXPECT_TRUE(net::IsLocalhost("localhost.localdomain"));
EXPECT_TRUE(net::IsLocalhost("localhost6"));
EXPECT_TRUE(net::IsLocalhost("localhost6.localdomain6"));
EXPECT_TRUE(net::IsLocalhost("127.0.0.1"));
EXPECT_TRUE(net::IsLocalhost("127.0.1.0"));
EXPECT_TRUE(net::IsLocalhost("127.1.0.0"));
EXPECT_TRUE(net::IsLocalhost("127.0.0.255"));
EXPECT_TRUE(net::IsLocalhost("127.0.255.0"));
EXPECT_TRUE(net::IsLocalhost("127.255.0.0"));
EXPECT_TRUE(net::IsLocalhost("::1"));
EXPECT_TRUE(net::IsLocalhost("0:0:0:0:0:0:0:1"));
EXPECT_FALSE(net::IsLocalhost("localhostx"));
EXPECT_FALSE(net::IsLocalhost("foo.localdomain"));
EXPECT_FALSE(net::IsLocalhost("localhost6x"));
EXPECT_FALSE(net::IsLocalhost("localhost.localdomain6"));
EXPECT_FALSE(net::IsLocalhost("localhost6.localdomain"));
EXPECT_FALSE(net::IsLocalhost("127.0.0.1.1"));
EXPECT_FALSE(net::IsLocalhost(".127.0.0.255"));
EXPECT_FALSE(net::IsLocalhost("::2"));
EXPECT_FALSE(net::IsLocalhost("::1:1"));
EXPECT_FALSE(net::IsLocalhost("0:0:0:0:1:0:0:1"));
EXPECT_FALSE(net::IsLocalhost("::1:1"));
EXPECT_FALSE(net::IsLocalhost("0:0:0:0:0:0:0:0:1"));
}
// Verify GetNetworkList().
TEST(NetUtilTest, GetNetworkList) {
NetworkInterfaceList list;
ASSERT_TRUE(GetNetworkList(&list, INCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES));
for (NetworkInterfaceList::iterator it = list.begin();
it != list.end(); ++it) {
// Verify that the names are not empty.
EXPECT_FALSE(it->name.empty());
EXPECT_FALSE(it->friendly_name.empty());
// Verify that the address is correct.
EXPECT_TRUE(it->address.size() == kIPv4AddressSize ||
it->address.size() == kIPv6AddressSize)
<< "Invalid address of size " << it->address.size();
bool all_zeroes = true;
for (size_t i = 0; i < it->address.size(); ++i) {
if (it->address[i] != 0) {
all_zeroes = false;
break;
}
}
EXPECT_FALSE(all_zeroes);
EXPECT_GT(it->network_prefix, 1u);
EXPECT_LE(it->network_prefix, it->address.size() * 8);
#if defined(OS_WIN)
// On Windows |name| is NET_LUID.
base::ScopedNativeLibrary phlpapi_lib(
base::FilePath(FILE_PATH_LITERAL("iphlpapi.dll")));
ASSERT_TRUE(phlpapi_lib.is_valid());
typedef NETIO_STATUS (WINAPI* ConvertInterfaceIndexToLuid)(NET_IFINDEX,
PNET_LUID);
ConvertInterfaceIndexToLuid interface_to_luid =
reinterpret_cast<ConvertInterfaceIndexToLuid>(
phlpapi_lib.GetFunctionPointer("ConvertInterfaceIndexToLuid"));
typedef NETIO_STATUS (WINAPI* ConvertInterfaceLuidToGuid)(NET_LUID*,
GUID*);
ConvertInterfaceLuidToGuid luid_to_guid =
reinterpret_cast<ConvertInterfaceLuidToGuid>(
phlpapi_lib.GetFunctionPointer("ConvertInterfaceLuidToGuid"));
if (interface_to_luid && luid_to_guid) {
NET_LUID luid;
EXPECT_EQ(interface_to_luid(it->interface_index, &luid), NO_ERROR);
GUID guid;
EXPECT_EQ(luid_to_guid(&luid, &guid), NO_ERROR);
LPOLESTR name;
StringFromCLSID(guid, &name);
EXPECT_STREQ(base::UTF8ToWide(it->name).c_str(), name);
CoTaskMemFree(name);
continue;
} else {
EXPECT_LT(base::win::GetVersion(), base::win::VERSION_VISTA);
EXPECT_LT(it->interface_index, 1u << 24u); // Must fit 0.x.x.x.
EXPECT_NE(it->interface_index, 0u); // 0 means to use default.
}
if (it->type == NetworkChangeNotifier::CONNECTION_WIFI) {
EXPECT_NE(WIFI_PHY_LAYER_PROTOCOL_NONE, GetWifiPHYLayerProtocol());
}
#elif !defined(OS_ANDROID)
char name[IF_NAMESIZE];
EXPECT_TRUE(if_indextoname(it->interface_index, name));
EXPECT_STREQ(it->name.c_str(), name);
#endif
}
}
struct NonUniqueNameTestData {
bool is_unique;
const char* hostname;
};
// Google Test pretty-printer.
void PrintTo(const NonUniqueNameTestData& data, std::ostream* os) {
ASSERT_TRUE(data.hostname);
*os << " hostname: " << testing::PrintToString(data.hostname)
<< "; is_unique: " << testing::PrintToString(data.is_unique);
}
const NonUniqueNameTestData kNonUniqueNameTestData[] = {
// Domains under ICANN-assigned domains.
{ true, "google.com" },
{ true, "google.co.uk" },
// Domains under private registries.
{ true, "appspot.com" },
{ true, "test.appspot.com" },
// Unreserved IPv4 addresses (in various forms).
{ true, "8.8.8.8" },
{ true, "99.64.0.0" },
{ true, "212.15.0.0" },
{ true, "212.15" },
{ true, "212.15.0" },
{ true, "3557752832" },
// Reserved IPv4 addresses (in various forms).
{ false, "192.168.0.0" },
{ false, "192.168.0.6" },
{ false, "10.0.0.5" },
{ false, "10.0" },
{ false, "10.0.0" },
{ false, "3232235526" },
// Unreserved IPv6 addresses.
{ true, "FFC0:ba98:7654:3210:FEDC:BA98:7654:3210" },
{ true, "2000:ba98:7654:2301:EFCD:BA98:7654:3210" },
// Reserved IPv6 addresses.
{ false, "::192.9.5.5" },
{ false, "FEED::BEEF" },
{ false, "FEC0:ba98:7654:3210:FEDC:BA98:7654:3210" },
// 'internal'/non-IANA assigned domains.
{ false, "intranet" },
{ false, "intranet." },
{ false, "intranet.example" },
{ false, "host.intranet.example" },
// gTLDs under discussion, but not yet assigned.
{ false, "intranet.corp" },
{ false, "example.tech" },
{ false, "intranet.internal" },
// Invalid host names are treated as unique - but expected to be
// filtered out before then.
{ true, "junk)(£)$*!@~#" },
{ true, "w$w.example.com" },
{ true, "nocolonsallowed:example" },
{ true, "[::4.5.6.9]" },
};
class NetUtilNonUniqueNameTest
: public testing::TestWithParam<NonUniqueNameTestData> {
public:
virtual ~NetUtilNonUniqueNameTest() {}
protected:
bool IsUnique(const std::string& hostname) {
return !IsHostnameNonUnique(hostname);
}
};
// Test that internal/non-unique names are properly identified as such, but
// that IP addresses and hosts beneath registry-controlled domains are flagged
// as unique names.
TEST_P(NetUtilNonUniqueNameTest, IsHostnameNonUnique) {
const NonUniqueNameTestData& test_data = GetParam();
EXPECT_EQ(test_data.is_unique, IsUnique(test_data.hostname));
}
INSTANTIATE_TEST_CASE_P(, NetUtilNonUniqueNameTest,
testing::ValuesIn(kNonUniqueNameTestData));
} // namespace net