// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/sync_socket.h"
#include <stdio.h>
#include <string>
#include <sstream>
#include "base/bind.h"
#include "base/message_loop/message_loop.h"
#include "base/threading/thread.h"
#include "ipc/ipc_test_base.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_POSIX)
#include "base/file_descriptor_posix.h"
#endif
// IPC messages for testing ----------------------------------------------------
#define IPC_MESSAGE_IMPL
#include "ipc/ipc_message_macros.h"
#define IPC_MESSAGE_START TestMsgStart
// Message class to pass a base::SyncSocket::Handle to another process. This
// is not as easy as it sounds, because of the differences in transferring
// Windows HANDLEs versus posix file descriptors.
#if defined(OS_WIN)
IPC_MESSAGE_CONTROL1(MsgClassSetHandle, base::SyncSocket::Handle)
#elif defined(OS_POSIX)
IPC_MESSAGE_CONTROL1(MsgClassSetHandle, base::FileDescriptor)
#endif
// Message class to pass a response to the server.
IPC_MESSAGE_CONTROL1(MsgClassResponse, std::string)
// Message class to tell the server to shut down.
IPC_MESSAGE_CONTROL0(MsgClassShutdown)
// -----------------------------------------------------------------------------
namespace {
const char kHelloString[] = "Hello, SyncSocket Client";
const size_t kHelloStringLength = arraysize(kHelloString);
// The SyncSocket server listener class processes two sorts of
// messages from the client.
class SyncSocketServerListener : public IPC::Listener {
public:
SyncSocketServerListener() : chan_(NULL) {
}
void Init(IPC::Channel* chan) {
chan_ = chan;
}
virtual bool OnMessageReceived(const IPC::Message& msg) OVERRIDE {
if (msg.routing_id() == MSG_ROUTING_CONTROL) {
IPC_BEGIN_MESSAGE_MAP(SyncSocketServerListener, msg)
IPC_MESSAGE_HANDLER(MsgClassSetHandle, OnMsgClassSetHandle)
IPC_MESSAGE_HANDLER(MsgClassShutdown, OnMsgClassShutdown)
IPC_END_MESSAGE_MAP()
}
return true;
}
private:
// This sort of message is sent first, causing the transfer of
// the handle for the SyncSocket. This message sends a buffer
// on the SyncSocket and then sends a response to the client.
#if defined(OS_WIN)
void OnMsgClassSetHandle(const base::SyncSocket::Handle handle) {
SetHandle(handle);
}
#elif defined(OS_POSIX)
void OnMsgClassSetHandle(const base::FileDescriptor& fd_struct) {
SetHandle(fd_struct.fd);
}
#else
# error "What platform?"
#endif // defined(OS_WIN)
void SetHandle(base::SyncSocket::Handle handle) {
base::SyncSocket sync_socket(handle);
EXPECT_EQ(sync_socket.Send(kHelloString, kHelloStringLength),
kHelloStringLength);
IPC::Message* msg = new MsgClassResponse(kHelloString);
EXPECT_TRUE(chan_->Send(msg));
}
// When the client responds, it sends back a shutdown message,
// which causes the message loop to exit.
void OnMsgClassShutdown() {
base::MessageLoop::current()->Quit();
}
IPC::Channel* chan_;
DISALLOW_COPY_AND_ASSIGN(SyncSocketServerListener);
};
// Runs the fuzzing server child mode. Returns when the preset number of
// messages have been received.
MULTIPROCESS_IPC_TEST_CLIENT_MAIN(SyncSocketServerClient) {
base::MessageLoopForIO main_message_loop;
SyncSocketServerListener listener;
scoped_ptr<IPC::Channel> channel(IPC::Channel::CreateClient(
IPCTestBase::GetChannelName("SyncSocketServerClient"),
&listener));
EXPECT_TRUE(channel->Connect());
listener.Init(channel.get());
base::MessageLoop::current()->Run();
return 0;
}
// The SyncSocket client listener only processes one sort of message,
// a response from the server.
class SyncSocketClientListener : public IPC::Listener {
public:
SyncSocketClientListener() {
}
void Init(base::SyncSocket* socket, IPC::Channel* chan) {
socket_ = socket;
chan_ = chan;
}
virtual bool OnMessageReceived(const IPC::Message& msg) OVERRIDE {
if (msg.routing_id() == MSG_ROUTING_CONTROL) {
IPC_BEGIN_MESSAGE_MAP(SyncSocketClientListener, msg)
IPC_MESSAGE_HANDLER(MsgClassResponse, OnMsgClassResponse)
IPC_END_MESSAGE_MAP()
}
return true;
}
private:
// When a response is received from the server, it sends the same
// string as was written on the SyncSocket. These are compared
// and a shutdown message is sent back to the server.
void OnMsgClassResponse(const std::string& str) {
// We rely on the order of sync_socket.Send() and chan_->Send() in
// the SyncSocketServerListener object.
EXPECT_EQ(kHelloStringLength, socket_->Peek());
char buf[kHelloStringLength];
socket_->Receive(static_cast<void*>(buf), kHelloStringLength);
EXPECT_EQ(strcmp(str.c_str(), buf), 0);
// After receiving from the socket there should be no bytes left.
EXPECT_EQ(0U, socket_->Peek());
IPC::Message* msg = new MsgClassShutdown();
EXPECT_TRUE(chan_->Send(msg));
base::MessageLoop::current()->Quit();
}
base::SyncSocket* socket_;
IPC::Channel* chan_;
DISALLOW_COPY_AND_ASSIGN(SyncSocketClientListener);
};
class SyncSocketTest : public IPCTestBase {
};
TEST_F(SyncSocketTest, SanityTest) {
Init("SyncSocketServerClient");
SyncSocketClientListener listener;
CreateChannel(&listener);
ASSERT_TRUE(StartClient());
// Create a pair of SyncSockets.
base::SyncSocket pair[2];
base::SyncSocket::CreatePair(&pair[0], &pair[1]);
// Immediately after creation there should be no pending bytes.
EXPECT_EQ(0U, pair[0].Peek());
EXPECT_EQ(0U, pair[1].Peek());
base::SyncSocket::Handle target_handle;
// Connect the channel and listener.
ASSERT_TRUE(ConnectChannel());
listener.Init(&pair[0], channel());
#if defined(OS_WIN)
// On windows we need to duplicate the handle into the server process.
BOOL retval = DuplicateHandle(GetCurrentProcess(), pair[1].handle(),
client_process(), &target_handle,
0, FALSE, DUPLICATE_SAME_ACCESS);
EXPECT_TRUE(retval);
// Set up a message to pass the handle to the server.
IPC::Message* msg = new MsgClassSetHandle(target_handle);
#else
target_handle = pair[1].handle();
// Set up a message to pass the handle to the server.
base::FileDescriptor filedesc(target_handle, false);
IPC::Message* msg = new MsgClassSetHandle(filedesc);
#endif // defined(OS_WIN)
EXPECT_TRUE(sender()->Send(msg));
// Use the current thread as the I/O thread.
base::MessageLoop::current()->Run();
// Shut down.
pair[0].Close();
pair[1].Close();
EXPECT_TRUE(WaitForClientShutdown());
DestroyChannel();
}
// A blocking read operation that will block the thread until it receives
// |length| bytes of packets or Shutdown() is called on another thread.
static void BlockingRead(base::SyncSocket* socket, char* buf,
size_t length, size_t* received) {
DCHECK(buf != NULL);
// Notify the parent thread that we're up and running.
socket->Send(kHelloString, kHelloStringLength);
*received = socket->Receive(buf, length);
}
// Tests that we can safely end a blocking Receive operation on one thread
// from another thread by disconnecting (but not closing) the socket.
TEST_F(SyncSocketTest, DisconnectTest) {
base::CancelableSyncSocket pair[2];
ASSERT_TRUE(base::CancelableSyncSocket::CreatePair(&pair[0], &pair[1]));
base::Thread worker("BlockingThread");
worker.Start();
// Try to do a blocking read from one of the sockets on the worker thread.
char buf[0xff];
size_t received = 1U; // Initialize to an unexpected value.
worker.message_loop()->PostTask(FROM_HERE,
base::Bind(&BlockingRead, &pair[0], &buf[0], arraysize(buf), &received));
// Wait for the worker thread to say hello.
char hello[kHelloStringLength] = {0};
pair[1].Receive(&hello[0], sizeof(hello));
EXPECT_EQ(0, strcmp(hello, kHelloString));
// Give the worker a chance to start Receive().
base::PlatformThread::YieldCurrentThread();
// Now shut down the socket that the thread is issuing a blocking read on
// which should cause Receive to return with an error.
pair[0].Shutdown();
worker.Stop();
EXPECT_EQ(0U, received);
}
// Tests that read is a blocking operation.
TEST_F(SyncSocketTest, BlockingReceiveTest) {
base::CancelableSyncSocket pair[2];
ASSERT_TRUE(base::CancelableSyncSocket::CreatePair(&pair[0], &pair[1]));
base::Thread worker("BlockingThread");
worker.Start();
// Try to do a blocking read from one of the sockets on the worker thread.
char buf[kHelloStringLength] = {0};
size_t received = 1U; // Initialize to an unexpected value.
worker.message_loop()->PostTask(FROM_HERE,
base::Bind(&BlockingRead, &pair[0], &buf[0],
kHelloStringLength, &received));
// Wait for the worker thread to say hello.
char hello[kHelloStringLength] = {0};
pair[1].Receive(&hello[0], sizeof(hello));
EXPECT_EQ(0, strcmp(hello, kHelloString));
// Give the worker a chance to start Receive().
base::PlatformThread::YieldCurrentThread();
// Send a message to the socket on the blocking thead, it should free the
// socket from Receive().
pair[1].Send(kHelloString, kHelloStringLength);
worker.Stop();
// Verify the socket has received the message.
EXPECT_TRUE(strcmp(buf, kHelloString) == 0);
EXPECT_EQ(kHelloStringLength, received);
}
// Tests that the write operation is non-blocking and returns immediately
// when there is insufficient space in the socket's buffer.
TEST_F(SyncSocketTest, NonBlockingWriteTest) {
base::CancelableSyncSocket pair[2];
ASSERT_TRUE(base::CancelableSyncSocket::CreatePair(&pair[0], &pair[1]));
// Fill up the buffer for one of the socket, Send() should not block the
// thread even when the buffer is full.
while (pair[0].Send(kHelloString, kHelloStringLength) != 0) {}
// Data should be avialble on another socket.
size_t bytes_in_buffer = pair[1].Peek();
EXPECT_NE(bytes_in_buffer, 0U);
// No more data can be written to the buffer since socket has been full,
// verify that the amount of avialble data on another socket is unchanged.
EXPECT_EQ(0U, pair[0].Send(kHelloString, kHelloStringLength));
EXPECT_EQ(bytes_in_buffer, pair[1].Peek());
// Read from another socket to free some space for a new write.
char hello[kHelloStringLength] = {0};
pair[1].Receive(&hello[0], sizeof(hello));
// Should be able to write more data to the buffer now.
EXPECT_EQ(kHelloStringLength, pair[0].Send(kHelloString, kHelloStringLength));
}
} // namespace