// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/renderer/media/cast_rtp_stream.h"
#include "base/bind.h"
#include "base/debug/trace_event.h"
#include "base/logging.h"
#include "base/memory/weak_ptr.h"
#include "base/sys_info.h"
#include "chrome/renderer/media/cast_session.h"
#include "chrome/renderer/media/cast_udp_transport.h"
#include "content/public/renderer/media_stream_audio_sink.h"
#include "content/public/renderer/media_stream_video_sink.h"
#include "content/public/renderer/render_thread.h"
#include "content/public/renderer/video_encode_accelerator.h"
#include "media/audio/audio_parameters.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_fifo.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/multi_channel_resampler.h"
#include "media/base/video_frame.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_defines.h"
#include "media/cast/cast_sender.h"
#include "media/cast/transport/cast_transport_config.h"
#include "third_party/WebKit/public/platform/WebMediaStreamSource.h"
#include "ui/gfx/geometry/size.h"
using media::cast::AudioSenderConfig;
using media::cast::VideoSenderConfig;
namespace {
const char kCodecNameOpus[] = "OPUS";
const char kCodecNameVp8[] = "VP8";
const char kCodecNameH264[] = "H264";
// To convert from kilobits per second to bits to per second.
const int kBitrateMultiplier = 1000;
// This constant defines the number of sets of audio data to buffer
// in the FIFO. If input audio and output data have different resampling
// rates then buffer is necessary to avoid audio glitches.
// See CastAudioSink::ResampleData() and CastAudioSink::OnSetFormat()
// for more defaults.
const int kBufferAudioData = 2;
CastRtpPayloadParams DefaultOpusPayload() {
CastRtpPayloadParams payload;
payload.ssrc = 1;
payload.feedback_ssrc = 2;
payload.payload_type = 127;
payload.max_latency_ms = media::cast::kDefaultRtpMaxDelayMs;
payload.codec_name = kCodecNameOpus;
payload.clock_rate = 48000;
payload.channels = 2;
// The value is 0 which means VBR.
payload.min_bitrate = payload.max_bitrate =
media::cast::kDefaultAudioEncoderBitrate;
return payload;
}
CastRtpPayloadParams DefaultVp8Payload() {
CastRtpPayloadParams payload;
payload.ssrc = 11;
payload.feedback_ssrc = 12;
payload.payload_type = 96;
payload.max_latency_ms = media::cast::kDefaultRtpMaxDelayMs;
payload.codec_name = kCodecNameVp8;
payload.clock_rate = 90000;
payload.width = 1280;
payload.height = 720;
payload.min_bitrate = 50;
payload.max_bitrate = 2000;
return payload;
}
CastRtpPayloadParams DefaultH264Payload() {
CastRtpPayloadParams payload;
// TODO(hshi): set different ssrc/rtpPayloadType values for H264 and VP8
// once b/13696137 is fixed.
payload.ssrc = 11;
payload.feedback_ssrc = 12;
payload.payload_type = 96;
payload.max_latency_ms = media::cast::kDefaultRtpMaxDelayMs;
payload.codec_name = kCodecNameH264;
payload.clock_rate = 90000;
payload.width = 1280;
payload.height = 720;
payload.min_bitrate = 50;
payload.max_bitrate = 2000;
return payload;
}
bool IsHardwareVP8EncodingSupported() {
// Query for hardware VP8 encoder support.
std::vector<media::VideoEncodeAccelerator::SupportedProfile> vea_profiles =
content::GetSupportedVideoEncodeAcceleratorProfiles();
for (size_t i = 0; i < vea_profiles.size(); ++i) {
if (vea_profiles[i].profile >= media::VP8PROFILE_MIN &&
vea_profiles[i].profile <= media::VP8PROFILE_MAX) {
return true;
}
}
return false;
}
bool IsHardwareH264EncodingSupported() {
// Query for hardware H.264 encoder support.
std::vector<media::VideoEncodeAccelerator::SupportedProfile> vea_profiles =
content::GetSupportedVideoEncodeAcceleratorProfiles();
for (size_t i = 0; i < vea_profiles.size(); ++i) {
if (vea_profiles[i].profile >= media::H264PROFILE_MIN &&
vea_profiles[i].profile <= media::H264PROFILE_MAX) {
return true;
}
}
return false;
}
int NumberOfEncodeThreads() {
// We want to give CPU cycles for capturing and not to saturate the system
// just for encoding. So on a lower end system with only 1 or 2 cores we
// use only one thread for encoding.
if (base::SysInfo::NumberOfProcessors() <= 2)
return 1;
// On higher end we want to use 2 threads for encoding to reduce latency.
// In theory a physical CPU core has maximum 2 hyperthreads. Having 3 or
// more logical processors means the system has at least 2 physical cores.
return 2;
}
std::vector<CastRtpParams> SupportedAudioParams() {
// TODO(hclam): Fill in more codecs here.
std::vector<CastRtpParams> supported_params;
supported_params.push_back(CastRtpParams(DefaultOpusPayload()));
return supported_params;
}
std::vector<CastRtpParams> SupportedVideoParams() {
std::vector<CastRtpParams> supported_params;
if (IsHardwareH264EncodingSupported())
supported_params.push_back(CastRtpParams(DefaultH264Payload()));
supported_params.push_back(CastRtpParams(DefaultVp8Payload()));
return supported_params;
}
bool ToAudioSenderConfig(const CastRtpParams& params,
AudioSenderConfig* config) {
config->rtp_config.ssrc = params.payload.ssrc;
config->incoming_feedback_ssrc = params.payload.feedback_ssrc;
config->rtp_config.payload_type = params.payload.payload_type;
config->rtp_config.max_delay_ms = params.payload.max_latency_ms;
config->rtp_config.aes_key = params.payload.aes_key;
config->rtp_config.aes_iv_mask = params.payload.aes_iv_mask;
config->use_external_encoder = false;
config->frequency = params.payload.clock_rate;
config->channels = params.payload.channels;
config->bitrate = params.payload.max_bitrate * kBitrateMultiplier;
config->codec = media::cast::transport::kPcm16;
if (params.payload.codec_name == kCodecNameOpus)
config->codec = media::cast::transport::kOpus;
else
return false;
return true;
}
bool ToVideoSenderConfig(const CastRtpParams& params,
VideoSenderConfig* config) {
config->rtp_config.ssrc = params.payload.ssrc;
config->incoming_feedback_ssrc = params.payload.feedback_ssrc;
config->rtp_config.payload_type = params.payload.payload_type;
config->rtp_config.max_delay_ms = params.payload.max_latency_ms;
config->rtp_config.aes_key = params.payload.aes_key;
config->rtp_config.aes_iv_mask = params.payload.aes_iv_mask;
config->use_external_encoder = false;
config->width = params.payload.width;
config->height = params.payload.height;
config->min_bitrate = config->start_bitrate =
params.payload.min_bitrate * kBitrateMultiplier;
config->max_bitrate = params.payload.max_bitrate * kBitrateMultiplier;
if (params.payload.codec_name == kCodecNameVp8) {
config->use_external_encoder = IsHardwareVP8EncodingSupported();
config->codec = media::cast::transport::kVp8;
} else if (params.payload.codec_name == kCodecNameH264) {
config->use_external_encoder = IsHardwareH264EncodingSupported();
config->codec = media::cast::transport::kH264;
} else {
return false;
}
if (!config->use_external_encoder) {
config->number_of_encode_threads = NumberOfEncodeThreads();
}
return true;
}
} // namespace
// This class receives MediaStreamTrack events and video frames from a
// MediaStreamTrack.
//
// Threading: Video frames are received on the IO thread and then
// forwarded to media::cast::VideoFrameInput through a static method.
// Member variables of this class are only accessed on the render thread.
class CastVideoSink : public base::SupportsWeakPtr<CastVideoSink>,
public content::MediaStreamVideoSink {
public:
// |track| provides data for this sink.
// |expected_coded_size| is the expected dimension of the video frame.
// |error_callback| is called if video formats don't match.
CastVideoSink(const blink::WebMediaStreamTrack& track,
const gfx::Size& expected_coded_size,
const CastRtpStream::ErrorCallback& error_callback)
: track_(track),
sink_added_(false),
expected_coded_size_(expected_coded_size),
error_callback_(error_callback) {}
virtual ~CastVideoSink() {
if (sink_added_)
RemoveFromVideoTrack(this, track_);
}
// This static method is used to forward video frames to |frame_input|.
static void OnVideoFrame(
// These parameters are already bound when callback is created.
const gfx::Size& expected_coded_size,
const CastRtpStream::ErrorCallback& error_callback,
const scoped_refptr<media::cast::VideoFrameInput> frame_input,
// These parameters are passed for each frame.
const scoped_refptr<media::VideoFrame>& frame,
const media::VideoCaptureFormat& format,
const base::TimeTicks& estimated_capture_time) {
if (frame->coded_size() != expected_coded_size) {
error_callback.Run("Video frame resolution does not match config.");
return;
}
base::TimeTicks timestamp;
if (estimated_capture_time.is_null())
timestamp = base::TimeTicks::Now();
else
timestamp = estimated_capture_time;
// Used by chrome/browser/extension/api/cast_streaming/performance_test.cc
TRACE_EVENT_INSTANT2(
"cast_perf_test", "MediaStreamVideoSink::OnVideoFrame",
TRACE_EVENT_SCOPE_THREAD,
"timestamp", timestamp.ToInternalValue(),
"time_delta", frame->timestamp().ToInternalValue());
frame_input->InsertRawVideoFrame(frame, timestamp);
}
// Attach this sink to a video track represented by |track_|.
// Data received from the track will be submitted to |frame_input|.
void AddToTrack(
const scoped_refptr<media::cast::VideoFrameInput>& frame_input) {
DCHECK(!sink_added_);
sink_added_ = true;
AddToVideoTrack(
this,
base::Bind(
&CastVideoSink::OnVideoFrame,
expected_coded_size_,
error_callback_,
frame_input),
track_);
}
private:
blink::WebMediaStreamTrack track_;
bool sink_added_;
gfx::Size expected_coded_size_;
CastRtpStream::ErrorCallback error_callback_;
DISALLOW_COPY_AND_ASSIGN(CastVideoSink);
};
// Receives audio data from a MediaStreamTrack. Data is submitted to
// media::cast::FrameInput.
//
// Threading: Audio frames are received on the real-time audio thread.
// Note that RemoveFromAudioTrack() is synchronous and we have
// gurantee that there will be no more audio data after calling it.
class CastAudioSink : public base::SupportsWeakPtr<CastAudioSink>,
public content::MediaStreamAudioSink {
public:
// |track| provides data for this sink.
// |error_callback| is called if audio formats don't match.
CastAudioSink(const blink::WebMediaStreamTrack& track,
const CastRtpStream::ErrorCallback& error_callback,
int output_channels,
int output_sample_rate)
: track_(track),
sink_added_(false),
error_callback_(error_callback),
weak_factory_(this),
output_channels_(output_channels),
output_sample_rate_(output_sample_rate),
input_preroll_(0) {}
virtual ~CastAudioSink() {
if (sink_added_)
RemoveFromAudioTrack(this, track_);
}
// Called on real-time audio thread.
// content::MediaStreamAudioSink implementation.
virtual void OnData(const int16* audio_data,
int sample_rate,
int number_of_channels,
int number_of_frames) OVERRIDE {
scoped_ptr<media::AudioBus> input_bus;
if (resampler_) {
input_bus = ResampleData(
audio_data, sample_rate, number_of_channels, number_of_frames);
if (!input_bus)
return;
} else {
input_bus = media::AudioBus::Create(
number_of_channels, number_of_frames);
input_bus->FromInterleaved(
audio_data, number_of_frames, number_of_channels);
}
// TODO(hclam): Pass in the accurate capture time to have good
// audio / video sync.
frame_input_->InsertAudio(input_bus.Pass(), base::TimeTicks::Now());
}
// Return a resampled audio data from input. This is called when the
// input sample rate doesn't match the output.
// The flow of data is as follows:
// |audio_data| ->
// AudioFifo |fifo_| ->
// MultiChannelResampler |resampler|.
//
// The resampler pulls data out of the FIFO and resample the data in
// frequency domain. It might call |fifo_| for more than once. But no more
// than |kBufferAudioData| times. We preroll audio data into the FIFO to
// make sure there's enough data for resampling.
scoped_ptr<media::AudioBus> ResampleData(
const int16* audio_data,
int sample_rate,
int number_of_channels,
int number_of_frames) {
DCHECK_EQ(number_of_channels, output_channels_);
fifo_input_bus_->FromInterleaved(
audio_data, number_of_frames, number_of_channels);
fifo_->Push(fifo_input_bus_.get());
if (input_preroll_ < kBufferAudioData - 1) {
++input_preroll_;
return scoped_ptr<media::AudioBus>();
}
scoped_ptr<media::AudioBus> output_bus(
media::AudioBus::Create(
output_channels_,
output_sample_rate_ * fifo_input_bus_->frames() / sample_rate));
// Resampler will then call ProvideData() below to fetch data from
// |input_data_|.
resampler_->Resample(output_bus->frames(), output_bus.get());
return output_bus.Pass();
}
// Called on real-time audio thread.
virtual void OnSetFormat(const media::AudioParameters& params) OVERRIDE {
if (params.sample_rate() == output_sample_rate_)
return;
fifo_.reset(new media::AudioFifo(
output_channels_,
kBufferAudioData * params.frames_per_buffer()));
fifo_input_bus_ = media::AudioBus::Create(
params.channels(), params.frames_per_buffer());
resampler_.reset(new media::MultiChannelResampler(
output_channels_,
static_cast<double>(params.sample_rate()) / output_sample_rate_,
params.frames_per_buffer(),
base::Bind(&CastAudioSink::ProvideData, base::Unretained(this))));
}
// Add this sink to the track. Data received from the track will be
// submitted to |frame_input|.
void AddToTrack(
const scoped_refptr<media::cast::AudioFrameInput>& frame_input) {
DCHECK(!sink_added_);
sink_added_ = true;
// This member is written here and then accessed on the IO thread
// We will not get data until AddToAudioTrack is called so it is
// safe to access this member now.
frame_input_ = frame_input;
AddToAudioTrack(this, track_);
}
void ProvideData(int frame_delay, media::AudioBus* output_bus) {
fifo_->Consume(output_bus, 0, output_bus->frames());
}
private:
blink::WebMediaStreamTrack track_;
bool sink_added_;
CastRtpStream::ErrorCallback error_callback_;
base::WeakPtrFactory<CastAudioSink> weak_factory_;
const int output_channels_;
const int output_sample_rate_;
// These member are accessed on the real-time audio time only.
scoped_refptr<media::cast::AudioFrameInput> frame_input_;
scoped_ptr<media::MultiChannelResampler> resampler_;
scoped_ptr<media::AudioFifo> fifo_;
scoped_ptr<media::AudioBus> fifo_input_bus_;
int input_preroll_;
DISALLOW_COPY_AND_ASSIGN(CastAudioSink);
};
CastRtpParams::CastRtpParams(const CastRtpPayloadParams& payload_params)
: payload(payload_params) {}
CastCodecSpecificParams::CastCodecSpecificParams() {}
CastCodecSpecificParams::~CastCodecSpecificParams() {}
CastRtpPayloadParams::CastRtpPayloadParams()
: payload_type(0),
max_latency_ms(0),
ssrc(0),
feedback_ssrc(0),
clock_rate(0),
max_bitrate(0),
min_bitrate(0),
channels(0),
width(0),
height(0) {}
CastRtpPayloadParams::~CastRtpPayloadParams() {}
CastRtpParams::CastRtpParams() {}
CastRtpParams::~CastRtpParams() {}
CastRtpStream::CastRtpStream(const blink::WebMediaStreamTrack& track,
const scoped_refptr<CastSession>& session)
: track_(track), cast_session_(session), weak_factory_(this) {}
CastRtpStream::~CastRtpStream() {}
std::vector<CastRtpParams> CastRtpStream::GetSupportedParams() {
if (IsAudio())
return SupportedAudioParams();
else
return SupportedVideoParams();
}
CastRtpParams CastRtpStream::GetParams() { return params_; }
void CastRtpStream::Start(const CastRtpParams& params,
const base::Closure& start_callback,
const base::Closure& stop_callback,
const ErrorCallback& error_callback) {
VLOG(1) << "CastRtpStream::Start = " << (IsAudio() ? "audio" : "video");
stop_callback_ = stop_callback;
error_callback_ = error_callback;
if (IsAudio()) {
AudioSenderConfig config;
if (!ToAudioSenderConfig(params, &config)) {
DidEncounterError("Invalid parameters for audio.");
return;
}
// In case of error we have to go through DidEncounterError() to stop
// the streaming after reporting the error.
audio_sink_.reset(new CastAudioSink(
track_,
media::BindToCurrentLoop(base::Bind(&CastRtpStream::DidEncounterError,
weak_factory_.GetWeakPtr())),
params.payload.channels,
params.payload.clock_rate));
cast_session_->StartAudio(
config,
base::Bind(&CastAudioSink::AddToTrack, audio_sink_->AsWeakPtr()),
base::Bind(&CastRtpStream::DidEncounterError,
weak_factory_.GetWeakPtr()));
start_callback.Run();
} else {
VideoSenderConfig config;
if (!ToVideoSenderConfig(params, &config)) {
DidEncounterError("Invalid parameters for video.");
return;
}
// See the code for audio above for explanation of callbacks.
video_sink_.reset(new CastVideoSink(
track_,
gfx::Size(config.width, config.height),
media::BindToCurrentLoop(base::Bind(&CastRtpStream::DidEncounterError,
weak_factory_.GetWeakPtr()))));
cast_session_->StartVideo(
config,
base::Bind(&CastVideoSink::AddToTrack, video_sink_->AsWeakPtr()),
base::Bind(&CastRtpStream::DidEncounterError,
weak_factory_.GetWeakPtr()));
start_callback.Run();
}
}
void CastRtpStream::Stop() {
VLOG(1) << "CastRtpStream::Stop = " << (IsAudio() ? "audio" : "video");
audio_sink_.reset();
video_sink_.reset();
if (!stop_callback_.is_null())
stop_callback_.Run();
}
void CastRtpStream::ToggleLogging(bool enable) {
cast_session_->ToggleLogging(IsAudio(), enable);
}
void CastRtpStream::GetRawEvents(
const base::Callback<void(scoped_ptr<base::BinaryValue>)>& callback,
const std::string& extra_data) {
cast_session_->GetEventLogsAndReset(IsAudio(), extra_data, callback);
}
void CastRtpStream::GetStats(
const base::Callback<void(scoped_ptr<base::DictionaryValue>)>& callback) {
cast_session_->GetStatsAndReset(IsAudio(), callback);
}
bool CastRtpStream::IsAudio() const {
return track_.source().type() == blink::WebMediaStreamSource::TypeAudio;
}
void CastRtpStream::DidEncounterError(const std::string& message) {
// Save the WeakPtr first because the error callback might delete this object.
base::WeakPtr<CastRtpStream> ptr = weak_factory_.GetWeakPtr();
error_callback_.Run(message);
content::RenderThread::Get()->GetMessageLoop()->PostTask(
FROM_HERE,
base::Bind(&CastRtpStream::Stop, ptr));
}