// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/tile_manager.h"
#include <algorithm>
#include <limits>
#include <string>
#include "base/bind.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "cc/debug/devtools_instrumentation.h"
#include "cc/debug/frame_viewer_instrumentation.h"
#include "cc/debug/traced_value.h"
#include "cc/layers/picture_layer_impl.h"
#include "cc/resources/raster_worker_pool.h"
#include "cc/resources/tile.h"
#include "skia/ext/paint_simplifier.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkPixelRef.h"
#include "ui/gfx/rect_conversions.h"
namespace cc {
namespace {
// Flag to indicate whether we should try and detect that
// a tile is of solid color.
const bool kUseColorEstimator = true;
class RasterTaskImpl : public RasterTask {
public:
RasterTaskImpl(
const Resource* resource,
PicturePileImpl* picture_pile,
const gfx::Rect& content_rect,
float contents_scale,
RasterMode raster_mode,
TileResolution tile_resolution,
int layer_id,
const void* tile_id,
int source_frame_number,
bool analyze_picture,
RenderingStatsInstrumentation* rendering_stats,
const base::Callback<void(const PicturePileImpl::Analysis&, bool)>& reply,
ImageDecodeTask::Vector* dependencies)
: RasterTask(resource, dependencies),
picture_pile_(picture_pile),
content_rect_(content_rect),
contents_scale_(contents_scale),
raster_mode_(raster_mode),
tile_resolution_(tile_resolution),
layer_id_(layer_id),
tile_id_(tile_id),
source_frame_number_(source_frame_number),
analyze_picture_(analyze_picture),
rendering_stats_(rendering_stats),
reply_(reply),
canvas_(NULL) {}
// Overridden from Task:
virtual void RunOnWorkerThread() OVERRIDE {
TRACE_EVENT0("cc", "RasterizerTaskImpl::RunOnWorkerThread");
DCHECK(picture_pile_);
if (canvas_) {
AnalyzeAndRaster(picture_pile_->GetCloneForDrawingOnThread(
RasterWorkerPool::GetPictureCloneIndexForCurrentThread()));
}
}
// Overridden from RasterizerTask:
virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
DCHECK(!canvas_);
canvas_ = client->AcquireCanvasForRaster(this);
}
virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
canvas_ = NULL;
client->ReleaseCanvasForRaster(this);
}
virtual void RunReplyOnOriginThread() OVERRIDE {
DCHECK(!canvas_);
reply_.Run(analysis_, !HasFinishedRunning());
}
protected:
virtual ~RasterTaskImpl() { DCHECK(!canvas_); }
private:
void AnalyzeAndRaster(PicturePileImpl* picture_pile) {
DCHECK(picture_pile);
DCHECK(canvas_);
if (analyze_picture_) {
Analyze(picture_pile);
if (analysis_.is_solid_color)
return;
}
Raster(picture_pile);
}
void Analyze(PicturePileImpl* picture_pile) {
frame_viewer_instrumentation::ScopedAnalyzeTask analyze_task(
tile_id_, tile_resolution_, source_frame_number_, layer_id_);
DCHECK(picture_pile);
picture_pile->AnalyzeInRect(
content_rect_, contents_scale_, &analysis_, rendering_stats_);
// Record the solid color prediction.
UMA_HISTOGRAM_BOOLEAN("Renderer4.SolidColorTilesAnalyzed",
analysis_.is_solid_color);
// Clear the flag if we're not using the estimator.
analysis_.is_solid_color &= kUseColorEstimator;
}
void Raster(PicturePileImpl* picture_pile) {
frame_viewer_instrumentation::ScopedRasterTask raster_task(
tile_id_,
tile_resolution_,
source_frame_number_,
layer_id_,
raster_mode_);
devtools_instrumentation::ScopedLayerTask layer_task(
devtools_instrumentation::kRasterTask, layer_id_);
skia::RefPtr<SkDrawFilter> draw_filter;
switch (raster_mode_) {
case LOW_QUALITY_RASTER_MODE:
draw_filter = skia::AdoptRef(new skia::PaintSimplifier);
break;
case HIGH_QUALITY_RASTER_MODE:
break;
case NUM_RASTER_MODES:
default:
NOTREACHED();
}
canvas_->setDrawFilter(draw_filter.get());
base::TimeDelta prev_rasterize_time =
rendering_stats_->impl_thread_rendering_stats().rasterize_time;
// Only record rasterization time for highres tiles, because
// lowres tiles are not required for activation and therefore
// introduce noise in the measurement (sometimes they get rasterized
// before we draw and sometimes they aren't)
RenderingStatsInstrumentation* stats =
tile_resolution_ == HIGH_RESOLUTION ? rendering_stats_ : NULL;
DCHECK(picture_pile);
picture_pile->RasterToBitmap(
canvas_, content_rect_, contents_scale_, stats);
if (rendering_stats_->record_rendering_stats()) {
base::TimeDelta current_rasterize_time =
rendering_stats_->impl_thread_rendering_stats().rasterize_time;
HISTOGRAM_CUSTOM_COUNTS(
"Renderer4.PictureRasterTimeUS",
(current_rasterize_time - prev_rasterize_time).InMicroseconds(),
0,
100000,
100);
}
}
PicturePileImpl::Analysis analysis_;
scoped_refptr<PicturePileImpl> picture_pile_;
gfx::Rect content_rect_;
float contents_scale_;
RasterMode raster_mode_;
TileResolution tile_resolution_;
int layer_id_;
const void* tile_id_;
int source_frame_number_;
bool analyze_picture_;
RenderingStatsInstrumentation* rendering_stats_;
const base::Callback<void(const PicturePileImpl::Analysis&, bool)> reply_;
SkCanvas* canvas_;
DISALLOW_COPY_AND_ASSIGN(RasterTaskImpl);
};
class ImageDecodeTaskImpl : public ImageDecodeTask {
public:
ImageDecodeTaskImpl(SkPixelRef* pixel_ref,
int layer_id,
RenderingStatsInstrumentation* rendering_stats,
const base::Callback<void(bool was_canceled)>& reply)
: pixel_ref_(skia::SharePtr(pixel_ref)),
layer_id_(layer_id),
rendering_stats_(rendering_stats),
reply_(reply) {}
// Overridden from Task:
virtual void RunOnWorkerThread() OVERRIDE {
TRACE_EVENT0("cc", "ImageDecodeTaskImpl::RunOnWorkerThread");
devtools_instrumentation::ScopedImageDecodeTask image_decode_task(
pixel_ref_.get());
// This will cause the image referred to by pixel ref to be decoded.
pixel_ref_->lockPixels();
pixel_ref_->unlockPixels();
}
// Overridden from RasterizerTask:
virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
virtual void RunReplyOnOriginThread() OVERRIDE {
reply_.Run(!HasFinishedRunning());
}
protected:
virtual ~ImageDecodeTaskImpl() {}
private:
skia::RefPtr<SkPixelRef> pixel_ref_;
int layer_id_;
RenderingStatsInstrumentation* rendering_stats_;
const base::Callback<void(bool was_canceled)> reply_;
DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl);
};
const size_t kScheduledRasterTasksLimit = 32u;
// Memory limit policy works by mapping some bin states to the NEVER bin.
const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
// [ALLOW_NOTHING]
{NEVER_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NEVER_BIN, // [NOW_BIN]
NEVER_BIN, // [SOON_BIN]
NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
NEVER_BIN, // [EVENTUALLY_BIN]
NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
NEVER_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
},
// [ALLOW_ABSOLUTE_MINIMUM]
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_BIN, // [NOW_BIN]
NEVER_BIN, // [SOON_BIN]
NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
NEVER_BIN, // [EVENTUALLY_BIN]
NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
NEVER_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
},
// [ALLOW_PREPAINT_ONLY]
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_BIN, // [NOW_BIN]
SOON_BIN, // [SOON_BIN]
NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
NEVER_BIN, // [EVENTUALLY_BIN]
NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
NEVER_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
},
// [ALLOW_ANYTHING]
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_BIN, // [NOW_BIN]
SOON_BIN, // [SOON_BIN]
EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
EVENTUALLY_BIN, // [EVENTUALLY_BIN]
AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
AT_LAST_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
}};
// Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
// Not ready
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_BIN, // [NOW_BIN]
SOON_BIN, // [SOON_BIN]
EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
EVENTUALLY_BIN, // [EVENTUALLY_BIN]
AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
AT_LAST_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
},
// Ready
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_AND_READY_TO_DRAW_BIN, // [NOW_BIN]
SOON_BIN, // [SOON_BIN]
EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
EVENTUALLY_BIN, // [EVENTUALLY_BIN]
AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
AT_LAST_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
}};
// Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
// Inactive
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_BIN, // [NOW_BIN]
SOON_BIN, // [SOON_BIN]
EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
EVENTUALLY_BIN, // [EVENTUALLY_BIN]
AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
AT_LAST_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
},
// Active
{NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
NOW_BIN, // [NOW_BIN]
SOON_BIN, // [SOON_BIN]
EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_BIN]
AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_BIN]
NEVER_BIN // [NEVER_BIN]
}};
// Determine bin based on three categories of tiles: things we need now,
// things we need soon, and eventually.
inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
if (prio.priority_bin == TilePriority::NOW)
return NOW_BIN;
if (prio.priority_bin == TilePriority::SOON)
return SOON_BIN;
if (prio.distance_to_visible == std::numeric_limits<float>::infinity())
return NEVER_BIN;
return EVENTUALLY_BIN;
}
} // namespace
RasterTaskCompletionStats::RasterTaskCompletionStats()
: completed_count(0u), canceled_count(0u) {}
scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
const RasterTaskCompletionStats& stats) {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->SetInteger("completed_count", stats.completed_count);
state->SetInteger("canceled_count", stats.canceled_count);
return state.PassAs<base::Value>();
}
// static
scoped_ptr<TileManager> TileManager::Create(
TileManagerClient* client,
base::SequencedTaskRunner* task_runner,
ResourcePool* resource_pool,
Rasterizer* rasterizer,
RenderingStatsInstrumentation* rendering_stats_instrumentation) {
return make_scoped_ptr(new TileManager(client,
task_runner,
resource_pool,
rasterizer,
rendering_stats_instrumentation));
}
TileManager::TileManager(
TileManagerClient* client,
base::SequencedTaskRunner* task_runner,
ResourcePool* resource_pool,
Rasterizer* rasterizer,
RenderingStatsInstrumentation* rendering_stats_instrumentation)
: client_(client),
task_runner_(task_runner),
resource_pool_(resource_pool),
rasterizer_(rasterizer),
prioritized_tiles_dirty_(false),
all_tiles_that_need_to_be_rasterized_have_memory_(true),
all_tiles_required_for_activation_have_memory_(true),
bytes_releasable_(0),
resources_releasable_(0),
ever_exceeded_memory_budget_(false),
rendering_stats_instrumentation_(rendering_stats_instrumentation),
did_initialize_visible_tile_(false),
did_check_for_completed_tasks_since_last_schedule_tasks_(true),
ready_to_activate_check_notifier_(
task_runner_,
base::Bind(&TileManager::CheckIfReadyToActivate,
base::Unretained(this))) {
rasterizer_->SetClient(this);
}
TileManager::~TileManager() {
// Reset global state and manage. This should cause
// our memory usage to drop to zero.
global_state_ = GlobalStateThatImpactsTilePriority();
CleanUpReleasedTiles();
DCHECK_EQ(0u, tiles_.size());
RasterTaskQueue empty;
rasterizer_->ScheduleTasks(&empty);
orphan_raster_tasks_.clear();
// This should finish all pending tasks and release any uninitialized
// resources.
rasterizer_->Shutdown();
rasterizer_->CheckForCompletedTasks();
DCHECK_EQ(0u, bytes_releasable_);
DCHECK_EQ(0u, resources_releasable_);
}
void TileManager::Release(Tile* tile) {
prioritized_tiles_dirty_ = true;
released_tiles_.push_back(tile);
}
void TileManager::DidChangeTilePriority(Tile* tile) {
prioritized_tiles_dirty_ = true;
}
bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
}
void TileManager::CleanUpReleasedTiles() {
for (std::vector<Tile*>::iterator it = released_tiles_.begin();
it != released_tiles_.end();
++it) {
Tile* tile = *it;
ManagedTileState& mts = tile->managed_state();
for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
FreeResourceForTile(tile, static_cast<RasterMode>(mode));
orphan_raster_tasks_.push_back(mts.tile_versions[mode].raster_task_);
}
DCHECK(tiles_.find(tile->id()) != tiles_.end());
tiles_.erase(tile->id());
LayerCountMap::iterator layer_it =
used_layer_counts_.find(tile->layer_id());
DCHECK_GT(layer_it->second, 0);
if (--layer_it->second == 0) {
used_layer_counts_.erase(layer_it);
image_decode_tasks_.erase(tile->layer_id());
}
delete tile;
}
released_tiles_.clear();
}
void TileManager::UpdatePrioritizedTileSetIfNeeded() {
if (!prioritized_tiles_dirty_)
return;
CleanUpReleasedTiles();
prioritized_tiles_.Clear();
GetTilesWithAssignedBins(&prioritized_tiles_);
prioritized_tiles_dirty_ = false;
}
void TileManager::DidFinishRunningTasks() {
TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");
bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() >
global_state_.soft_memory_limit_in_bytes;
// When OOM, keep re-assigning memory until we reach a steady state
// where top-priority tiles are initialized.
if (all_tiles_that_need_to_be_rasterized_have_memory_ &&
!memory_usage_above_limit)
return;
rasterizer_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
TileVector tiles_that_need_to_be_rasterized;
AssignGpuMemoryToTiles(&prioritized_tiles_,
&tiles_that_need_to_be_rasterized);
// |tiles_that_need_to_be_rasterized| will be empty when we reach a
// steady memory state. Keep scheduling tasks until we reach this state.
if (!tiles_that_need_to_be_rasterized.empty()) {
ScheduleTasks(tiles_that_need_to_be_rasterized);
return;
}
resource_pool_->ReduceResourceUsage();
// We don't reserve memory for required-for-activation tiles during
// accelerated gestures, so we just postpone activation when we don't
// have these tiles, and activate after the accelerated gesture.
bool allow_rasterize_on_demand =
global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
// Use on-demand raster for any required-for-activation tiles that have not
// been been assigned memory after reaching a steady memory state. This
// ensures that we activate even when OOM.
for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
Tile* tile = it->second;
ManagedTileState& mts = tile->managed_state();
ManagedTileState::TileVersion& tile_version =
mts.tile_versions[mts.raster_mode];
if (tile->required_for_activation() && !tile_version.IsReadyToDraw()) {
// If we can't raster on demand, give up early (and don't activate).
if (!allow_rasterize_on_demand)
return;
tile_version.set_rasterize_on_demand();
client_->NotifyTileStateChanged(tile);
}
}
DCHECK(IsReadyToActivate());
ready_to_activate_check_notifier_.Schedule();
}
void TileManager::DidFinishRunningTasksRequiredForActivation() {
// This is only a true indication that all tiles required for
// activation are initialized when no tiles are OOM. We need to
// wait for DidFinishRunningTasks() to be called, try to re-assign
// memory and in worst case use on-demand raster when tiles
// required for activation are OOM.
if (!all_tiles_required_for_activation_have_memory_)
return;
ready_to_activate_check_notifier_.Schedule();
}
void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");
const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
const TreePriority tree_priority = global_state_.tree_priority;
// For each tree, bin into different categories of tiles.
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
Tile* tile = it->second;
ManagedTileState& mts = tile->managed_state();
const ManagedTileState::TileVersion& tile_version =
tile->GetTileVersionForDrawing();
bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
bool tile_is_active = tile_is_ready_to_draw ||
mts.tile_versions[mts.raster_mode].raster_task_;
// Get the active priority and bin.
TilePriority active_priority = tile->priority(ACTIVE_TREE);
ManagedTileBin active_bin = BinFromTilePriority(active_priority);
// Get the pending priority and bin.
TilePriority pending_priority = tile->priority(PENDING_TREE);
ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);
bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION;
bool pending_is_non_ideal =
pending_priority.resolution == NON_IDEAL_RESOLUTION;
bool active_is_non_ideal =
active_priority.resolution == NON_IDEAL_RESOLUTION;
// Adjust bin state based on if ready to draw.
active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];
// Adjust bin state based on if active.
active_bin = kBinIsActiveMap[tile_is_active][active_bin];
pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];
// We never want to paint new non-ideal tiles, as we always have
// a high-res tile covering that content (paint that instead).
if (!tile_is_ready_to_draw && active_is_non_ideal)
active_bin = NEVER_BIN;
if (!tile_is_ready_to_draw && pending_is_non_ideal)
pending_bin = NEVER_BIN;
ManagedTileBin tree_bin[NUM_TREES];
tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];
// Adjust pending bin state for low res tiles. This prevents pending tree
// low-res tiles from being initialized before high-res tiles.
if (pending_is_low_res)
tree_bin[PENDING_TREE] = std::max(tree_bin[PENDING_TREE], EVENTUALLY_BIN);
TilePriority tile_priority;
switch (tree_priority) {
case SAME_PRIORITY_FOR_BOTH_TREES:
mts.bin = std::min(tree_bin[ACTIVE_TREE], tree_bin[PENDING_TREE]);
tile_priority = tile->combined_priority();
break;
case SMOOTHNESS_TAKES_PRIORITY:
mts.bin = tree_bin[ACTIVE_TREE];
tile_priority = active_priority;
break;
case NEW_CONTENT_TAKES_PRIORITY:
mts.bin = tree_bin[PENDING_TREE];
tile_priority = pending_priority;
break;
}
// Bump up the priority if we determined it's NEVER_BIN on one tree,
// but is still required on the other tree.
bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN &&
tree_bin[PENDING_TREE] == NEVER_BIN;
if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;
mts.resolution = tile_priority.resolution;
mts.priority_bin = tile_priority.priority_bin;
mts.distance_to_visible = tile_priority.distance_to_visible;
mts.required_for_activation = tile_priority.required_for_activation;
mts.visible_and_ready_to_draw =
tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;
// Tiles that are required for activation shouldn't be in NEVER_BIN unless
// smoothness takes priority or memory policy allows nothing to be
// initialized.
DCHECK(!mts.required_for_activation || mts.bin != NEVER_BIN ||
tree_priority == SMOOTHNESS_TAKES_PRIORITY ||
memory_policy == ALLOW_NOTHING);
// If the tile is in NEVER_BIN and it does not have an active task, then we
// can release the resources early. If it does have the task however, we
// should keep it in the prioritized tile set to ensure that AssignGpuMemory
// can visit it.
if (mts.bin == NEVER_BIN &&
!mts.tile_versions[mts.raster_mode].raster_task_) {
FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
continue;
}
// Insert the tile into a priority set.
tiles->InsertTile(tile, mts.bin);
}
}
void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
TRACE_EVENT0("cc", "TileManager::ManageTiles");
// Update internal state.
if (state != global_state_) {
global_state_ = state;
prioritized_tiles_dirty_ = true;
}
// We need to call CheckForCompletedTasks() once in-between each call
// to ScheduleTasks() to prevent canceled tasks from being scheduled.
if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
rasterizer_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
}
UpdatePrioritizedTileSetIfNeeded();
TileVector tiles_that_need_to_be_rasterized;
AssignGpuMemoryToTiles(&prioritized_tiles_,
&tiles_that_need_to_be_rasterized);
// Finally, schedule rasterizer tasks.
ScheduleTasks(tiles_that_need_to_be_rasterized);
TRACE_EVENT_INSTANT1("cc",
"DidManage",
TRACE_EVENT_SCOPE_THREAD,
"state",
TracedValue::FromValue(BasicStateAsValue().release()));
TRACE_COUNTER_ID1("cc",
"unused_memory_bytes",
this,
resource_pool_->total_memory_usage_bytes() -
resource_pool_->acquired_memory_usage_bytes());
}
bool TileManager::UpdateVisibleTiles() {
TRACE_EVENT0("cc", "TileManager::UpdateVisibleTiles");
rasterizer_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
TRACE_EVENT_INSTANT1(
"cc",
"DidUpdateVisibleTiles",
TRACE_EVENT_SCOPE_THREAD,
"stats",
TracedValue::FromValue(RasterTaskCompletionStatsAsValue(
update_visible_tiles_stats_).release()));
update_visible_tiles_stats_ = RasterTaskCompletionStats();
bool did_initialize_visible_tile = did_initialize_visible_tile_;
did_initialize_visible_tile_ = false;
return did_initialize_visible_tile;
}
scoped_ptr<base::Value> TileManager::BasicStateAsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->SetInteger("tile_count", tiles_.size());
state->Set("global_state", global_state_.AsValue().release());
return state.PassAs<base::Value>();
}
void TileManager::AssignGpuMemoryToTiles(
PrioritizedTileSet* tiles,
TileVector* tiles_that_need_to_be_rasterized) {
TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");
// Maintain the list of released resources that can potentially be re-used
// or deleted.
// If this operation becomes expensive too, only do this after some
// resource(s) was returned. Note that in that case, one also need to
// invalidate when releasing some resource from the pool.
resource_pool_->CheckBusyResources();
// Now give memory out to the tiles until we're out, and build
// the needs-to-be-rasterized queue.
all_tiles_that_need_to_be_rasterized_have_memory_ = true;
all_tiles_required_for_activation_have_memory_ = true;
// Cast to prevent overflow.
int64 soft_bytes_available =
static_cast<int64>(bytes_releasable_) +
static_cast<int64>(global_state_.soft_memory_limit_in_bytes) -
static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
int64 hard_bytes_available =
static_cast<int64>(bytes_releasable_) +
static_cast<int64>(global_state_.hard_memory_limit_in_bytes) -
static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
int resources_available = resources_releasable_ +
global_state_.num_resources_limit -
resource_pool_->acquired_resource_count();
size_t soft_bytes_allocatable =
std::max(static_cast<int64>(0), soft_bytes_available);
size_t hard_bytes_allocatable =
std::max(static_cast<int64>(0), hard_bytes_available);
size_t resources_allocatable = std::max(0, resources_available);
size_t bytes_that_exceeded_memory_budget = 0;
size_t soft_bytes_left = soft_bytes_allocatable;
size_t hard_bytes_left = hard_bytes_allocatable;
size_t resources_left = resources_allocatable;
bool oomed_soft = false;
bool oomed_hard = false;
bool have_hit_soft_memory = false; // Soft memory comes after hard.
unsigned schedule_priority = 1u;
for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) {
Tile* tile = *it;
ManagedTileState& mts = tile->managed_state();
mts.scheduled_priority = schedule_priority++;
mts.raster_mode = tile->DetermineOverallRasterMode();
ManagedTileState::TileVersion& tile_version =
mts.tile_versions[mts.raster_mode];
// If this tile doesn't need a resource, then nothing to do.
if (!tile_version.requires_resource())
continue;
// If the tile is not needed, free it up.
if (mts.bin == NEVER_BIN) {
FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
continue;
}
const bool tile_uses_hard_limit = mts.bin <= NOW_BIN;
const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
const size_t tile_bytes_left =
(tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left;
// Hard-limit is reserved for tiles that would cause a calamity
// if they were to go away, so by definition they are the highest
// priority memory, and must be at the front of the list.
DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit));
have_hit_soft_memory |= !tile_uses_hard_limit;
size_t tile_bytes = 0;
size_t tile_resources = 0;
// It costs to maintain a resource.
for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
if (mts.tile_versions[mode].resource_) {
tile_bytes += bytes_if_allocated;
tile_resources++;
}
}
// Allow lower priority tiles with initialized resources to keep
// their memory by only assigning memory to new raster tasks if
// they can be scheduled.
bool reached_scheduled_raster_tasks_limit =
tiles_that_need_to_be_rasterized->size() >= kScheduledRasterTasksLimit;
if (!reached_scheduled_raster_tasks_limit) {
// If we don't have the required version, and it's not in flight
// then we'll have to pay to create a new task.
if (!tile_version.resource_ && !tile_version.raster_task_) {
tile_bytes += bytes_if_allocated;
tile_resources++;
}
}
// Tile is OOM.
if (tile_bytes > tile_bytes_left || tile_resources > resources_left) {
bool was_ready_to_draw = tile->IsReadyToDraw();
FreeResourcesForTile(tile);
// This tile was already on screen and now its resources have been
// released. In order to prevent checkerboarding, set this tile as
// rasterize on demand immediately.
if (mts.visible_and_ready_to_draw)
tile_version.set_rasterize_on_demand();
if (was_ready_to_draw)
client_->NotifyTileStateChanged(tile);
oomed_soft = true;
if (tile_uses_hard_limit) {
oomed_hard = true;
bytes_that_exceeded_memory_budget += tile_bytes;
}
} else {
resources_left -= tile_resources;
hard_bytes_left -= tile_bytes;
soft_bytes_left =
(soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0;
if (tile_version.resource_)
continue;
}
DCHECK(!tile_version.resource_);
// Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
// has reached it's limit or we've failed to assign gpu memory to this
// or any higher priority tile. Preventing tiles that fit into memory
// budget to be rasterized when higher priority tile is oom is
// important for two reasons:
// 1. Tile size should not impact raster priority.
// 2. Tiles with existing raster task could otherwise incorrectly
// be added as they are not affected by |bytes_allocatable|.
bool can_schedule_tile =
!oomed_soft && !reached_scheduled_raster_tasks_limit;
if (!can_schedule_tile) {
all_tiles_that_need_to_be_rasterized_have_memory_ = false;
if (tile->required_for_activation())
all_tiles_required_for_activation_have_memory_ = false;
it.DisablePriorityOrdering();
continue;
}
tiles_that_need_to_be_rasterized->push_back(tile);
}
// OOM reporting uses hard-limit, soft-OOM is normal depending on limit.
ever_exceeded_memory_budget_ |= oomed_hard;
if (ever_exceeded_memory_budget_) {
TRACE_COUNTER_ID2("cc",
"over_memory_budget",
this,
"budget",
global_state_.hard_memory_limit_in_bytes,
"over",
bytes_that_exceeded_memory_budget);
}
memory_stats_from_last_assign_.total_budget_in_bytes =
global_state_.hard_memory_limit_in_bytes;
memory_stats_from_last_assign_.bytes_allocated =
hard_bytes_allocatable - hard_bytes_left;
memory_stats_from_last_assign_.bytes_unreleasable =
resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_;
memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget;
}
void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
ManagedTileState& mts = tile->managed_state();
if (mts.tile_versions[mode].resource_) {
resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass());
DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
DCHECK_GE(resources_releasable_, 1u);
bytes_releasable_ -= BytesConsumedIfAllocated(tile);
--resources_releasable_;
}
}
void TileManager::FreeResourcesForTile(Tile* tile) {
for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
FreeResourceForTile(tile, static_cast<RasterMode>(mode));
}
}
void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
DCHECK(tile->IsReadyToDraw());
ManagedTileState& mts = tile->managed_state();
RasterMode used_mode = LOW_QUALITY_RASTER_MODE;
for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
if (mts.tile_versions[mode].IsReadyToDraw()) {
used_mode = static_cast<RasterMode>(mode);
break;
}
}
for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
if (mode != used_mode)
FreeResourceForTile(tile, static_cast<RasterMode>(mode));
}
}
void TileManager::FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(
Tile* tile) {
bool was_ready_to_draw = tile->IsReadyToDraw();
FreeResourcesForTile(tile);
if (was_ready_to_draw)
client_->NotifyTileStateChanged(tile);
}
void TileManager::ScheduleTasks(
const TileVector& tiles_that_need_to_be_rasterized) {
TRACE_EVENT1("cc",
"TileManager::ScheduleTasks",
"count",
tiles_that_need_to_be_rasterized.size());
DCHECK(did_check_for_completed_tasks_since_last_schedule_tasks_);
raster_queue_.Reset();
// Build a new task queue containing all task currently needed. Tasks
// are added in order of priority, highest priority task first.
for (TileVector::const_iterator it = tiles_that_need_to_be_rasterized.begin();
it != tiles_that_need_to_be_rasterized.end();
++it) {
Tile* tile = *it;
ManagedTileState& mts = tile->managed_state();
ManagedTileState::TileVersion& tile_version =
mts.tile_versions[mts.raster_mode];
DCHECK(tile_version.requires_resource());
DCHECK(!tile_version.resource_);
if (!tile_version.raster_task_)
tile_version.raster_task_ = CreateRasterTask(tile);
raster_queue_.items.push_back(RasterTaskQueue::Item(
tile_version.raster_task_.get(), tile->required_for_activation()));
raster_queue_.required_for_activation_count +=
tile->required_for_activation();
}
// We must reduce the amount of unused resoruces before calling
// ScheduleTasks to prevent usage from rising above limits.
resource_pool_->ReduceResourceUsage();
// Schedule running of |raster_tasks_|. This replaces any previously
// scheduled tasks and effectively cancels all tasks not present
// in |raster_tasks_|.
rasterizer_->ScheduleTasks(&raster_queue_);
// It's now safe to clean up orphan tasks as raster worker pool is not
// allowed to keep around unreferenced raster tasks after ScheduleTasks() has
// been called.
orphan_raster_tasks_.clear();
did_check_for_completed_tasks_since_last_schedule_tasks_ = false;
}
scoped_refptr<ImageDecodeTask> TileManager::CreateImageDecodeTask(
Tile* tile,
SkPixelRef* pixel_ref) {
return make_scoped_refptr(new ImageDecodeTaskImpl(
pixel_ref,
tile->layer_id(),
rendering_stats_instrumentation_,
base::Bind(&TileManager::OnImageDecodeTaskCompleted,
base::Unretained(this),
tile->layer_id(),
base::Unretained(pixel_ref))));
}
scoped_refptr<RasterTask> TileManager::CreateRasterTask(Tile* tile) {
ManagedTileState& mts = tile->managed_state();
scoped_ptr<ScopedResource> resource =
resource_pool_->AcquireResource(tile->tile_size_.size());
const ScopedResource* const_resource = resource.get();
// Create and queue all image decode tasks that this tile depends on.
ImageDecodeTask::Vector decode_tasks;
PixelRefTaskMap& existing_pixel_refs = image_decode_tasks_[tile->layer_id()];
for (PicturePileImpl::PixelRefIterator iter(
tile->content_rect(), tile->contents_scale(), tile->picture_pile());
iter;
++iter) {
SkPixelRef* pixel_ref = *iter;
uint32_t id = pixel_ref->getGenerationID();
// Append existing image decode task if available.
PixelRefTaskMap::iterator decode_task_it = existing_pixel_refs.find(id);
if (decode_task_it != existing_pixel_refs.end()) {
decode_tasks.push_back(decode_task_it->second);
continue;
}
// Create and append new image decode task for this pixel ref.
scoped_refptr<ImageDecodeTask> decode_task =
CreateImageDecodeTask(tile, pixel_ref);
decode_tasks.push_back(decode_task);
existing_pixel_refs[id] = decode_task;
}
return make_scoped_refptr(
new RasterTaskImpl(const_resource,
tile->picture_pile(),
tile->content_rect(),
tile->contents_scale(),
mts.raster_mode,
mts.resolution,
tile->layer_id(),
static_cast<const void*>(tile),
tile->source_frame_number(),
tile->use_picture_analysis(),
rendering_stats_instrumentation_,
base::Bind(&TileManager::OnRasterTaskCompleted,
base::Unretained(this),
tile->id(),
base::Passed(&resource),
mts.raster_mode),
&decode_tasks));
}
void TileManager::OnImageDecodeTaskCompleted(int layer_id,
SkPixelRef* pixel_ref,
bool was_canceled) {
// If the task was canceled, we need to clean it up
// from |image_decode_tasks_|.
if (!was_canceled)
return;
LayerPixelRefTaskMap::iterator layer_it = image_decode_tasks_.find(layer_id);
if (layer_it == image_decode_tasks_.end())
return;
PixelRefTaskMap& pixel_ref_tasks = layer_it->second;
PixelRefTaskMap::iterator task_it =
pixel_ref_tasks.find(pixel_ref->getGenerationID());
if (task_it != pixel_ref_tasks.end())
pixel_ref_tasks.erase(task_it);
}
void TileManager::OnRasterTaskCompleted(
Tile::Id tile_id,
scoped_ptr<ScopedResource> resource,
RasterMode raster_mode,
const PicturePileImpl::Analysis& analysis,
bool was_canceled) {
TileMap::iterator it = tiles_.find(tile_id);
if (it == tiles_.end()) {
++update_visible_tiles_stats_.canceled_count;
resource_pool_->ReleaseResource(resource.Pass());
return;
}
Tile* tile = it->second;
ManagedTileState& mts = tile->managed_state();
ManagedTileState::TileVersion& tile_version = mts.tile_versions[raster_mode];
DCHECK(tile_version.raster_task_);
orphan_raster_tasks_.push_back(tile_version.raster_task_);
tile_version.raster_task_ = NULL;
if (was_canceled) {
++update_visible_tiles_stats_.canceled_count;
resource_pool_->ReleaseResource(resource.Pass());
return;
}
++update_visible_tiles_stats_.completed_count;
if (analysis.is_solid_color) {
tile_version.set_solid_color(analysis.solid_color);
resource_pool_->ReleaseResource(resource.Pass());
} else {
tile_version.set_use_resource();
tile_version.resource_ = resource.Pass();
bytes_releasable_ += BytesConsumedIfAllocated(tile);
++resources_releasable_;
}
FreeUnusedResourcesForTile(tile);
if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f)
did_initialize_visible_tile_ = true;
client_->NotifyTileStateChanged(tile);
}
scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
const gfx::Size& tile_size,
const gfx::Rect& content_rect,
const gfx::Rect& opaque_rect,
float contents_scale,
int layer_id,
int source_frame_number,
int flags) {
scoped_refptr<Tile> tile = make_scoped_refptr(new Tile(this,
picture_pile,
tile_size,
content_rect,
opaque_rect,
contents_scale,
layer_id,
source_frame_number,
flags));
DCHECK(tiles_.find(tile->id()) == tiles_.end());
tiles_[tile->id()] = tile;
used_layer_counts_[tile->layer_id()]++;
prioritized_tiles_dirty_ = true;
return tile;
}
void TileManager::GetPairedPictureLayers(
std::vector<PairedPictureLayer>* paired_layers) const {
const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
paired_layers->clear();
// Reserve a maximum possible paired layers.
paired_layers->reserve(layers.size());
for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
it != layers.end();
++it) {
PictureLayerImpl* layer = *it;
// TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704
if (!layer->HasValidTilePriorities())
continue;
PictureLayerImpl* twin_layer = layer->GetTwinLayer();
// Ignore the twin layer when tile priorities are invalid.
// TODO(vmpstr): Iterators should handle this instead. crbug.com/381704
if (twin_layer && !twin_layer->HasValidTilePriorities())
twin_layer = NULL;
PairedPictureLayer paired_layer;
WhichTree tree = layer->GetTree();
// If the current tree is ACTIVE_TREE, then always generate a paired_layer.
// If current tree is PENDING_TREE, then only generate a paired_layer if
// there is no twin layer.
if (tree == ACTIVE_TREE) {
DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
paired_layer.active_layer = layer;
paired_layer.pending_layer = twin_layer;
paired_layers->push_back(paired_layer);
} else if (!twin_layer) {
paired_layer.active_layer = NULL;
paired_layer.pending_layer = layer;
paired_layers->push_back(paired_layer);
}
}
}
TileManager::PairedPictureLayer::PairedPictureLayer()
: active_layer(NULL), pending_layer(NULL) {}
TileManager::PairedPictureLayer::~PairedPictureLayer() {}
TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
TreePriority tree_priority)
: tree_priority_(tree_priority), comparator_(tree_priority) {
std::vector<TileManager::PairedPictureLayer> paired_layers;
tile_manager->GetPairedPictureLayers(&paired_layers);
bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
paired_iterators_.reserve(paired_layers.size());
iterator_heap_.reserve(paired_layers.size());
for (std::vector<TileManager::PairedPictureLayer>::iterator it =
paired_layers.begin();
it != paired_layers.end();
++it) {
PairedPictureLayerIterator paired_iterator;
if (it->active_layer) {
paired_iterator.active_iterator =
PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
prioritize_low_res);
}
if (it->pending_layer) {
paired_iterator.pending_iterator =
PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
prioritize_low_res);
}
if (paired_iterator.PeekTile(tree_priority_) != NULL) {
paired_iterators_.push_back(paired_iterator);
iterator_heap_.push_back(&paired_iterators_.back());
}
}
std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}
TileManager::RasterTileIterator::~RasterTileIterator() {}
TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
DCHECK(*this);
std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
iterator_heap_.pop_back();
paired_iterator->PopTile(tree_priority_);
if (paired_iterator->PeekTile(tree_priority_) != NULL) {
iterator_heap_.push_back(paired_iterator);
std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}
return *this;
}
TileManager::RasterTileIterator::operator bool() const {
return !iterator_heap_.empty();
}
Tile* TileManager::RasterTileIterator::operator*() {
DCHECK(*this);
return iterator_heap_.front()->PeekTile(tree_priority_);
}
TileManager::RasterTileIterator::PairedPictureLayerIterator::
PairedPictureLayerIterator() {}
TileManager::RasterTileIterator::PairedPictureLayerIterator::
~PairedPictureLayerIterator() {}
Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
TreePriority tree_priority) {
PictureLayerImpl::LayerRasterTileIterator* next_iterator =
NextTileIterator(tree_priority).first;
if (!next_iterator)
return NULL;
DCHECK(*next_iterator);
DCHECK(std::find(returned_shared_tiles.begin(),
returned_shared_tiles.end(),
**next_iterator) == returned_shared_tiles.end());
return **next_iterator;
}
void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
TreePriority tree_priority) {
PictureLayerImpl::LayerRasterTileIterator* next_iterator =
NextTileIterator(tree_priority).first;
DCHECK(next_iterator);
DCHECK(*next_iterator);
returned_shared_tiles.push_back(**next_iterator);
++(*next_iterator);
next_iterator = NextTileIterator(tree_priority).first;
while (next_iterator &&
std::find(returned_shared_tiles.begin(),
returned_shared_tiles.end(),
**next_iterator) != returned_shared_tiles.end()) {
++(*next_iterator);
next_iterator = NextTileIterator(tree_priority).first;
}
}
std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
TreePriority tree_priority) {
// If both iterators are out of tiles, return NULL.
if (!active_iterator && !pending_iterator) {
return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
NULL, ACTIVE_TREE);
}
// If we only have one iterator with tiles, return it.
if (!active_iterator)
return std::make_pair(&pending_iterator, PENDING_TREE);
if (!pending_iterator)
return std::make_pair(&active_iterator, ACTIVE_TREE);
// Now both iterators have tiles, so we have to decide based on tree priority.
switch (tree_priority) {
case SMOOTHNESS_TAKES_PRIORITY:
return std::make_pair(&active_iterator, ACTIVE_TREE);
case NEW_CONTENT_TAKES_PRIORITY:
return std::make_pair(&pending_iterator, ACTIVE_TREE);
case SAME_PRIORITY_FOR_BOTH_TREES: {
Tile* active_tile = *active_iterator;
Tile* pending_tile = *pending_iterator;
if (active_tile == pending_tile)
return std::make_pair(&active_iterator, ACTIVE_TREE);
const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
const TilePriority& pending_priority =
pending_tile->priority(PENDING_TREE);
if (active_priority.IsHigherPriorityThan(pending_priority))
return std::make_pair(&active_iterator, ACTIVE_TREE);
return std::make_pair(&pending_iterator, PENDING_TREE);
}
}
NOTREACHED();
// Keep the compiler happy.
return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
NULL, ACTIVE_TREE);
}
TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
TreePriority tree_priority)
: tree_priority_(tree_priority) {}
bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
PairedPictureLayerIterator* a,
PairedPictureLayerIterator* b) const {
std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
a->NextTileIterator(tree_priority_);
DCHECK(a_pair.first);
DCHECK(*a_pair.first);
std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
b->NextTileIterator(tree_priority_);
DCHECK(b_pair.first);
DCHECK(*b_pair.first);
Tile* a_tile = **a_pair.first;
Tile* b_tile = **b_pair.first;
const TilePriority& a_priority =
a_tile->priority_for_tree_priority(tree_priority_);
const TilePriority& b_priority =
b_tile->priority_for_tree_priority(tree_priority_);
bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
// Now we have to return true iff b is higher priority than a.
// If the bin is the same but the resolution is not, then the order will be
// determined by whether we prioritize low res or not.
// TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
// class but instead produced by the iterators.
if (b_priority.priority_bin == a_priority.priority_bin &&
b_priority.resolution != a_priority.resolution) {
// Non ideal resolution should be sorted lower than other resolutions.
if (a_priority.resolution == NON_IDEAL_RESOLUTION)
return true;
if (b_priority.resolution == NON_IDEAL_RESOLUTION)
return false;
if (prioritize_low_res)
return b_priority.resolution == LOW_RESOLUTION;
return b_priority.resolution == HIGH_RESOLUTION;
}
return b_priority.IsHigherPriorityThan(a_priority);
}
TileManager::EvictionTileIterator::EvictionTileIterator()
: comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}
TileManager::EvictionTileIterator::EvictionTileIterator(
TileManager* tile_manager,
TreePriority tree_priority)
: tree_priority_(tree_priority), comparator_(tree_priority) {
std::vector<TileManager::PairedPictureLayer> paired_layers;
tile_manager->GetPairedPictureLayers(&paired_layers);
paired_iterators_.reserve(paired_layers.size());
iterator_heap_.reserve(paired_layers.size());
for (std::vector<TileManager::PairedPictureLayer>::iterator it =
paired_layers.begin();
it != paired_layers.end();
++it) {
PairedPictureLayerIterator paired_iterator;
if (it->active_layer) {
paired_iterator.active_iterator =
PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
tree_priority_);
}
if (it->pending_layer) {
paired_iterator.pending_iterator =
PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
tree_priority_);
}
if (paired_iterator.PeekTile(tree_priority_) != NULL) {
paired_iterators_.push_back(paired_iterator);
iterator_heap_.push_back(&paired_iterators_.back());
}
}
std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}
TileManager::EvictionTileIterator::~EvictionTileIterator() {}
TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
operator++() {
std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
iterator_heap_.pop_back();
paired_iterator->PopTile(tree_priority_);
if (paired_iterator->PeekTile(tree_priority_) != NULL) {
iterator_heap_.push_back(paired_iterator);
std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}
return *this;
}
TileManager::EvictionTileIterator::operator bool() const {
return !iterator_heap_.empty();
}
Tile* TileManager::EvictionTileIterator::operator*() {
DCHECK(*this);
return iterator_heap_.front()->PeekTile(tree_priority_);
}
TileManager::EvictionTileIterator::PairedPictureLayerIterator::
PairedPictureLayerIterator() {}
TileManager::EvictionTileIterator::PairedPictureLayerIterator::
~PairedPictureLayerIterator() {}
Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
TreePriority tree_priority) {
PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
NextTileIterator(tree_priority);
if (!next_iterator)
return NULL;
DCHECK(*next_iterator);
DCHECK(std::find(returned_shared_tiles.begin(),
returned_shared_tiles.end(),
**next_iterator) == returned_shared_tiles.end());
return **next_iterator;
}
void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
TreePriority tree_priority) {
PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
NextTileIterator(tree_priority);
DCHECK(next_iterator);
DCHECK(*next_iterator);
returned_shared_tiles.push_back(**next_iterator);
++(*next_iterator);
next_iterator = NextTileIterator(tree_priority);
while (next_iterator &&
std::find(returned_shared_tiles.begin(),
returned_shared_tiles.end(),
**next_iterator) != returned_shared_tiles.end()) {
++(*next_iterator);
next_iterator = NextTileIterator(tree_priority);
}
}
PictureLayerImpl::LayerEvictionTileIterator*
TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
TreePriority tree_priority) {
// If both iterators are out of tiles, return NULL.
if (!active_iterator && !pending_iterator)
return NULL;
// If we only have one iterator with tiles, return it.
if (!active_iterator)
return &pending_iterator;
if (!pending_iterator)
return &active_iterator;
Tile* active_tile = *active_iterator;
Tile* pending_tile = *pending_iterator;
if (active_tile == pending_tile)
return &active_iterator;
const TilePriority& active_priority =
active_tile->priority_for_tree_priority(tree_priority);
const TilePriority& pending_priority =
pending_tile->priority_for_tree_priority(tree_priority);
if (pending_priority.IsHigherPriorityThan(active_priority))
return &active_iterator;
return &pending_iterator;
}
TileManager::EvictionTileIterator::EvictionOrderComparator::
EvictionOrderComparator(TreePriority tree_priority)
: tree_priority_(tree_priority) {}
bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
PairedPictureLayerIterator* a,
PairedPictureLayerIterator* b) const {
PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
a->NextTileIterator(tree_priority_);
DCHECK(a_iterator);
DCHECK(*a_iterator);
PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
b->NextTileIterator(tree_priority_);
DCHECK(b_iterator);
DCHECK(*b_iterator);
Tile* a_tile = **a_iterator;
Tile* b_tile = **b_iterator;
const TilePriority& a_priority =
a_tile->priority_for_tree_priority(tree_priority_);
const TilePriority& b_priority =
b_tile->priority_for_tree_priority(tree_priority_);
bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
// Now we have to return true iff b is lower priority than a.
// If the bin is the same but the resolution is not, then the order will be
// determined by whether we prioritize low res or not.
// TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
// class but instead produced by the iterators.
if (b_priority.priority_bin == a_priority.priority_bin &&
b_priority.resolution != a_priority.resolution) {
// Non ideal resolution should be sorted higher than other resolutions.
if (a_priority.resolution == NON_IDEAL_RESOLUTION)
return false;
if (b_priority.resolution == NON_IDEAL_RESOLUTION)
return true;
if (prioritize_low_res)
return a_priority.resolution == LOW_RESOLUTION;
return a_priority.resolution == HIGH_RESOLUTION;
}
return a_priority.IsHigherPriorityThan(b_priority);
}
void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) {
rasterizer_ = rasterizer;
rasterizer_->SetClient(this);
}
bool TileManager::IsReadyToActivate() const {
const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
it != layers.end();
++it) {
if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw())
return false;
}
return true;
}
void TileManager::CheckIfReadyToActivate() {
TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate");
rasterizer_->CheckForCompletedTasks();
did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
if (IsReadyToActivate())
client_->NotifyReadyToActivate();
}
} // namespace cc