// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Multi-threaded tests of ConditionVariable class.
#include <time.h>
#include <algorithm>
#include <vector>
#include "base/bind.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/spin_wait.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "base/threading/thread_collision_warner.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/platform_test.h"
namespace base {
namespace {
//------------------------------------------------------------------------------
// Define our test class, with several common variables.
//------------------------------------------------------------------------------
class ConditionVariableTest : public PlatformTest {
public:
const TimeDelta kZeroMs;
const TimeDelta kTenMs;
const TimeDelta kThirtyMs;
const TimeDelta kFortyFiveMs;
const TimeDelta kSixtyMs;
const TimeDelta kOneHundredMs;
ConditionVariableTest()
: kZeroMs(TimeDelta::FromMilliseconds(0)),
kTenMs(TimeDelta::FromMilliseconds(10)),
kThirtyMs(TimeDelta::FromMilliseconds(30)),
kFortyFiveMs(TimeDelta::FromMilliseconds(45)),
kSixtyMs(TimeDelta::FromMilliseconds(60)),
kOneHundredMs(TimeDelta::FromMilliseconds(100)) {
}
};
//------------------------------------------------------------------------------
// Define a class that will control activities an several multi-threaded tests.
// The general structure of multi-threaded tests is that a test case will
// construct an instance of a WorkQueue. The WorkQueue will spin up some
// threads and control them throughout their lifetime, as well as maintaining
// a central repository of the work thread's activity. Finally, the WorkQueue
// will command the the worker threads to terminate. At that point, the test
// cases will validate that the WorkQueue has records showing that the desired
// activities were performed.
//------------------------------------------------------------------------------
// Callers are responsible for synchronizing access to the following class.
// The WorkQueue::lock_, as accessed via WorkQueue::lock(), should be used for
// all synchronized access.
class WorkQueue : public PlatformThread::Delegate {
public:
explicit WorkQueue(int thread_count);
virtual ~WorkQueue();
// PlatformThread::Delegate interface.
virtual void ThreadMain() OVERRIDE;
//----------------------------------------------------------------------------
// Worker threads only call the following methods.
// They should use the lock to get exclusive access.
int GetThreadId(); // Get an ID assigned to a thread..
bool EveryIdWasAllocated() const; // Indicates that all IDs were handed out.
TimeDelta GetAnAssignment(int thread_id); // Get a work task duration.
void WorkIsCompleted(int thread_id);
int task_count() const;
bool allow_help_requests() const; // Workers can signal more workers.
bool shutdown() const; // Check if shutdown has been requested.
void thread_shutting_down();
//----------------------------------------------------------------------------
// Worker threads can call them but not needed to acquire a lock.
Lock* lock();
ConditionVariable* work_is_available();
ConditionVariable* all_threads_have_ids();
ConditionVariable* no_more_tasks();
//----------------------------------------------------------------------------
// The rest of the methods are for use by the controlling master thread (the
// test case code).
void ResetHistory();
int GetMinCompletionsByWorkerThread() const;
int GetMaxCompletionsByWorkerThread() const;
int GetNumThreadsTakingAssignments() const;
int GetNumThreadsCompletingTasks() const;
int GetNumberOfCompletedTasks() const;
void SetWorkTime(TimeDelta delay);
void SetTaskCount(int count);
void SetAllowHelp(bool allow);
// The following must be called without locking, and will spin wait until the
// threads are all in a wait state.
void SpinUntilAllThreadsAreWaiting();
void SpinUntilTaskCountLessThan(int task_count);
// Caller must acquire lock before calling.
void SetShutdown();
// Compares the |shutdown_task_count_| to the |thread_count| and returns true
// if they are equal. This check will acquire the |lock_| so the caller
// should not hold the lock when calling this method.
bool ThreadSafeCheckShutdown(int thread_count);
private:
// Both worker threads and controller use the following to synchronize.
Lock lock_;
ConditionVariable work_is_available_; // To tell threads there is work.
// Conditions to notify the controlling process (if it is interested).
ConditionVariable all_threads_have_ids_; // All threads are running.
ConditionVariable no_more_tasks_; // Task count is zero.
const int thread_count_;
int waiting_thread_count_;
scoped_ptr<PlatformThreadHandle[]> thread_handles_;
std::vector<int> assignment_history_; // Number of assignment per worker.
std::vector<int> completion_history_; // Number of completions per worker.
int thread_started_counter_; // Used to issue unique id to workers.
int shutdown_task_count_; // Number of tasks told to shutdown
int task_count_; // Number of assignment tasks waiting to be processed.
TimeDelta worker_delay_; // Time each task takes to complete.
bool allow_help_requests_; // Workers can signal more workers.
bool shutdown_; // Set when threads need to terminate.
DFAKE_MUTEX(locked_methods_);
};
//------------------------------------------------------------------------------
// The next section contains the actual tests.
//------------------------------------------------------------------------------
TEST_F(ConditionVariableTest, StartupShutdownTest) {
Lock lock;
// First try trivial startup/shutdown.
{
ConditionVariable cv1(&lock);
} // Call for cv1 destruction.
// Exercise with at least a few waits.
ConditionVariable cv(&lock);
lock.Acquire();
cv.TimedWait(kTenMs); // Wait for 10 ms.
cv.TimedWait(kTenMs); // Wait for 10 ms.
lock.Release();
lock.Acquire();
cv.TimedWait(kTenMs); // Wait for 10 ms.
cv.TimedWait(kTenMs); // Wait for 10 ms.
cv.TimedWait(kTenMs); // Wait for 10 ms.
lock.Release();
} // Call for cv destruction.
TEST_F(ConditionVariableTest, TimeoutTest) {
Lock lock;
ConditionVariable cv(&lock);
lock.Acquire();
TimeTicks start = TimeTicks::Now();
const TimeDelta WAIT_TIME = TimeDelta::FromMilliseconds(300);
// Allow for clocking rate granularity.
const TimeDelta FUDGE_TIME = TimeDelta::FromMilliseconds(50);
cv.TimedWait(WAIT_TIME + FUDGE_TIME);
TimeDelta duration = TimeTicks::Now() - start;
// We can't use EXPECT_GE here as the TimeDelta class does not support the
// required stream conversion.
EXPECT_TRUE(duration >= WAIT_TIME);
lock.Release();
}
#if defined(OS_POSIX)
const int kDiscontinuitySeconds = 2;
void BackInTime(Lock* lock) {
AutoLock auto_lock(*lock);
timeval tv;
gettimeofday(&tv, NULL);
tv.tv_sec -= kDiscontinuitySeconds;
settimeofday(&tv, NULL);
}
// Tests that TimedWait ignores changes to the system clock.
// Test is disabled by default, because it needs to run as root to muck with the
// system clock.
// http://crbug.com/293736
TEST_F(ConditionVariableTest, DISABLED_TimeoutAcrossSetTimeOfDay) {
timeval tv;
gettimeofday(&tv, NULL);
tv.tv_sec += kDiscontinuitySeconds;
if (settimeofday(&tv, NULL) < 0) {
PLOG(ERROR) << "Could not set time of day. Run as root?";
return;
}
Lock lock;
ConditionVariable cv(&lock);
lock.Acquire();
Thread thread("Helper");
thread.Start();
thread.message_loop()->PostTask(FROM_HERE, base::Bind(&BackInTime, &lock));
TimeTicks start = TimeTicks::Now();
const TimeDelta kWaitTime = TimeDelta::FromMilliseconds(300);
// Allow for clocking rate granularity.
const TimeDelta kFudgeTime = TimeDelta::FromMilliseconds(50);
cv.TimedWait(kWaitTime + kFudgeTime);
TimeDelta duration = TimeTicks::Now() - start;
thread.Stop();
// We can't use EXPECT_GE here as the TimeDelta class does not support the
// required stream conversion.
EXPECT_TRUE(duration >= kWaitTime);
EXPECT_TRUE(duration <= TimeDelta::FromSeconds(kDiscontinuitySeconds));
lock.Release();
}
#endif
// Suddenly got flaky on Win, see http://crbug.com/10607 (starting at
// comment #15).
#if defined(OS_WIN)
#define MAYBE_MultiThreadConsumerTest DISABLED_MultiThreadConsumerTest
#else
#define MAYBE_MultiThreadConsumerTest MultiThreadConsumerTest
#endif
// Test serial task servicing, as well as two parallel task servicing methods.
TEST_F(ConditionVariableTest, MAYBE_MultiThreadConsumerTest) {
const int kThreadCount = 10;
WorkQueue queue(kThreadCount); // Start the threads.
const int kTaskCount = 10; // Number of tasks in each mini-test here.
Time start_time; // Used to time task processing.
{
base::AutoLock auto_lock(*queue.lock());
while (!queue.EveryIdWasAllocated())
queue.all_threads_have_ids()->Wait();
}
// If threads aren't in a wait state, they may start to gobble up tasks in
// parallel, short-circuiting (breaking) this test.
queue.SpinUntilAllThreadsAreWaiting();
{
// Since we have no tasks yet, all threads should be waiting by now.
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(0, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(0, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_EQ(0, queue.GetMaxCompletionsByWorkerThread());
EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread());
EXPECT_EQ(0, queue.GetNumberOfCompletedTasks());
// Set up to make each task include getting help from another worker, so
// so that the work gets done in paralell.
queue.ResetHistory();
queue.SetTaskCount(kTaskCount);
queue.SetWorkTime(kThirtyMs);
queue.SetAllowHelp(true);
start_time = Time::Now();
}
queue.work_is_available()->Signal(); // But each worker can signal another.
// Wait till we at least start to handle tasks (and we're not all waiting).
queue.SpinUntilTaskCountLessThan(kTaskCount);
// Wait to allow the all workers to get done.
queue.SpinUntilAllThreadsAreWaiting();
{
// Wait until all work tasks have at least been assigned.
base::AutoLock auto_lock(*queue.lock());
while (queue.task_count())
queue.no_more_tasks()->Wait();
// To avoid racy assumptions, we'll just assert that at least 2 threads
// did work. We know that the first worker should have gone to sleep, and
// hence a second worker should have gotten an assignment.
EXPECT_LE(2, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(kTaskCount, queue.GetNumberOfCompletedTasks());
// Try to ask all workers to help, and only a few will do the work.
queue.ResetHistory();
queue.SetTaskCount(3);
queue.SetWorkTime(kThirtyMs);
queue.SetAllowHelp(false);
}
queue.work_is_available()->Broadcast(); // Make them all try.
// Wait till we at least start to handle tasks (and we're not all waiting).
queue.SpinUntilTaskCountLessThan(3);
// Wait to allow the 3 workers to get done.
queue.SpinUntilAllThreadsAreWaiting();
{
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(3, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(3, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_EQ(1, queue.GetMaxCompletionsByWorkerThread());
EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread());
EXPECT_EQ(3, queue.GetNumberOfCompletedTasks());
// Set up to make each task get help from another worker.
queue.ResetHistory();
queue.SetTaskCount(3);
queue.SetWorkTime(kThirtyMs);
queue.SetAllowHelp(true); // Allow (unnecessary) help requests.
}
queue.work_is_available()->Broadcast(); // Signal all threads.
// Wait till we at least start to handle tasks (and we're not all waiting).
queue.SpinUntilTaskCountLessThan(3);
// Wait to allow the 3 workers to get done.
queue.SpinUntilAllThreadsAreWaiting();
{
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(3, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(3, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_EQ(1, queue.GetMaxCompletionsByWorkerThread());
EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread());
EXPECT_EQ(3, queue.GetNumberOfCompletedTasks());
// Set up to make each task get help from another worker.
queue.ResetHistory();
queue.SetTaskCount(20); // 2 tasks per thread.
queue.SetWorkTime(kThirtyMs);
queue.SetAllowHelp(true);
}
queue.work_is_available()->Signal(); // But each worker can signal another.
// Wait till we at least start to handle tasks (and we're not all waiting).
queue.SpinUntilTaskCountLessThan(20);
// Wait to allow the 10 workers to get done.
queue.SpinUntilAllThreadsAreWaiting(); // Should take about 60 ms.
{
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(10, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(10, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_EQ(20, queue.GetNumberOfCompletedTasks());
// Same as last test, but with Broadcast().
queue.ResetHistory();
queue.SetTaskCount(20); // 2 tasks per thread.
queue.SetWorkTime(kThirtyMs);
queue.SetAllowHelp(true);
}
queue.work_is_available()->Broadcast();
// Wait till we at least start to handle tasks (and we're not all waiting).
queue.SpinUntilTaskCountLessThan(20);
// Wait to allow the 10 workers to get done.
queue.SpinUntilAllThreadsAreWaiting(); // Should take about 60 ms.
{
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(10, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(10, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_EQ(20, queue.GetNumberOfCompletedTasks());
queue.SetShutdown();
}
queue.work_is_available()->Broadcast(); // Force check for shutdown.
SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(TimeDelta::FromMinutes(1),
queue.ThreadSafeCheckShutdown(kThreadCount));
}
TEST_F(ConditionVariableTest, LargeFastTaskTest) {
const int kThreadCount = 200;
WorkQueue queue(kThreadCount); // Start the threads.
Lock private_lock; // Used locally for master to wait.
base::AutoLock private_held_lock(private_lock);
ConditionVariable private_cv(&private_lock);
{
base::AutoLock auto_lock(*queue.lock());
while (!queue.EveryIdWasAllocated())
queue.all_threads_have_ids()->Wait();
}
// Wait a bit more to allow threads to reach their wait state.
queue.SpinUntilAllThreadsAreWaiting();
{
// Since we have no tasks, all threads should be waiting by now.
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(0, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(0, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_EQ(0, queue.GetMaxCompletionsByWorkerThread());
EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread());
EXPECT_EQ(0, queue.GetNumberOfCompletedTasks());
// Set up to make all workers do (an average of) 20 tasks.
queue.ResetHistory();
queue.SetTaskCount(20 * kThreadCount);
queue.SetWorkTime(kFortyFiveMs);
queue.SetAllowHelp(false);
}
queue.work_is_available()->Broadcast(); // Start up all threads.
// Wait until we've handed out all tasks.
{
base::AutoLock auto_lock(*queue.lock());
while (queue.task_count() != 0)
queue.no_more_tasks()->Wait();
}
// Wait till the last of the tasks complete.
queue.SpinUntilAllThreadsAreWaiting();
{
// With Broadcast(), every thread should have participated.
// but with racing.. they may not all have done equal numbers of tasks.
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(kThreadCount, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(kThreadCount, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_LE(20, queue.GetMaxCompletionsByWorkerThread());
EXPECT_EQ(20 * kThreadCount, queue.GetNumberOfCompletedTasks());
// Set up to make all workers do (an average of) 4 tasks.
queue.ResetHistory();
queue.SetTaskCount(kThreadCount * 4);
queue.SetWorkTime(kFortyFiveMs);
queue.SetAllowHelp(true); // Might outperform Broadcast().
}
queue.work_is_available()->Signal(); // Start up one thread.
// Wait until we've handed out all tasks
{
base::AutoLock auto_lock(*queue.lock());
while (queue.task_count() != 0)
queue.no_more_tasks()->Wait();
}
// Wait till the last of the tasks complete.
queue.SpinUntilAllThreadsAreWaiting();
{
// With Signal(), every thread should have participated.
// but with racing.. they may not all have done four tasks.
base::AutoLock auto_lock(*queue.lock());
EXPECT_EQ(kThreadCount, queue.GetNumThreadsTakingAssignments());
EXPECT_EQ(kThreadCount, queue.GetNumThreadsCompletingTasks());
EXPECT_EQ(0, queue.task_count());
EXPECT_LE(4, queue.GetMaxCompletionsByWorkerThread());
EXPECT_EQ(4 * kThreadCount, queue.GetNumberOfCompletedTasks());
queue.SetShutdown();
}
queue.work_is_available()->Broadcast(); // Force check for shutdown.
// Wait for shutdowns to complete.
SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(TimeDelta::FromMinutes(1),
queue.ThreadSafeCheckShutdown(kThreadCount));
}
//------------------------------------------------------------------------------
// Finally we provide the implementation for the methods in the WorkQueue class.
//------------------------------------------------------------------------------
WorkQueue::WorkQueue(int thread_count)
: lock_(),
work_is_available_(&lock_),
all_threads_have_ids_(&lock_),
no_more_tasks_(&lock_),
thread_count_(thread_count),
waiting_thread_count_(0),
thread_handles_(new PlatformThreadHandle[thread_count]),
assignment_history_(thread_count),
completion_history_(thread_count),
thread_started_counter_(0),
shutdown_task_count_(0),
task_count_(0),
allow_help_requests_(false),
shutdown_(false) {
EXPECT_GE(thread_count_, 1);
ResetHistory();
SetTaskCount(0);
SetWorkTime(TimeDelta::FromMilliseconds(30));
for (int i = 0; i < thread_count_; ++i) {
PlatformThreadHandle pth;
EXPECT_TRUE(PlatformThread::Create(0, this, &pth));
thread_handles_[i] = pth;
}
}
WorkQueue::~WorkQueue() {
{
base::AutoLock auto_lock(lock_);
SetShutdown();
}
work_is_available_.Broadcast(); // Tell them all to terminate.
for (int i = 0; i < thread_count_; ++i) {
PlatformThread::Join(thread_handles_[i]);
}
EXPECT_EQ(0, waiting_thread_count_);
}
int WorkQueue::GetThreadId() {
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
DCHECK(!EveryIdWasAllocated());
return thread_started_counter_++; // Give out Unique IDs.
}
bool WorkQueue::EveryIdWasAllocated() const {
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
return thread_count_ == thread_started_counter_;
}
TimeDelta WorkQueue::GetAnAssignment(int thread_id) {
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
DCHECK_LT(0, task_count_);
assignment_history_[thread_id]++;
if (0 == --task_count_) {
no_more_tasks_.Signal();
}
return worker_delay_;
}
void WorkQueue::WorkIsCompleted(int thread_id) {
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
completion_history_[thread_id]++;
}
int WorkQueue::task_count() const {
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
return task_count_;
}
bool WorkQueue::allow_help_requests() const {
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
return allow_help_requests_;
}
bool WorkQueue::shutdown() const {
lock_.AssertAcquired();
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
return shutdown_;
}
// Because this method is called from the test's main thread we need to actually
// take the lock. Threads will call the thread_shutting_down() method with the
// lock already acquired.
bool WorkQueue::ThreadSafeCheckShutdown(int thread_count) {
bool all_shutdown;
base::AutoLock auto_lock(lock_);
{
// Declare in scope so DFAKE is guranteed to be destroyed before AutoLock.
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
all_shutdown = (shutdown_task_count_ == thread_count);
}
return all_shutdown;
}
void WorkQueue::thread_shutting_down() {
lock_.AssertAcquired();
DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_);
shutdown_task_count_++;
}
Lock* WorkQueue::lock() {
return &lock_;
}
ConditionVariable* WorkQueue::work_is_available() {
return &work_is_available_;
}
ConditionVariable* WorkQueue::all_threads_have_ids() {
return &all_threads_have_ids_;
}
ConditionVariable* WorkQueue::no_more_tasks() {
return &no_more_tasks_;
}
void WorkQueue::ResetHistory() {
for (int i = 0; i < thread_count_; ++i) {
assignment_history_[i] = 0;
completion_history_[i] = 0;
}
}
int WorkQueue::GetMinCompletionsByWorkerThread() const {
int minumum = completion_history_[0];
for (int i = 0; i < thread_count_; ++i)
minumum = std::min(minumum, completion_history_[i]);
return minumum;
}
int WorkQueue::GetMaxCompletionsByWorkerThread() const {
int maximum = completion_history_[0];
for (int i = 0; i < thread_count_; ++i)
maximum = std::max(maximum, completion_history_[i]);
return maximum;
}
int WorkQueue::GetNumThreadsTakingAssignments() const {
int count = 0;
for (int i = 0; i < thread_count_; ++i)
if (assignment_history_[i])
count++;
return count;
}
int WorkQueue::GetNumThreadsCompletingTasks() const {
int count = 0;
for (int i = 0; i < thread_count_; ++i)
if (completion_history_[i])
count++;
return count;
}
int WorkQueue::GetNumberOfCompletedTasks() const {
int total = 0;
for (int i = 0; i < thread_count_; ++i)
total += completion_history_[i];
return total;
}
void WorkQueue::SetWorkTime(TimeDelta delay) {
worker_delay_ = delay;
}
void WorkQueue::SetTaskCount(int count) {
task_count_ = count;
}
void WorkQueue::SetAllowHelp(bool allow) {
allow_help_requests_ = allow;
}
void WorkQueue::SetShutdown() {
lock_.AssertAcquired();
shutdown_ = true;
}
void WorkQueue::SpinUntilAllThreadsAreWaiting() {
while (true) {
{
base::AutoLock auto_lock(lock_);
if (waiting_thread_count_ == thread_count_)
break;
}
PlatformThread::Sleep(TimeDelta::FromMilliseconds(30));
}
}
void WorkQueue::SpinUntilTaskCountLessThan(int task_count) {
while (true) {
{
base::AutoLock auto_lock(lock_);
if (task_count_ < task_count)
break;
}
PlatformThread::Sleep(TimeDelta::FromMilliseconds(30));
}
}
//------------------------------------------------------------------------------
// Define the standard worker task. Several tests will spin out many of these
// threads.
//------------------------------------------------------------------------------
// The multithread tests involve several threads with a task to perform as
// directed by an instance of the class WorkQueue.
// The task is to:
// a) Check to see if there are more tasks (there is a task counter).
// a1) Wait on condition variable if there are no tasks currently.
// b) Call a function to see what should be done.
// c) Do some computation based on the number of milliseconds returned in (b).
// d) go back to (a).
// WorkQueue::ThreadMain() implements the above task for all threads.
// It calls the controlling object to tell the creator about progress, and to
// ask about tasks.
void WorkQueue::ThreadMain() {
int thread_id;
{
base::AutoLock auto_lock(lock_);
thread_id = GetThreadId();
if (EveryIdWasAllocated())
all_threads_have_ids()->Signal(); // Tell creator we're ready.
}
Lock private_lock; // Used to waste time on "our work".
while (1) { // This is the main consumer loop.
TimeDelta work_time;
bool could_use_help;
{
base::AutoLock auto_lock(lock_);
while (0 == task_count() && !shutdown()) {
++waiting_thread_count_;
work_is_available()->Wait();
--waiting_thread_count_;
}
if (shutdown()) {
// Ack the notification of a shutdown message back to the controller.
thread_shutting_down();
return; // Terminate.
}
// Get our task duration from the queue.
work_time = GetAnAssignment(thread_id);
could_use_help = (task_count() > 0) && allow_help_requests();
} // Release lock
// Do work (outside of locked region.
if (could_use_help)
work_is_available()->Signal(); // Get help from other threads.
if (work_time > TimeDelta::FromMilliseconds(0)) {
// We could just sleep(), but we'll instead further exercise the
// condition variable class, and do a timed wait.
base::AutoLock auto_lock(private_lock);
ConditionVariable private_cv(&private_lock);
private_cv.TimedWait(work_time); // Unsynchronized waiting.
}
{
base::AutoLock auto_lock(lock_);
// Send notification that we completed our "work."
WorkIsCompleted(thread_id);
}
}
}
} // namespace
} // namespace base