/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_
#include "object_array.h"
#include "base/stringprintf.h"
#include "gc/heap.h"
#include "mirror/art_field.h"
#include "mirror/class.h"
#include "runtime.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include <string>
namespace art {
namespace mirror {
template<class T>
inline ObjectArray<T>* ObjectArray<T>::Alloc(Thread* self, Class* object_array_class,
int32_t length, gc::AllocatorType allocator_type) {
Array* array = Array::Alloc<true>(self, object_array_class, length,
sizeof(HeapReference<Object>), allocator_type);
if (UNLIKELY(array == nullptr)) {
return nullptr;
} else {
return array->AsObjectArray<T>();
}
}
template<class T>
inline ObjectArray<T>* ObjectArray<T>::Alloc(Thread* self, Class* object_array_class,
int32_t length) {
return Alloc(self, object_array_class, length,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
template<class T>
inline T* ObjectArray<T>::Get(int32_t i) {
if (!CheckIsValidIndex(i)) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
return GetFieldObject<T>(OffsetOfElement(i));
}
template<class T> template<VerifyObjectFlags kVerifyFlags>
inline bool ObjectArray<T>::CheckAssignable(T* object) {
if (object != NULL) {
Class* element_class = GetClass<kVerifyFlags>()->GetComponentType();
if (UNLIKELY(!object->InstanceOf(element_class))) {
ThrowArrayStoreException(object);
return false;
}
}
return true;
}
template<class T>
inline void ObjectArray<T>::Set(int32_t i, T* object) {
if (Runtime::Current()->IsActiveTransaction()) {
Set<true>(i, object);
} else {
Set<false>(i, object);
}
}
template<class T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void ObjectArray<T>::Set(int32_t i, T* object) {
if (CheckIsValidIndex(i) && CheckAssignable<kVerifyFlags>(object)) {
SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object);
} else {
DCHECK(Thread::Current()->IsExceptionPending());
}
}
template<class T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void ObjectArray<T>::SetWithoutChecks(int32_t i, T* object) {
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
DCHECK(CheckAssignable<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(object));
SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object);
}
template<class T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void ObjectArray<T>::SetWithoutChecksAndWriteBarrier(int32_t i, T* object) {
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
// TODO: enable this check. It fails when writing the image in ImageWriter::FixupObjectArray.
// DCHECK(CheckAssignable(object));
SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags>(
OffsetOfElement(i), object);
}
template<class T>
inline T* ObjectArray<T>::GetWithoutChecks(int32_t i) {
DCHECK(CheckIsValidIndex(i));
return GetFieldObject<T>(OffsetOfElement(i));
}
template<class T>
inline void ObjectArray<T>::AssignableMemmove(int32_t dst_pos, ObjectArray<T>* src,
int32_t src_pos, int32_t count) {
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
src->GetWithoutChecks(src_pos + i);
}
}
// Perform the memmove using int memmove then perform the write barrier.
CHECK_EQ(sizeof(HeapReference<T>), sizeof(uint32_t));
IntArray* dstAsIntArray = reinterpret_cast<IntArray*>(this);
IntArray* srcAsIntArray = reinterpret_cast<IntArray*>(src);
if (kUseBakerOrBrooksReadBarrier) {
// TODO: Optimize this later?
const bool copy_forward = (src != this) || (dst_pos < src_pos) || (dst_pos - src_pos >= count);
if (copy_forward) {
// Forward copy.
for (int i = 0; i < count; ++i) {
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
Object* obj = src->GetWithoutChecks(src_pos + i);
SetWithoutChecks<false>(dst_pos + i, obj);
}
} else {
// Backward copy.
for (int i = count - 1; i >= 0; --i) {
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
Object* obj = src->GetWithoutChecks(src_pos + i);
SetWithoutChecks<false>(dst_pos + i, obj);
}
}
} else {
dstAsIntArray->Memmove(dst_pos, srcAsIntArray, src_pos, count);
}
Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count);
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
GetWithoutChecks(dst_pos + i);
}
}
}
template<class T>
inline void ObjectArray<T>::AssignableMemcpy(int32_t dst_pos, ObjectArray<T>* src,
int32_t src_pos, int32_t count) {
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
src->GetWithoutChecks(src_pos + i);
}
}
// Perform the memmove using int memcpy then perform the write barrier.
CHECK_EQ(sizeof(HeapReference<T>), sizeof(uint32_t));
IntArray* dstAsIntArray = reinterpret_cast<IntArray*>(this);
IntArray* srcAsIntArray = reinterpret_cast<IntArray*>(src);
if (kUseBakerOrBrooksReadBarrier) {
// TODO: Optimize this later?
for (int i = 0; i < count; ++i) {
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
T* obj = src->GetWithoutChecks(src_pos + i);
SetWithoutChecks<false>(dst_pos + i, obj);
}
} else {
dstAsIntArray->Memcpy(dst_pos, srcAsIntArray, src_pos, count);
}
Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count);
if (kIsDebugBuild) {
for (int i = 0; i < count; ++i) {
// The get will perform the VerifyObject.
GetWithoutChecks(dst_pos + i);
}
}
}
template<class T>
inline void ObjectArray<T>::AssignableCheckingMemcpy(int32_t dst_pos, ObjectArray<T>* src,
int32_t src_pos, int32_t count,
bool throw_exception) {
DCHECK_NE(this, src)
<< "This case should be handled with memmove that handles overlaps correctly";
// We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that
// we know is assignable to the destination array's component type.
Class* dst_class = GetClass()->GetComponentType();
Class* lastAssignableElementClass = dst_class;
Object* o = nullptr;
int i = 0;
for (; i < count; ++i) {
// The follow get operations force the objects to be verified.
// We need a RB here. ObjectArray::GetWithoutChecks() contains a RB.
o = src->GetWithoutChecks(src_pos + i);
if (o == nullptr) {
// Null is always assignable.
SetWithoutChecks<false>(dst_pos + i, nullptr);
} else {
// TODO: use the underlying class reference to avoid uncompression when not necessary.
Class* o_class = o->GetClass();
if (LIKELY(lastAssignableElementClass == o_class)) {
SetWithoutChecks<false>(dst_pos + i, o);
} else if (LIKELY(dst_class->IsAssignableFrom(o_class))) {
lastAssignableElementClass = o_class;
SetWithoutChecks<false>(dst_pos + i, o);
} else {
// Can't put this element into the array, break to perform write-barrier and throw
// exception.
break;
}
}
}
Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count);
if (UNLIKELY(i != count)) {
std::string actualSrcType(PrettyTypeOf(o));
std::string dstType(PrettyTypeOf(this));
Thread* self = Thread::Current();
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
if (throw_exception) {
self->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
"source[%d] of type %s cannot be stored in destination array of type %s",
src_pos + i, actualSrcType.c_str(), dstType.c_str());
} else {
LOG(FATAL) << StringPrintf("source[%d] of type %s cannot be stored in destination array of type %s",
src_pos + i, actualSrcType.c_str(), dstType.c_str());
}
}
}
template<class T>
inline ObjectArray<T>* ObjectArray<T>::CopyOf(Thread* self, int32_t new_length) {
DCHECK_GE(new_length, 0);
// We may get copied by a compacting GC.
StackHandleScope<1> hs(self);
Handle<ObjectArray<T>> h_this(hs.NewHandle(this));
gc::Heap* heap = Runtime::Current()->GetHeap();
gc::AllocatorType allocator_type = heap->IsMovableObject(this) ? heap->GetCurrentAllocator() :
heap->GetCurrentNonMovingAllocator();
ObjectArray<T>* new_array = Alloc(self, GetClass(), new_length, allocator_type);
if (LIKELY(new_array != nullptr)) {
new_array->AssignableMemcpy(0, h_this.Get(), 0, std::min(h_this->GetLength(), new_length));
}
return new_array;
}
template<class T>
inline MemberOffset ObjectArray<T>::OffsetOfElement(int32_t i) {
return MemberOffset(DataOffset(sizeof(HeapReference<Object>)).Int32Value() +
(i * sizeof(HeapReference<Object>)));
}
template<class T> template<const bool kVisitClass, typename Visitor>
void ObjectArray<T>::VisitReferences(const Visitor& visitor) {
if (kVisitClass) {
visitor(this, ClassOffset(), false);
}
const size_t length = static_cast<size_t>(GetLength());
for (size_t i = 0; i < length; ++i) {
visitor(this, OffsetOfElement(i), false);
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_