/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/compiler_internals.h"
#include "dex/dataflow_iterator-inl.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "mir_to_lir-inl.h"
#include "thread-inl.h"
namespace art {
RegisterClass Mir2Lir::ShortyToRegClass(char shorty_type) {
RegisterClass res;
switch (shorty_type) {
case 'L':
res = kRefReg;
break;
case 'F':
// Expected fallthrough.
case 'D':
res = kFPReg;
break;
default:
res = kCoreReg;
}
return res;
}
RegisterClass Mir2Lir::LocToRegClass(RegLocation loc) {
RegisterClass res;
if (loc.fp) {
DCHECK(!loc.ref) << "At most, one of ref/fp may be set";
res = kFPReg;
} else if (loc.ref) {
res = kRefReg;
} else {
res = kCoreReg;
}
return res;
}
void Mir2Lir::LockArg(int in_position, bool wide) {
RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
RegStorage::InvalidReg();
if (reg_arg_low.Valid()) {
LockTemp(reg_arg_low);
}
if (reg_arg_high.Valid() && reg_arg_low.NotExactlyEquals(reg_arg_high)) {
LockTemp(reg_arg_high);
}
}
// TODO: simplify when 32-bit targets go hard-float.
RegStorage Mir2Lir::LoadArg(int in_position, RegisterClass reg_class, bool wide) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
if (cu_->instruction_set == kX86) {
/*
* When doing a call for x86, it moves the stack pointer in order to push return.
* Thus, we add another 4 bytes to figure out the out of caller (in of callee).
*/
offset += sizeof(uint32_t);
}
if (cu_->instruction_set == kX86_64) {
/*
* When doing a call for x86, it moves the stack pointer in order to push return.
* Thus, we add another 8 bytes to figure out the out of caller (in of callee).
*/
offset += sizeof(uint64_t);
}
if (cu_->target64) {
RegStorage reg_arg = GetArgMappingToPhysicalReg(in_position);
if (!reg_arg.Valid()) {
RegStorage new_reg =
wide ? AllocTypedTempWide(false, reg_class) : AllocTypedTemp(false, reg_class);
LoadBaseDisp(TargetPtrReg(kSp), offset, new_reg, wide ? k64 : k32, kNotVolatile);
return new_reg;
} else {
// Check if we need to copy the arg to a different reg_class.
if (!RegClassMatches(reg_class, reg_arg)) {
if (wide) {
RegStorage new_reg = AllocTypedTempWide(false, reg_class);
OpRegCopyWide(new_reg, reg_arg);
reg_arg = new_reg;
} else {
RegStorage new_reg = AllocTypedTemp(false, reg_class);
OpRegCopy(new_reg, reg_arg);
reg_arg = new_reg;
}
}
}
return reg_arg;
}
RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
RegStorage::InvalidReg();
// If the VR is wide and there is no register for high part, we need to load it.
if (wide && !reg_arg_high.Valid()) {
// If the low part is not in a reg, we allocate a pair. Otherwise, we just load to high reg.
if (!reg_arg_low.Valid()) {
RegStorage new_regs = AllocTypedTempWide(false, reg_class);
LoadBaseDisp(TargetPtrReg(kSp), offset, new_regs, k64, kNotVolatile);
return new_regs; // The reg_class is OK, we can return.
} else {
// Assume that no ABI allows splitting a wide fp reg between a narrow fp reg and memory,
// i.e. the low part is in a core reg. Load the second part in a core reg as well for now.
DCHECK(!reg_arg_low.IsFloat());
reg_arg_high = AllocTemp();
int offset_high = offset + sizeof(uint32_t);
Load32Disp(TargetPtrReg(kSp), offset_high, reg_arg_high);
// Continue below to check the reg_class.
}
}
// If the low part is not in a register yet, we need to load it.
if (!reg_arg_low.Valid()) {
// Assume that if the low part of a wide arg is passed in memory, so is the high part,
// thus we don't get here for wide args as it's handled above. Big-endian ABIs could
// conceivably break this assumption but Android supports only little-endian architectures.
DCHECK(!wide);
reg_arg_low = AllocTypedTemp(false, reg_class);
Load32Disp(TargetPtrReg(kSp), offset, reg_arg_low);
return reg_arg_low; // The reg_class is OK, we can return.
}
RegStorage reg_arg = wide ? RegStorage::MakeRegPair(reg_arg_low, reg_arg_high) : reg_arg_low;
// Check if we need to copy the arg to a different reg_class.
if (!RegClassMatches(reg_class, reg_arg)) {
if (wide) {
RegStorage new_regs = AllocTypedTempWide(false, reg_class);
OpRegCopyWide(new_regs, reg_arg);
reg_arg = new_regs;
} else {
RegStorage new_reg = AllocTypedTemp(false, reg_class);
OpRegCopy(new_reg, reg_arg);
reg_arg = new_reg;
}
}
return reg_arg;
}
// TODO: simpilfy when 32-bit targets go hard float.
void Mir2Lir::LoadArgDirect(int in_position, RegLocation rl_dest) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
if (cu_->instruction_set == kX86) {
/*
* When doing a call for x86, it moves the stack pointer in order to push return.
* Thus, we add another 4 bytes to figure out the out of caller (in of callee).
*/
offset += sizeof(uint32_t);
}
if (cu_->instruction_set == kX86_64) {
/*
* When doing a call for x86, it moves the stack pointer in order to push return.
* Thus, we add another 8 bytes to figure out the out of caller (in of callee).
*/
offset += sizeof(uint64_t);
}
if (!rl_dest.wide) {
RegStorage reg = GetArgMappingToPhysicalReg(in_position);
if (reg.Valid()) {
OpRegCopy(rl_dest.reg, reg);
} else {
Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg);
}
} else {
if (cu_->target64) {
RegStorage reg = GetArgMappingToPhysicalReg(in_position);
if (reg.Valid()) {
OpRegCopy(rl_dest.reg, reg);
} else {
LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile);
}
return;
}
RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
RegStorage reg_arg_high = GetArgMappingToPhysicalReg(in_position + 1);
if (reg_arg_low.Valid() && reg_arg_high.Valid()) {
OpRegCopyWide(rl_dest.reg, RegStorage::MakeRegPair(reg_arg_low, reg_arg_high));
} else if (reg_arg_low.Valid() && !reg_arg_high.Valid()) {
OpRegCopy(rl_dest.reg, reg_arg_low);
int offset_high = offset + sizeof(uint32_t);
Load32Disp(TargetPtrReg(kSp), offset_high, rl_dest.reg.GetHigh());
} else if (!reg_arg_low.Valid() && reg_arg_high.Valid()) {
OpRegCopy(rl_dest.reg.GetHigh(), reg_arg_high);
Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg.GetLow());
} else {
LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile);
}
}
}
bool Mir2Lir::GenSpecialIGet(MIR* mir, const InlineMethod& special) {
// FastInstance() already checked by DexFileMethodInliner.
const InlineIGetIPutData& data = special.d.ifield_data;
if (data.method_is_static != 0u || data.object_arg != 0u) {
// The object is not "this" and has to be null-checked.
return false;
}
bool wide = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE));
bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT));
OpSize size = LoadStoreOpSize(wide, ref);
// Point of no return - no aborts after this
GenPrintLabel(mir);
LockArg(data.object_arg);
RegStorage reg_obj = LoadArg(data.object_arg, kRefReg);
RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile);
RegisterClass ret_reg_class = ShortyToRegClass(cu_->shorty[0]);
RegLocation rl_dest = wide ? GetReturnWide(ret_reg_class) : GetReturn(ret_reg_class);
RegStorage r_result = rl_dest.reg;
if (!RegClassMatches(reg_class, r_result)) {
r_result = wide ? AllocTypedTempWide(rl_dest.fp, reg_class)
: AllocTypedTemp(rl_dest.fp, reg_class);
}
if (ref) {
LoadRefDisp(reg_obj, data.field_offset, r_result, data.is_volatile ? kVolatile : kNotVolatile);
} else {
LoadBaseDisp(reg_obj, data.field_offset, r_result, size, data.is_volatile ? kVolatile :
kNotVolatile);
}
if (r_result.NotExactlyEquals(rl_dest.reg)) {
if (wide) {
OpRegCopyWide(rl_dest.reg, r_result);
} else {
OpRegCopy(rl_dest.reg, r_result);
}
}
return true;
}
bool Mir2Lir::GenSpecialIPut(MIR* mir, const InlineMethod& special) {
// FastInstance() already checked by DexFileMethodInliner.
const InlineIGetIPutData& data = special.d.ifield_data;
if (data.method_is_static != 0u || data.object_arg != 0u) {
// The object is not "this" and has to be null-checked.
return false;
}
if (data.return_arg_plus1 != 0u) {
// The setter returns a method argument which we don't support here.
return false;
}
bool wide = (data.op_variant == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE));
bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT));
OpSize size = LoadStoreOpSize(wide, ref);
// Point of no return - no aborts after this
GenPrintLabel(mir);
LockArg(data.object_arg);
LockArg(data.src_arg, wide);
RegStorage reg_obj = LoadArg(data.object_arg, kRefReg);
RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile);
RegStorage reg_src = LoadArg(data.src_arg, reg_class, wide);
if (ref) {
StoreRefDisp(reg_obj, data.field_offset, reg_src, data.is_volatile ? kVolatile : kNotVolatile);
} else {
StoreBaseDisp(reg_obj, data.field_offset, reg_src, size, data.is_volatile ? kVolatile :
kNotVolatile);
}
if (ref) {
MarkGCCard(reg_src, reg_obj);
}
return true;
}
bool Mir2Lir::GenSpecialIdentity(MIR* mir, const InlineMethod& special) {
const InlineReturnArgData& data = special.d.return_data;
bool wide = (data.is_wide != 0u);
// Point of no return - no aborts after this
GenPrintLabel(mir);
LockArg(data.arg, wide);
RegisterClass reg_class = ShortyToRegClass(cu_->shorty[0]);
RegLocation rl_dest = wide ? GetReturnWide(reg_class) : GetReturn(reg_class);
LoadArgDirect(data.arg, rl_dest);
return true;
}
/*
* Special-case code generation for simple non-throwing leaf methods.
*/
bool Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) {
DCHECK(special.flags & kInlineSpecial);
current_dalvik_offset_ = mir->offset;
MIR* return_mir = nullptr;
bool successful = false;
switch (special.opcode) {
case kInlineOpNop:
successful = true;
DCHECK_EQ(mir->dalvikInsn.opcode, Instruction::RETURN_VOID);
return_mir = mir;
break;
case kInlineOpNonWideConst: {
successful = true;
RegLocation rl_dest = GetReturn(ShortyToRegClass(cu_->shorty[0]));
GenPrintLabel(mir);
LoadConstant(rl_dest.reg, static_cast<int>(special.d.data));
return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
break;
}
case kInlineOpReturnArg:
successful = GenSpecialIdentity(mir, special);
return_mir = mir;
break;
case kInlineOpIGet:
successful = GenSpecialIGet(mir, special);
return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
break;
case kInlineOpIPut:
successful = GenSpecialIPut(mir, special);
return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
break;
default:
break;
}
if (successful) {
if (kIsDebugBuild) {
// Clear unreachable catch entries.
mir_graph_->catches_.clear();
}
// Handle verbosity for return MIR.
if (return_mir != nullptr) {
current_dalvik_offset_ = return_mir->offset;
// Not handling special identity case because it already generated code as part
// of the return. The label should have been added before any code was generated.
if (special.opcode != kInlineOpReturnArg) {
GenPrintLabel(return_mir);
}
}
GenSpecialExitSequence();
core_spill_mask_ = 0;
num_core_spills_ = 0;
fp_spill_mask_ = 0;
num_fp_spills_ = 0;
frame_size_ = 0;
core_vmap_table_.clear();
fp_vmap_table_.clear();
}
return successful;
}
/*
* Target-independent code generation. Use only high-level
* load/store utilities here, or target-dependent genXX() handlers
* when necessary.
*/
void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) {
RegLocation rl_src[3];
RegLocation rl_dest = mir_graph_->GetBadLoc();
RegLocation rl_result = mir_graph_->GetBadLoc();
Instruction::Code opcode = mir->dalvikInsn.opcode;
int opt_flags = mir->optimization_flags;
uint32_t vB = mir->dalvikInsn.vB;
uint32_t vC = mir->dalvikInsn.vC;
DCHECK(CheckCorePoolSanity()) << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " @ 0x:"
<< std::hex << current_dalvik_offset_;
// Prep Src and Dest locations.
int next_sreg = 0;
int next_loc = 0;
uint64_t attrs = MIRGraph::GetDataFlowAttributes(opcode);
rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
if (attrs & DF_UA) {
if (attrs & DF_A_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
next_sreg+= 2;
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
next_sreg++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_B_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
next_sreg+= 2;
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
next_sreg++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_C_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
}
}
if (attrs & DF_DA) {
if (attrs & DF_A_WIDE) {
rl_dest = mir_graph_->GetDestWide(mir);
} else {
rl_dest = mir_graph_->GetDest(mir);
}
}
switch (opcode) {
case Instruction::NOP:
break;
case Instruction::MOVE_EXCEPTION:
GenMoveException(rl_dest);
break;
case Instruction::RETURN_VOID:
if (((cu_->access_flags & kAccConstructor) != 0) &&
cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file,
cu_->class_def_idx)) {
GenMemBarrier(kStoreStore);
}
if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
GenSuspendTest(opt_flags);
}
break;
case Instruction::RETURN_OBJECT:
DCHECK(rl_src[0].ref);
// Intentional fallthrough.
case Instruction::RETURN:
if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
GenSuspendTest(opt_flags);
}
DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0]));
StoreValue(GetReturn(LocToRegClass(rl_src[0])), rl_src[0]);
break;
case Instruction::RETURN_WIDE:
if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
GenSuspendTest(opt_flags);
}
DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0]));
StoreValueWide(GetReturnWide(LocToRegClass(rl_src[0])), rl_src[0]);
break;
case Instruction::MOVE_RESULT_WIDE:
if ((opt_flags & MIR_INLINED) != 0) {
break; // Nop - combined w/ previous invoke.
}
StoreValueWide(rl_dest, GetReturnWide(LocToRegClass(rl_dest)));
break;
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_OBJECT:
if ((opt_flags & MIR_INLINED) != 0) {
break; // Nop - combined w/ previous invoke.
}
StoreValue(rl_dest, GetReturn(LocToRegClass(rl_dest)));
break;
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_OBJECT_FROM16:
StoreValue(rl_dest, rl_src[0]);
break;
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_WIDE_FROM16:
StoreValueWide(rl_dest, rl_src[0]);
break;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
GenConst(rl_dest, vB);
break;
case Instruction::CONST_HIGH16:
GenConst(rl_dest, vB << 16);
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
GenConstWide(rl_dest, static_cast<int64_t>(static_cast<int32_t>(vB)));
break;
case Instruction::CONST_WIDE:
GenConstWide(rl_dest, mir->dalvikInsn.vB_wide);
break;
case Instruction::CONST_WIDE_HIGH16:
rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.reg, static_cast<int64_t>(vB) << 48);
StoreValueWide(rl_dest, rl_result);
break;
case Instruction::MONITOR_ENTER:
GenMonitorEnter(opt_flags, rl_src[0]);
break;
case Instruction::MONITOR_EXIT:
GenMonitorExit(opt_flags, rl_src[0]);
break;
case Instruction::CHECK_CAST: {
GenCheckCast(mir->offset, vB, rl_src[0]);
break;
}
case Instruction::INSTANCE_OF:
GenInstanceof(vC, rl_dest, rl_src[0]);
break;
case Instruction::NEW_INSTANCE:
GenNewInstance(vB, rl_dest);
break;
case Instruction::THROW:
GenThrow(rl_src[0]);
break;
case Instruction::ARRAY_LENGTH:
int len_offset;
len_offset = mirror::Array::LengthOffset().Int32Value();
rl_src[0] = LoadValue(rl_src[0], kRefReg);
GenNullCheck(rl_src[0].reg, opt_flags);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
Load32Disp(rl_src[0].reg, len_offset, rl_result.reg);
MarkPossibleNullPointerException(opt_flags);
StoreValue(rl_dest, rl_result);
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
GenConstString(vB, rl_dest);
break;
case Instruction::CONST_CLASS:
GenConstClass(vB, rl_dest);
break;
case Instruction::FILL_ARRAY_DATA:
GenFillArrayData(vB, rl_src[0]);
break;
case Instruction::FILLED_NEW_ARRAY:
GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
false /* not range */));
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
true /* range */));
break;
case Instruction::NEW_ARRAY:
GenNewArray(vC, rl_dest, rl_src[0]);
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
if (mir_graph_->IsBackedge(bb, bb->taken) &&
(kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken))) {
GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken]);
} else {
OpUnconditionalBranch(&label_list[bb->taken]);
}
break;
case Instruction::PACKED_SWITCH:
GenPackedSwitch(mir, vB, rl_src[0]);
break;
case Instruction::SPARSE_SWITCH:
GenSparseSwitch(mir, vB, rl_src[0]);
break;
case Instruction::CMPL_FLOAT:
case Instruction::CMPG_FLOAT:
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::CMP_LONG:
GenCmpLong(rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE: {
LIR* taken = &label_list[bb->taken];
LIR* fall_through = &label_list[bb->fall_through];
// Result known at compile time?
if (rl_src[0].is_const && rl_src[1].is_const) {
bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg),
mir_graph_->ConstantValue(rl_src[1].orig_sreg));
BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through;
if (mir_graph_->IsBackedge(bb, target_id) &&
(kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) {
GenSuspendTest(opt_flags);
}
OpUnconditionalBranch(&label_list[target_id]);
} else {
if (mir_graph_->IsBackwardsBranch(bb) &&
(kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) ||
!mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) {
GenSuspendTest(opt_flags);
}
GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken, fall_through);
}
break;
}
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ: {
LIR* taken = &label_list[bb->taken];
LIR* fall_through = &label_list[bb->fall_through];
// Result known at compile time?
if (rl_src[0].is_const) {
bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0);
BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through;
if (mir_graph_->IsBackedge(bb, target_id) &&
(kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) {
GenSuspendTest(opt_flags);
}
OpUnconditionalBranch(&label_list[target_id]);
} else {
if (mir_graph_->IsBackwardsBranch(bb) &&
(kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) ||
!mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) {
GenSuspendTest(opt_flags);
}
GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through);
}
break;
}
case Instruction::AGET_WIDE:
GenArrayGet(opt_flags, k64, rl_src[0], rl_src[1], rl_dest, 3);
break;
case Instruction::AGET_OBJECT:
GenArrayGet(opt_flags, kReference, rl_src[0], rl_src[1], rl_dest, 2);
break;
case Instruction::AGET:
GenArrayGet(opt_flags, k32, rl_src[0], rl_src[1], rl_dest, 2);
break;
case Instruction::AGET_BOOLEAN:
GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0);
break;
case Instruction::AGET_BYTE:
GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0);
break;
case Instruction::AGET_CHAR:
GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
break;
case Instruction::AGET_SHORT:
GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
break;
case Instruction::APUT_WIDE:
GenArrayPut(opt_flags, k64, rl_src[1], rl_src[2], rl_src[0], 3, false);
break;
case Instruction::APUT:
GenArrayPut(opt_flags, k32, rl_src[1], rl_src[2], rl_src[0], 2, false);
break;
case Instruction::APUT_OBJECT: {
bool is_null = mir_graph_->IsConstantNullRef(rl_src[0]);
bool is_safe = is_null; // Always safe to store null.
if (!is_safe) {
// Check safety from verifier type information.
const DexCompilationUnit* unit = mir_graph_->GetCurrentDexCompilationUnit();
is_safe = cu_->compiler_driver->IsSafeCast(unit, mir->offset);
}
if (is_null || is_safe) {
// Store of constant null doesn't require an assignability test and can be generated inline
// without fixed register usage or a card mark.
GenArrayPut(opt_flags, kReference, rl_src[1], rl_src[2], rl_src[0], 2, !is_null);
} else {
GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0]);
}
break;
}
case Instruction::APUT_SHORT:
case Instruction::APUT_CHAR:
GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1, false);
break;
case Instruction::APUT_BYTE:
case Instruction::APUT_BOOLEAN:
GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2], rl_src[0], 0, false);
break;
case Instruction::IGET_OBJECT:
GenIGet(mir, opt_flags, kReference, rl_dest, rl_src[0], false, true);
break;
case Instruction::IGET_WIDE:
GenIGet(mir, opt_flags, k64, rl_dest, rl_src[0], true, false);
break;
case Instruction::IGET:
GenIGet(mir, opt_flags, k32, rl_dest, rl_src[0], false, false);
break;
case Instruction::IGET_CHAR:
GenIGet(mir, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false);
break;
case Instruction::IGET_SHORT:
GenIGet(mir, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false);
break;
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
GenIGet(mir, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false);
break;
case Instruction::IPUT_WIDE:
GenIPut(mir, opt_flags, k64, rl_src[0], rl_src[1], true, false);
break;
case Instruction::IPUT_OBJECT:
GenIPut(mir, opt_flags, kReference, rl_src[0], rl_src[1], false, true);
break;
case Instruction::IPUT:
GenIPut(mir, opt_flags, k32, rl_src[0], rl_src[1], false, false);
break;
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
GenIPut(mir, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false);
break;
case Instruction::IPUT_CHAR:
GenIPut(mir, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false);
break;
case Instruction::IPUT_SHORT:
GenIPut(mir, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false);
break;
case Instruction::SGET_OBJECT:
GenSget(mir, rl_dest, false, true);
break;
case Instruction::SGET:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT:
GenSget(mir, rl_dest, false, false);
break;
case Instruction::SGET_WIDE:
GenSget(mir, rl_dest, true, false);
break;
case Instruction::SPUT_OBJECT:
GenSput(mir, rl_src[0], false, true);
break;
case Instruction::SPUT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT:
GenSput(mir, rl_src[0], false, false);
break;
case Instruction::SPUT_WIDE:
GenSput(mir, rl_src[0], true, false);
break;
case Instruction::INVOKE_STATIC_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
// If the invocation is not inlined, we can assume there is already a
// suspend check at the return site
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_STATIC:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_DIRECT:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_DIRECT_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_VIRTUAL:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_SUPER:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_SUPER_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_INTERFACE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::INVOKE_INTERFACE_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true));
if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
mir_graph_->AppendGenSuspendTestList(bb);
}
break;
case Instruction::NEG_INT:
case Instruction::NOT_INT:
GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::NEG_FLOAT:
GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::NEG_DOUBLE:
GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::INT_TO_LONG:
GenIntToLong(rl_dest, rl_src[0]);
break;
case Instruction::LONG_TO_INT:
rl_src[0] = UpdateLocWide(rl_src[0]);
rl_src[0] = NarrowRegLoc(rl_src[0]);
StoreValue(rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_BYTE:
case Instruction::INT_TO_SHORT:
case Instruction::INT_TO_CHAR:
GenIntNarrowing(opcode, rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_FLOAT:
case Instruction::INT_TO_DOUBLE:
case Instruction::LONG_TO_FLOAT:
case Instruction::LONG_TO_DOUBLE:
case Instruction::FLOAT_TO_INT:
case Instruction::FLOAT_TO_LONG:
case Instruction::FLOAT_TO_DOUBLE:
case Instruction::DOUBLE_TO_INT:
case Instruction::DOUBLE_TO_LONG:
case Instruction::DOUBLE_TO_FLOAT:
GenConversion(opcode, rl_dest, rl_src[0]);
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
if (rl_src[0].is_const &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]), opcode)) {
GenArithOpIntLit(opcode, rl_dest, rl_src[1],
mir_graph_->ConstantValue(rl_src[0].orig_sreg));
} else if (rl_src[1].is_const &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) {
GenArithOpIntLit(opcode, rl_dest, rl_src[0],
mir_graph_->ConstantValue(rl_src[1].orig_sreg));
} else {
GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
if (rl_src[1].is_const &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) {
GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1]));
} else {
GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
if (rl_src[0].is_const || rl_src[1].is_const) {
GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
}
// Note: intentional fallthrough.
case Instruction::MUL_LONG:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::MUL_LONG_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR:
if (rl_src[1].is_const) {
GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
} else {
GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR:
GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR:
GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::RSUB_INT:
case Instruction::ADD_INT_LIT16:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT_LIT16:
case Instruction::AND_INT_LIT16:
case Instruction::OR_INT_LIT16:
case Instruction::XOR_INT_LIT16:
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT8:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT8:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8:
GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC);
break;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
DCHECK(CheckCorePoolSanity());
} // NOLINT(readability/fn_size)
// Process extended MIR instructions
void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpCopy: {
RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
RegLocation rl_dest = mir_graph_->GetDest(mir);
StoreValue(rl_dest, rl_src);
break;
}
case kMirOpFusedCmplFloat:
GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/);
break;
case kMirOpFusedCmpgFloat:
GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/);
break;
case kMirOpFusedCmplDouble:
GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/);
break;
case kMirOpFusedCmpgDouble:
GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/);
break;
case kMirOpFusedCmpLong:
GenFusedLongCmpBranch(bb, mir);
break;
case kMirOpSelect:
GenSelect(bb, mir);
break;
case kMirOpPhi:
case kMirOpNop:
case kMirOpNullCheck:
case kMirOpRangeCheck:
case kMirOpDivZeroCheck:
case kMirOpCheck:
case kMirOpCheckPart2:
// Ignore these known opcodes
break;
default:
// Give the backends a chance to handle unknown extended MIR opcodes.
GenMachineSpecificExtendedMethodMIR(bb, mir);
break;
}
}
void Mir2Lir::GenPrintLabel(MIR* mir) {
// Mark the beginning of a Dalvik instruction for line tracking.
if (cu_->verbose) {
char* inst_str = mir_graph_->GetDalvikDisassembly(mir);
MarkBoundary(mir->offset, inst_str);
}
}
// Handle the content in each basic block.
bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) {
if (bb->block_type == kDead) return false;
current_dalvik_offset_ = bb->start_offset;
MIR* mir;
int block_id = bb->id;
block_label_list_[block_id].operands[0] = bb->start_offset;
// Insert the block label.
block_label_list_[block_id].opcode = kPseudoNormalBlockLabel;
block_label_list_[block_id].flags.fixup = kFixupLabel;
AppendLIR(&block_label_list_[block_id]);
LIR* head_lir = NULL;
// If this is a catch block, export the start address.
if (bb->catch_entry) {
head_lir = NewLIR0(kPseudoExportedPC);
}
// Free temp registers and reset redundant store tracking.
ClobberAllTemps();
if (bb->block_type == kEntryBlock) {
ResetRegPool();
int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
GenEntrySequence(&mir_graph_->reg_location_[start_vreg],
mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]);
} else if (bb->block_type == kExitBlock) {
ResetRegPool();
GenExitSequence();
}
for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
ResetRegPool();
if (cu_->disable_opt & (1 << kTrackLiveTemps)) {
ClobberAllTemps();
// Reset temp allocation to minimize differences when A/B testing.
reg_pool_->ResetNextTemp();
}
if (cu_->disable_opt & (1 << kSuppressLoads)) {
ResetDefTracking();
}
// Reset temp tracking sanity check.
if (kIsDebugBuild) {
live_sreg_ = INVALID_SREG;
}
current_dalvik_offset_ = mir->offset;
int opcode = mir->dalvikInsn.opcode;
GenPrintLabel(mir);
// Remember the first LIR for this block.
if (head_lir == NULL) {
head_lir = &block_label_list_[bb->id];
// Set the first label as a scheduling barrier.
DCHECK(!head_lir->flags.use_def_invalid);
head_lir->u.m.def_mask = &kEncodeAll;
}
if (opcode == kMirOpCheck) {
// Combine check and work halves of throwing instruction.
MIR* work_half = mir->meta.throw_insn;
mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
mir->meta = work_half->meta; // Whatever the work_half had, we need to copy it.
opcode = work_half->dalvikInsn.opcode;
SSARepresentation* ssa_rep = work_half->ssa_rep;
work_half->ssa_rep = mir->ssa_rep;
mir->ssa_rep = ssa_rep;
work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2);
work_half->meta.throw_insn = mir;
}
if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
HandleExtendedMethodMIR(bb, mir);
continue;
}
CompileDalvikInstruction(mir, bb, block_label_list_);
}
if (head_lir) {
// Eliminate redundant loads/stores and delay stores into later slots.
ApplyLocalOptimizations(head_lir, last_lir_insn_);
}
return false;
}
bool Mir2Lir::SpecialMIR2LIR(const InlineMethod& special) {
cu_->NewTimingSplit("SpecialMIR2LIR");
// Find the first DalvikByteCode block.
int num_reachable_blocks = mir_graph_->GetNumReachableBlocks();
BasicBlock*bb = NULL;
for (int idx = 0; idx < num_reachable_blocks; idx++) {
// TODO: no direct access of growable lists.
int dfs_index = mir_graph_->GetDfsOrder()->Get(idx);
bb = mir_graph_->GetBasicBlock(dfs_index);
if (bb->block_type == kDalvikByteCode) {
break;
}
}
if (bb == NULL) {
return false;
}
DCHECK_EQ(bb->start_offset, 0);
DCHECK(bb->first_mir_insn != NULL);
// Get the first instruction.
MIR* mir = bb->first_mir_insn;
// Free temp registers and reset redundant store tracking.
ResetRegPool();
ResetDefTracking();
ClobberAllTemps();
return GenSpecialCase(bb, mir, special);
}
void Mir2Lir::MethodMIR2LIR() {
cu_->NewTimingSplit("MIR2LIR");
// Hold the labels of each block.
block_label_list_ =
static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(),
kArenaAllocLIR));
PreOrderDfsIterator iter(mir_graph_);
BasicBlock* curr_bb = iter.Next();
BasicBlock* next_bb = iter.Next();
while (curr_bb != NULL) {
MethodBlockCodeGen(curr_bb);
// If the fall_through block is no longer laid out consecutively, drop in a branch.
BasicBlock* curr_bb_fall_through = mir_graph_->GetBasicBlock(curr_bb->fall_through);
if ((curr_bb_fall_through != NULL) && (curr_bb_fall_through != next_bb)) {
OpUnconditionalBranch(&block_label_list_[curr_bb->fall_through]);
}
curr_bb = next_bb;
do {
next_bb = iter.Next();
} while ((next_bb != NULL) && (next_bb->block_type == kDead));
}
HandleSlowPaths();
}
//
// LIR Slow Path
//
LIR* Mir2Lir::LIRSlowPath::GenerateTargetLabel(int opcode) {
m2l_->SetCurrentDexPc(current_dex_pc_);
LIR* target = m2l_->NewLIR0(opcode);
fromfast_->target = target;
return target;
}
void Mir2Lir::CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp,
bool fail, bool report)
const {
if (rs.Valid()) {
if (ref == RefCheck::kCheckRef) {
if (cu_->target64 && !rs.Is64Bit()) {
if (fail) {
CHECK(false) << "Reg storage not 64b for ref.";
} else if (report) {
LOG(WARNING) << "Reg storage not 64b for ref.";
}
}
}
if (wide == WidenessCheck::kCheckWide) {
if (!rs.Is64Bit()) {
if (fail) {
CHECK(false) << "Reg storage not 64b for wide.";
} else if (report) {
LOG(WARNING) << "Reg storage not 64b for wide.";
}
}
}
// A tighter check would be nice, but for now soft-float will not check float at all.
if (fp == FPCheck::kCheckFP && cu_->instruction_set != kArm) {
if (!rs.IsFloat()) {
if (fail) {
CHECK(false) << "Reg storage not float for fp.";
} else if (report) {
LOG(WARNING) << "Reg storage not float for fp.";
}
}
} else if (fp == FPCheck::kCheckNotFP) {
if (rs.IsFloat()) {
if (fail) {
CHECK(false) << "Reg storage float for not-fp.";
} else if (report) {
LOG(WARNING) << "Reg storage float for not-fp.";
}
}
}
}
}
void Mir2Lir::CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const {
// Regrettably can't use the fp part of rl, as that is not really indicative of where a value
// will be stored.
CheckRegStorageImpl(rl.reg, rl.wide ? WidenessCheck::kCheckWide : WidenessCheck::kCheckNotWide,
rl.ref ? RefCheck::kCheckRef : RefCheck::kCheckNotRef, FPCheck::kIgnoreFP, fail, report);
}
size_t Mir2Lir::GetInstructionOffset(LIR* lir) {
UNIMPLEMENTED(FATAL) << "Unsuppored GetInstructionOffset()";
return 0;
}
} // namespace art