/*
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <openssl/evp.h>
#include <openssl/x509.h>

#include <keymaster/key_blob.h>
#include <keymaster/keymaster_defs.h>

#include "asymmetric_key.h"
#include "dsa_operation.h"
#include "ecdsa_operation.h"
#include "openssl_utils.h"
#include "rsa_operation.h"

namespace keymaster {

const uint32_t RSA_DEFAULT_KEY_SIZE = 2048;
const uint64_t RSA_DEFAULT_EXPONENT = 65537;

const uint32_t DSA_DEFAULT_KEY_SIZE = 2048;

const uint32_t ECDSA_DEFAULT_KEY_SIZE = 192;

keymaster_error_t AsymmetricKey::LoadKey(const KeyBlob& blob) {
    UniquePtr<EVP_PKEY, EVP_PKEY_Delete> evp_key(EVP_PKEY_new());
    if (evp_key.get() == NULL)
        return KM_ERROR_MEMORY_ALLOCATION_FAILED;

    EVP_PKEY* tmp_pkey = evp_key.get();
    const uint8_t* key_material = blob.key_material();
    if (d2i_PrivateKey(evp_key_type(), &tmp_pkey, &key_material, blob.key_material_length()) ==
        NULL) {
        return KM_ERROR_INVALID_KEY_BLOB;
    }
    if (!EvpToInternal(evp_key.get()))
        return KM_ERROR_UNKNOWN_ERROR;

    return KM_ERROR_OK;
}

keymaster_error_t AsymmetricKey::key_material(UniquePtr<uint8_t[]>* material, size_t* size) const {
    if (material == NULL || size == NULL)
        return KM_ERROR_OUTPUT_PARAMETER_NULL;

    UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
    if (pkey.get() == NULL)
        return KM_ERROR_MEMORY_ALLOCATION_FAILED;

    if (!InternalToEvp(pkey.get()))
        return KM_ERROR_UNKNOWN_ERROR;

    *size = i2d_PrivateKey(pkey.get(), NULL /* key_data*/);
    if (*size <= 0)
        return KM_ERROR_UNKNOWN_ERROR;

    material->reset(new uint8_t[*size]);
    uint8_t* tmp = material->get();
    i2d_PrivateKey(pkey.get(), &tmp);

    return KM_ERROR_OK;
}

keymaster_error_t AsymmetricKey::formatted_key_material(keymaster_key_format_t format,
                                                        UniquePtr<uint8_t[]>* material,
                                                        size_t* size) const {
    if (format != KM_KEY_FORMAT_X509)
        return KM_ERROR_UNSUPPORTED_KEY_FORMAT;

    if (material == NULL || size == NULL)
        return KM_ERROR_OUTPUT_PARAMETER_NULL;

    UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
    if (!InternalToEvp(pkey.get()))
        return KM_ERROR_UNKNOWN_ERROR;

    int key_data_length = i2d_PUBKEY(pkey.get(), NULL);
    if (key_data_length <= 0)
        return KM_ERROR_UNKNOWN_ERROR;

    material->reset(new uint8_t[key_data_length]);
    if (material->get() == NULL)
        return KM_ERROR_MEMORY_ALLOCATION_FAILED;

    uint8_t* tmp = material->get();
    if (i2d_PUBKEY(pkey.get(), &tmp) != key_data_length) {
        material->reset();
        return KM_ERROR_UNKNOWN_ERROR;
    }

    *size = key_data_length;
    return KM_ERROR_OK;
}

Operation* AsymmetricKey::CreateOperation(keymaster_purpose_t purpose, keymaster_error_t* error) {
    keymaster_digest_t digest;
    if (!authorizations().GetTagValue(TAG_DIGEST, &digest) || digest != KM_DIGEST_NONE) {
        *error = KM_ERROR_UNSUPPORTED_DIGEST;
        return NULL;
    }

    keymaster_padding_t padding;
    if (!authorizations().GetTagValue(TAG_PADDING, &padding) || padding != KM_PAD_NONE) {
        *error = KM_ERROR_UNSUPPORTED_PADDING_MODE;
        return NULL;
    }

    return CreateOperation(purpose, digest, padding, error);
}

/* static */
RsaKey* RsaKey::GenerateKey(const AuthorizationSet& key_description, const Logger& logger,
                            keymaster_error_t* error) {
    if (!error)
        return NULL;

    AuthorizationSet authorizations(key_description);

    uint64_t public_exponent = RSA_DEFAULT_EXPONENT;
    if (!authorizations.GetTagValue(TAG_RSA_PUBLIC_EXPONENT, &public_exponent))
        authorizations.push_back(Authorization(TAG_RSA_PUBLIC_EXPONENT, public_exponent));

    uint32_t key_size = RSA_DEFAULT_KEY_SIZE;
    if (!authorizations.GetTagValue(TAG_KEY_SIZE, &key_size))
        authorizations.push_back(Authorization(TAG_KEY_SIZE, key_size));

    UniquePtr<BIGNUM, BIGNUM_Delete> exponent(BN_new());
    UniquePtr<RSA, RSA_Delete> rsa_key(RSA_new());
    UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
    if (rsa_key.get() == NULL || pkey.get() == NULL) {
        *error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
        return NULL;
    }

    if (!BN_set_word(exponent.get(), public_exponent) ||
        !RSA_generate_key_ex(rsa_key.get(), key_size, exponent.get(), NULL /* callback */)) {
        *error = KM_ERROR_UNKNOWN_ERROR;
        return NULL;
    }

    RsaKey* new_key = new RsaKey(rsa_key.release(), authorizations, logger);
    *error = new_key ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
    return new_key;
}

/* static */
RsaKey* RsaKey::ImportKey(const AuthorizationSet& key_description, EVP_PKEY* pkey,
                          const Logger& logger, keymaster_error_t* error) {
    if (!error)
        return NULL;
    *error = KM_ERROR_UNKNOWN_ERROR;

    UniquePtr<RSA, RSA_Delete> rsa_key(EVP_PKEY_get1_RSA(pkey));
    if (!rsa_key.get())
        return NULL;

    AuthorizationSet authorizations(key_description);

    uint64_t public_exponent;
    if (authorizations.GetTagValue(TAG_RSA_PUBLIC_EXPONENT, &public_exponent)) {
        // public_exponent specified, make sure it matches the key
        UniquePtr<BIGNUM, BIGNUM_Delete> public_exponent_bn(BN_new());
        if (!BN_set_word(public_exponent_bn.get(), public_exponent))
            return NULL;
        if (BN_cmp(public_exponent_bn.get(), rsa_key->e) != 0) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        // public_exponent not specified, use the one from the key.
        public_exponent = BN_get_word(rsa_key->e);
        if (public_exponent == 0xffffffffL) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
        authorizations.push_back(TAG_RSA_PUBLIC_EXPONENT, public_exponent);
    }

    uint32_t key_size;
    if (authorizations.GetTagValue(TAG_KEY_SIZE, &key_size)) {
        // key_size specified, make sure it matches the key.
        if (RSA_size(rsa_key.get()) != (int)key_size) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        key_size = RSA_size(rsa_key.get()) * 8;
        authorizations.push_back(TAG_KEY_SIZE, key_size);
    }

    keymaster_algorithm_t algorithm;
    if (authorizations.GetTagValue(TAG_ALGORITHM, &algorithm)) {
        if (algorithm != KM_ALGORITHM_RSA) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        authorizations.push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA);
    }

    // Don't bother with the other parameters.  If the necessary padding, digest, purpose, etc. are
    // missing, the error will be diagnosed when the key is used (when auth checking is
    // implemented).
    *error = KM_ERROR_OK;
    return new RsaKey(rsa_key.release(), authorizations, logger);
}

RsaKey::RsaKey(const KeyBlob& blob, const Logger& logger, keymaster_error_t* error)
    : AsymmetricKey(blob, logger) {
    if (error)
        *error = LoadKey(blob);
}

Operation* RsaKey::CreateOperation(keymaster_purpose_t purpose, keymaster_digest_t digest,
                                   keymaster_padding_t padding, keymaster_error_t* error) {
    Operation* op;
    switch (purpose) {
    case KM_PURPOSE_SIGN:
        op = new RsaSignOperation(purpose, logger_, digest, padding, rsa_key_.release());
        break;
    case KM_PURPOSE_VERIFY:
        op = new RsaVerifyOperation(purpose, logger_, digest, padding, rsa_key_.release());
        break;
    default:
        *error = KM_ERROR_UNIMPLEMENTED;
        return NULL;
    }
    *error = op ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
    return op;
}

bool RsaKey::EvpToInternal(const EVP_PKEY* pkey) {
    rsa_key_.reset(EVP_PKEY_get1_RSA(const_cast<EVP_PKEY*>(pkey)));
    return rsa_key_.get() != NULL;
}

bool RsaKey::InternalToEvp(EVP_PKEY* pkey) const {
    return EVP_PKEY_set1_RSA(pkey, rsa_key_.get()) == 1;
}

template <keymaster_tag_t Tag>
static void GetDsaParamData(const AuthorizationSet& auths, TypedTag<KM_BIGNUM, Tag> tag,
                            keymaster_blob_t* blob) {
    if (!auths.GetTagValue(tag, blob))
        blob->data = NULL;
}

// Store the specified DSA param in auths
template <keymaster_tag_t Tag>
static void SetDsaParamData(AuthorizationSet* auths, TypedTag<KM_BIGNUM, Tag> tag, BIGNUM* number) {
    keymaster_blob_t blob;
    convert_bn_to_blob(number, &blob);
    auths->push_back(Authorization(tag, blob));
    delete[] blob.data;
}

DsaKey* DsaKey::GenerateKey(const AuthorizationSet& key_description, const Logger& logger,
                            keymaster_error_t* error) {
    if (!error)
        return NULL;

    AuthorizationSet authorizations(key_description);

    keymaster_blob_t g_blob;
    GetDsaParamData(authorizations, TAG_DSA_GENERATOR, &g_blob);

    keymaster_blob_t p_blob;
    GetDsaParamData(authorizations, TAG_DSA_P, &p_blob);

    keymaster_blob_t q_blob;
    GetDsaParamData(authorizations, TAG_DSA_Q, &q_blob);

    uint32_t key_size = DSA_DEFAULT_KEY_SIZE;
    if (!authorizations.GetTagValue(TAG_KEY_SIZE, &key_size))
        authorizations.push_back(Authorization(TAG_KEY_SIZE, key_size));

    UniquePtr<DSA, DSA_Delete> dsa_key(DSA_new());
    UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
    if (dsa_key.get() == NULL || pkey.get() == NULL) {
        *error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
        return NULL;
    }

    // If anything goes wrong in the next section, it's a param problem.
    *error = KM_ERROR_INVALID_DSA_PARAMS;

    if (g_blob.data == NULL && p_blob.data == NULL && q_blob.data == NULL) {
        logger.info("DSA parameters unspecified, generating them for key size %d", key_size);
        if (!DSA_generate_parameters_ex(dsa_key.get(), key_size, NULL /* seed */, 0 /* seed_len */,
                                        NULL /* counter_ret */, NULL /* h_ret */,
                                        NULL /* callback */)) {
            logger.severe("DSA parameter generation failed.");
            return NULL;
        }

        SetDsaParamData(&authorizations, TAG_DSA_GENERATOR, dsa_key->g);
        SetDsaParamData(&authorizations, TAG_DSA_P, dsa_key->p);
        SetDsaParamData(&authorizations, TAG_DSA_Q, dsa_key->q);
    } else if (g_blob.data == NULL || p_blob.data == NULL || q_blob.data == NULL) {
        logger.severe("Some DSA parameters provided.  Provide all or none");
        return NULL;
    } else {
        // All params provided. Use them.
        dsa_key->g = BN_bin2bn(g_blob.data, g_blob.data_length, NULL);
        dsa_key->p = BN_bin2bn(p_blob.data, p_blob.data_length, NULL);
        dsa_key->q = BN_bin2bn(q_blob.data, q_blob.data_length, NULL);

        if (dsa_key->g == NULL || dsa_key->p == NULL || dsa_key->q == NULL) {
            return NULL;
        }
    }

    if (!DSA_generate_key(dsa_key.get())) {
        *error = KM_ERROR_UNKNOWN_ERROR;
        return NULL;
    }

    DsaKey* new_key = new DsaKey(dsa_key.release(), authorizations, logger);
    *error = new_key ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
    return new_key;
}

template <keymaster_tag_t T>
keymaster_error_t GetOrCheckDsaParam(TypedTag<KM_BIGNUM, T> tag, BIGNUM* bn,
                                     AuthorizationSet* auths) {
    keymaster_blob_t blob;
    if (auths->GetTagValue(tag, &blob)) {
        // value specified, make sure it matches
        UniquePtr<BIGNUM, BIGNUM_Delete> extracted_bn(BN_bin2bn(blob.data, blob.data_length, NULL));
        if (extracted_bn.get() == NULL)
            return KM_ERROR_MEMORY_ALLOCATION_FAILED;
        if (BN_cmp(extracted_bn.get(), bn) != 0)
            return KM_ERROR_IMPORT_PARAMETER_MISMATCH;
    } else {
        // value not specified, add it
        UniquePtr<uint8_t[]> data(new uint8_t[BN_num_bytes(bn)]);
        BN_bn2bin(bn, data.get());
        auths->push_back(tag, data.get(), BN_num_bytes(bn));
    }
    return KM_ERROR_OK;
}

/* static */
size_t DsaKey::key_size_bits(DSA* dsa_key) {
    // Openssl provides no convenient way to get a DSA key size, but dsa_key->p is L bits long.
    // There may be some leading zeros that mess up this calculation, but DSA key sizes are also
    // constrained to be multiples of 64 bits.  So the key size is the bit length of p rounded up to
    // the nearest 64.
    return ((BN_num_bytes(dsa_key->p) * 8) + 63) / 64 * 64;
}

/* static */
DsaKey* DsaKey::ImportKey(const AuthorizationSet& key_description, EVP_PKEY* pkey,
                          const Logger& logger, keymaster_error_t* error) {
    if (!error)
        return NULL;
    *error = KM_ERROR_UNKNOWN_ERROR;

    UniquePtr<DSA, DSA_Delete> dsa_key(EVP_PKEY_get1_DSA(pkey));
    if (!dsa_key.get())
        return NULL;

    AuthorizationSet authorizations(key_description);

    *error = GetOrCheckDsaParam(TAG_DSA_GENERATOR, dsa_key->g, &authorizations);
    if (*error != KM_ERROR_OK)
        return NULL;

    *error = GetOrCheckDsaParam(TAG_DSA_P, dsa_key->p, &authorizations);
    if (*error != KM_ERROR_OK)
        return NULL;

    *error = GetOrCheckDsaParam(TAG_DSA_Q, dsa_key->q, &authorizations);
    if (*error != KM_ERROR_OK)
        return NULL;

    // There's no convenient way to get a DSA key size, but dsa_key->p is L bits long.  There may be
    // some leading zeros that mess up this calculation, but DSA key sizes are also constrained to
    // be multiples of 64 bits.  So the bit length of p, rounded up to the nearest 64 bits, is the
    // key size.
    uint32_t extracted_key_size_bits = ((BN_num_bytes(dsa_key->p) * 8) + 63) / 64 * 64;

    uint32_t key_size_bits;
    if (authorizations.GetTagValue(TAG_KEY_SIZE, &key_size_bits)) {
        // key_size_bits specified, make sure it matches the key.
        if (key_size_bits != extracted_key_size_bits) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        // key_size_bits not specified, add it.
        authorizations.push_back(TAG_KEY_SIZE, extracted_key_size_bits);
    }

    keymaster_algorithm_t algorithm;
    if (authorizations.GetTagValue(TAG_ALGORITHM, &algorithm)) {
        if (algorithm != KM_ALGORITHM_DSA) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        authorizations.push_back(TAG_ALGORITHM, KM_ALGORITHM_DSA);
    }

    // Don't bother with the other parameters.  If the necessary padding, digest, purpose, etc. are
    // missing, the error will be diagnosed when the key is used (when auth checking is
    // implemented).
    *error = KM_ERROR_OK;
    return new DsaKey(dsa_key.release(), authorizations, logger);
}

DsaKey::DsaKey(const KeyBlob& blob, const Logger& logger, keymaster_error_t* error)
    : AsymmetricKey(blob, logger) {
    if (error)
        *error = LoadKey(blob);
}

Operation* DsaKey::CreateOperation(keymaster_purpose_t purpose, keymaster_digest_t digest,
                                   keymaster_padding_t padding, keymaster_error_t* error) {
    Operation* op;
    switch (purpose) {
    case KM_PURPOSE_SIGN:
        op = new DsaSignOperation(purpose, logger_, digest, padding, dsa_key_.release());
        break;
    case KM_PURPOSE_VERIFY:
        op = new DsaVerifyOperation(purpose, logger_, digest, padding, dsa_key_.release());
        break;
    default:
        *error = KM_ERROR_UNIMPLEMENTED;
        return NULL;
    }
    *error = op ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
    return op;
}

bool DsaKey::EvpToInternal(const EVP_PKEY* pkey) {
    dsa_key_.reset(EVP_PKEY_get1_DSA(const_cast<EVP_PKEY*>(pkey)));
    return dsa_key_.get() != NULL;
}

bool DsaKey::InternalToEvp(EVP_PKEY* pkey) const {
    return EVP_PKEY_set1_DSA(pkey, dsa_key_.get()) == 1;
}

/* static */
EcdsaKey* EcdsaKey::GenerateKey(const AuthorizationSet& key_description, const Logger& logger,
                                keymaster_error_t* error) {
    if (!error)
        return NULL;

    AuthorizationSet authorizations(key_description);

    uint32_t key_size = ECDSA_DEFAULT_KEY_SIZE;
    if (!authorizations.GetTagValue(TAG_KEY_SIZE, &key_size))
        authorizations.push_back(Authorization(TAG_KEY_SIZE, key_size));

    UniquePtr<EC_KEY, ECDSA_Delete> ecdsa_key(EC_KEY_new());
    UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
    if (ecdsa_key.get() == NULL || pkey.get() == NULL) {
        *error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
        return NULL;
    }

    UniquePtr<EC_GROUP, EC_GROUP_Delete> group(choose_group(key_size));
    if (group.get() == NULL) {
        // Technically, could also have been a memory allocation problem.
        *error = KM_ERROR_UNSUPPORTED_KEY_SIZE;
        return NULL;
    }

    EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED);
    EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE);

    if (EC_KEY_set_group(ecdsa_key.get(), group.get()) != 1 ||
        EC_KEY_generate_key(ecdsa_key.get()) != 1 || EC_KEY_check_key(ecdsa_key.get()) < 0) {
        *error = KM_ERROR_UNKNOWN_ERROR;
        return NULL;
    }

    EcdsaKey* new_key = new EcdsaKey(ecdsa_key.release(), authorizations, logger);
    *error = new_key ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
    return new_key;
}

/* static */
EcdsaKey* EcdsaKey::ImportKey(const AuthorizationSet& key_description, EVP_PKEY* pkey,
                              const Logger& logger, keymaster_error_t* error) {
    if (!error)
        return NULL;
    *error = KM_ERROR_UNKNOWN_ERROR;

    UniquePtr<EC_KEY, ECDSA_Delete> ecdsa_key(EVP_PKEY_get1_EC_KEY(pkey));
    if (!ecdsa_key.get())
        return NULL;

    AuthorizationSet authorizations(key_description);

    size_t extracted_key_size_bits;
    *error = get_group_size(*EC_KEY_get0_group(ecdsa_key.get()), &extracted_key_size_bits);
    if (*error != KM_ERROR_OK)
        return NULL;

    uint32_t key_size_bits;
    if (authorizations.GetTagValue(TAG_KEY_SIZE, &key_size_bits)) {
        // key_size_bits specified, make sure it matches the key.
        if (key_size_bits != extracted_key_size_bits) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        // key_size_bits not specified, add it.
        authorizations.push_back(TAG_KEY_SIZE, extracted_key_size_bits);
    }

    keymaster_algorithm_t algorithm;
    if (authorizations.GetTagValue(TAG_ALGORITHM, &algorithm)) {
        if (algorithm != KM_ALGORITHM_ECDSA) {
            *error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
            return NULL;
        }
    } else {
        authorizations.push_back(TAG_ALGORITHM, KM_ALGORITHM_ECDSA);
    }

    // Don't bother with the other parameters.  If the necessary padding, digest, purpose, etc. are
    // missing, the error will be diagnosed when the key is used (when auth checking is
    // implemented).
    *error = KM_ERROR_OK;
    return new EcdsaKey(ecdsa_key.release(), authorizations, logger);
}

/* static */
EC_GROUP* EcdsaKey::choose_group(size_t key_size_bits) {
    switch (key_size_bits) {
    case 192:
        return EC_GROUP_new_by_curve_name(NID_X9_62_prime192v1);
        break;
    case 224:
        return EC_GROUP_new_by_curve_name(NID_secp224r1);
        break;
    case 256:
        return EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
        break;
    case 384:
        return EC_GROUP_new_by_curve_name(NID_secp384r1);
        break;
    case 521:
        return EC_GROUP_new_by_curve_name(NID_secp521r1);
        break;
    default:
        return NULL;
        break;
    }
}

/* static */
keymaster_error_t EcdsaKey::get_group_size(const EC_GROUP& group, size_t* key_size_bits) {
    switch (EC_GROUP_get_curve_name(&group)) {
    case NID_X9_62_prime192v1:
        *key_size_bits = 192;
        break;
    case NID_secp224r1:
        *key_size_bits = 224;
        break;
    case NID_X9_62_prime256v1:
        *key_size_bits = 256;
        break;
    case NID_secp384r1:
        *key_size_bits = 384;
        break;
    case NID_secp521r1:
        *key_size_bits = 521;
        break;
    default:
        return KM_ERROR_UNSUPPORTED_EC_FIELD;
    }
    return KM_ERROR_OK;
}

EcdsaKey::EcdsaKey(const KeyBlob& blob, const Logger& logger, keymaster_error_t* error)
    : AsymmetricKey(blob, logger) {
    if (error)
        *error = LoadKey(blob);
}

Operation* EcdsaKey::CreateOperation(keymaster_purpose_t purpose, keymaster_digest_t digest,
                                     keymaster_padding_t padding, keymaster_error_t* error) {
    Operation* op;
    switch (purpose) {
    case KM_PURPOSE_SIGN:
        op = new EcdsaSignOperation(purpose, logger_, digest, padding, ecdsa_key_.release());
        break;
    case KM_PURPOSE_VERIFY:
        op = new EcdsaVerifyOperation(purpose, logger_, digest, padding, ecdsa_key_.release());
        break;
    default:
        *error = KM_ERROR_UNIMPLEMENTED;
        return NULL;
    }
    *error = op ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
    return op;
}

bool EcdsaKey::EvpToInternal(const EVP_PKEY* pkey) {
    ecdsa_key_.reset(EVP_PKEY_get1_EC_KEY(const_cast<EVP_PKEY*>(pkey)));
    return ecdsa_key_.get() != NULL;
}

bool EcdsaKey::InternalToEvp(EVP_PKEY* pkey) const {
    return EVP_PKEY_set1_EC_KEY(pkey, ecdsa_key_.get()) == 1;
}

}  // namespace keymaster