/* * Copyright (c) 2012, The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Google, Inc. nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #define MAX_BUF_SIZE 64 struct freq_info { unsigned freq; long unsigned time; }; struct cpu_info { long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime; struct freq_info *freqs; int freq_count; }; #define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); } static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus; static int cpu_count, delay, iterations; static char minimal, aggregate_freq_stats; static int get_cpu_count(); static int get_cpu_count_from_file(char *filename); static long unsigned get_cpu_total_time(struct cpu_info *cpu); static int get_freq_scales_count(int cpu); static void print_stats(); static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu, char print_freq); static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu); static void read_stats(); static void read_freq_stats(int cpu); static char should_aggregate_freq_stats(); static char should_print_freq_stats(); static void usage(char *cmd); int main(int argc, char *argv[]) { struct cpu_info *tmp_cpus, tmp_total_cpu; int i, freq_count; delay = 3; iterations = -1; minimal = 0; aggregate_freq_stats = 0; for (i = 0; i < argc; i++) { if (!strcmp(argv[i], "-n")) { if (i + 1 >= argc) { fprintf(stderr, "Option -n expects an argument.\n"); usage(argv[0]); exit(EXIT_FAILURE); } iterations = atoi(argv[++i]); continue; } if (!strcmp(argv[i], "-d")) { if (i + 1 >= argc) { fprintf(stderr, "Option -d expects an argument.\n"); usage(argv[0]); exit(EXIT_FAILURE); } delay = atoi(argv[++i]); continue; } if (!strcmp(argv[i], "-m")) { minimal = 1; } if (!strcmp(argv[i], "-h")) { usage(argv[0]); exit(EXIT_SUCCESS); } } cpu_count = get_cpu_count(); old_cpus = malloc(sizeof(struct cpu_info) * cpu_count); if (!old_cpus) die("Could not allocate struct cpu_info\n"); new_cpus = malloc(sizeof(struct cpu_info) * cpu_count); if (!new_cpus) die("Could not allocate struct cpu_info\n"); for (i = 0; i < cpu_count; i++) { old_cpus[i].freq_count = new_cpus[i].freq_count = get_freq_scales_count(i); new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count); if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n"); old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count); if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n"); } // Read stats without aggregating freq stats in the total cpu read_stats(); aggregate_freq_stats = should_aggregate_freq_stats(); if (aggregate_freq_stats) { old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count; new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count); if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n"); old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count); if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n"); // Read stats again with aggregating freq stats in the total cpu read_stats(); } while ((iterations == -1) || (iterations-- > 0)) { // Swap new and old cpu buffers; tmp_total_cpu = old_total_cpu; old_total_cpu = new_total_cpu; new_total_cpu = tmp_total_cpu; tmp_cpus = old_cpus; old_cpus = new_cpus; new_cpus = tmp_cpus; sleep(delay); read_stats(); print_stats(); } // Clean up if (aggregate_freq_stats) { free(new_total_cpu.freqs); free(old_total_cpu.freqs); } for (i = 0; i < cpu_count; i++) { free(new_cpus[i].freqs); free(old_cpus[i].freqs); } free(new_cpus); free(old_cpus); return 0; } /* * Get the number of CPUs of the system. * * Uses the two files /sys/devices/system/cpu/present and * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the * format of both files to be either 0 or 0-N where N+1 is the number of CPUs. * * Exits if the present CPUs is not equal to the online CPUs */ static int get_cpu_count() { int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present"); if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) { die("present cpus != online cpus\n"); } return cpu_count; } /* * Get the number of CPUs from a given filename. */ static int get_cpu_count_from_file(char *filename) { FILE *file; char line[MAX_BUF_SIZE]; int cpu_count; file = fopen(filename, "r"); if (!file) die("Could not open %s\n", filename); if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename); fclose(file); if (strcmp(line, "0\n") == 0) { return 1; } if (1 == sscanf(line, "0-%d\n", &cpu_count)) { return cpu_count + 1; } die("Unexpected input in file %s (%s).\n", filename, line); return -1; } /* * Get the number of frequency states a given CPU can be scaled to. */ static int get_freq_scales_count(int cpu) { FILE *file; char filename[MAX_BUF_SIZE]; long unsigned freq; int count = 0; sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu); file = fopen(filename, "r"); if (!file) die("Could not open %s\n", filename); do { freq = 0; fscanf(file, "%lu %*d\n", &freq); if (freq) count++; } while(freq); fclose(file); return count; } /* * Read the CPU and frequency stats for all cpus. */ static void read_stats() { FILE *file; char scanline[MAX_BUF_SIZE]; int i; file = fopen("/proc/stat", "r"); if (!file) die("Could not open /proc/stat.\n"); fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n", &new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime, &new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime); if (aggregate_freq_stats) { for (i = 0; i < new_total_cpu.freq_count; i++) { new_total_cpu.freqs[i].time = 0; } } for (i = 0; i < cpu_count; i++) { sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i); fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime, &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime, &new_cpus[i].sirqtime); read_freq_stats(i); } fclose(file); } /* * Read the frequency stats for a given cpu. */ static void read_freq_stats(int cpu) { FILE *file; char filename[MAX_BUF_SIZE]; int i; sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu); file = fopen(filename, "r"); if (!file) die("Could not open %s\n", filename); for (i = 0; i < new_cpus[cpu].freq_count; i++) { fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq, &new_cpus[cpu].freqs[i].time); if (aggregate_freq_stats) { new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq; new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time; } } fclose(file); } /* * Get the sum of the cpu time from all categories. */ static long unsigned get_cpu_total_time(struct cpu_info *cpu) { return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime + cpu->sirqtime); } /* * Print the stats for all CPUs. */ static void print_stats() { char label[8]; int i, j; char print_freq; print_freq = should_print_freq_stats(); print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1); for (i = 0; i < cpu_count; i++) { sprintf(label, "cpu%d", i); print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq); } printf("\n"); } /* * Print the stats for a single CPU. */ static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu, char print_freq) { long int total_delta_time; if (!minimal) { total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu); printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = " "%ld\n", label, new_cpu->utime - old_cpu->utime, new_cpu->ntime - old_cpu->ntime, new_cpu->stime - old_cpu->stime, new_cpu->itime - old_cpu->itime, new_cpu->iowtime - old_cpu->iowtime, new_cpu->irqtime - old_cpu->irqtime, new_cpu->sirqtime - old_cpu->sirqtime, total_delta_time); if (print_freq) { print_freq_stats(new_cpu, old_cpu); } } else { printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label, new_cpu->utime - old_cpu->utime, new_cpu->ntime - old_cpu->ntime, new_cpu->stime - old_cpu->stime, new_cpu->itime - old_cpu->itime, new_cpu->iowtime - old_cpu->iowtime, new_cpu->irqtime - old_cpu->irqtime, new_cpu->sirqtime - old_cpu->sirqtime); print_freq_stats(new_cpu, old_cpu); printf("\n"); } } /* * Print the CPU stats for a single CPU. */ static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) { long int delta_time, total_delta_time; int i; if (new_cpu->freq_count > 0) { if (!minimal) { total_delta_time = 0; printf(" "); for (i = 0; i < new_cpu->freq_count; i++) { delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time; total_delta_time += delta_time; printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time); if (i + 1 != new_cpu->freq_count) { printf(" + \n "); } else { printf(" = "); } } printf("%ld\n", total_delta_time); } else { for (i = 0; i < new_cpu->freq_count; i++) { printf(",%u,%ld", new_cpu->freqs[i].freq, new_cpu->freqs[i].time - old_cpu->freqs[i].time); } } } } /* * Determine if frequency stats should be printed. * * If the frequency stats are different between CPUs, the stats should be * printed for each CPU, else only the aggregate frequency stats should be * printed. */ static char should_print_freq_stats() { int i, j; for (i = 1; i < cpu_count; i++) { for (j = 0; j < new_cpus[i].freq_count; j++) { if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time != new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) { return 1; } } } return 0; } /* * Determine if the frequency stats should be aggregated. * * Only aggregate the frequency stats in the total cpu stats if the frequencies * reported by all CPUs are identical. Must be called after read_stats() has * been called once. */ static char should_aggregate_freq_stats() { int i, j; for (i = 1; i < cpu_count; i++) { if (new_cpus[i].freq_count != new_cpus[0].freq_count) { return 0; } for (j = 0; j < new_cpus[i].freq_count; j++) { if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) { return 0; } } } return 1; } /* * Print the usage message. */ static void usage(char *cmd) { fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n" " -n num Updates to show before exiting.\n" " -d num Seconds to wait between updates.\n" " -m Display minimal output.\n" " -h Display this help screen.\n", cmd); }