/* * Copyright 2012, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bcc/Assert.h" #include "bcc/Renderscript/RSTransforms.h" #include <cstdlib> #include <llvm/IR/DerivedTypes.h> #include <llvm/IR/Function.h> #include <llvm/IR/Instructions.h> #include <llvm/IR/IRBuilder.h> #include <llvm/IR/MDBuilder.h> #include <llvm/IR/Module.h> #include <llvm/Pass.h> #include <llvm/Support/raw_ostream.h> #include <llvm/IR/DataLayout.h> #include <llvm/IR/Function.h> #include <llvm/IR/Type.h> #include <llvm/Transforms/Utils/BasicBlockUtils.h> #include "bcc/Config/Config.h" #include "bcc/Support/Log.h" #include "bcinfo/MetadataExtractor.h" #define NUM_EXPANDED_FUNCTION_PARAMS 5 using namespace bcc; namespace { static const bool gEnableRsTbaa = true; /* RSForEachExpandPass - This pass operates on functions that are able to be * called via rsForEach() or "foreach_<NAME>". We create an inner loop for the * ForEach-able function to be invoked over the appropriate data cells of the * input/output allocations (adjusting other relevant parameters as we go). We * support doing this for any ForEach-able compute kernels. The new function * name is the original function name followed by ".expand". Note that we * still generate code for the original function. */ class RSForEachExpandPass : public llvm::ModulePass { private: static char ID; llvm::Module *Module; llvm::LLVMContext *Context; /* * Pointer to LLVM type information for the ForEachStubType and the function * signature for expanded kernels. These must be re-calculated for each * module the pass is run on. */ llvm::StructType *ForEachStubType; llvm::FunctionType *ExpandedFunctionType; uint32_t mExportForEachCount; const char **mExportForEachNameList; const uint32_t *mExportForEachSignatureList; // Turns on optimization of allocation stride values. bool mEnableStepOpt; uint32_t getRootSignature(llvm::Function *Function) { const llvm::NamedMDNode *ExportForEachMetadata = Module->getNamedMetadata("#rs_export_foreach"); if (!ExportForEachMetadata) { llvm::SmallVector<llvm::Type*, 8> RootArgTys; for (llvm::Function::arg_iterator B = Function->arg_begin(), E = Function->arg_end(); B != E; ++B) { RootArgTys.push_back(B->getType()); } // For pre-ICS bitcode, we may not have signature information. In that // case, we use the size of the RootArgTys to select the number of // arguments. return (1 << RootArgTys.size()) - 1; } if (ExportForEachMetadata->getNumOperands() == 0) { return 0; } bccAssert(ExportForEachMetadata->getNumOperands() > 0); // We only handle the case for legacy root() functions here, so this is // hard-coded to look at only the first such function. llvm::MDNode *SigNode = ExportForEachMetadata->getOperand(0); if (SigNode != NULL && SigNode->getNumOperands() == 1) { llvm::Value *SigVal = SigNode->getOperand(0); if (SigVal->getValueID() == llvm::Value::MDStringVal) { llvm::StringRef SigString = static_cast<llvm::MDString*>(SigVal)->getString(); uint32_t Signature = 0; if (SigString.getAsInteger(10, Signature)) { ALOGE("Non-integer signature value '%s'", SigString.str().c_str()); return 0; } return Signature; } } return 0; } // Get the actual value we should use to step through an allocation. // // Normally the value we use to step through an allocation is given to us by // the driver. However, for certain primitive data types, we can derive an // integer constant for the step value. We use this integer constant whenever // possible to allow further compiler optimizations to take place. // // DL - Target Data size/layout information. // T - Type of allocation (should be a pointer). // OrigStep - Original step increment (root.expand() input from driver). llvm::Value *getStepValue(llvm::DataLayout *DL, llvm::Type *AllocType, llvm::Value *OrigStep) { bccAssert(DL); bccAssert(AllocType); bccAssert(OrigStep); llvm::PointerType *PT = llvm::dyn_cast<llvm::PointerType>(AllocType); llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*Context); if (mEnableStepOpt && AllocType != VoidPtrTy && PT) { llvm::Type *ET = PT->getElementType(); uint64_t ETSize = DL->getTypeAllocSize(ET); llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context); return llvm::ConstantInt::get(Int32Ty, ETSize); } else { return OrigStep; } } /// @brief Builds the types required by the pass for the given context. void buildTypes(void) { // Create the RsForEachStubParam struct. llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*Context); llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context); /* Defined in frameworks/base/libs/rs/rs_hal.h: * * struct RsForEachStubParamStruct { * const void *in; * void *out; * const void *usr; * uint32_t usr_len; * uint32_t x; * uint32_t y; * uint32_t z; * uint32_t lod; * enum RsAllocationCubemapFace face; * uint32_t ar[16]; * const void **ins; * uint32_t *eStrideIns; * }; */ llvm::SmallVector<llvm::Type*, 16> StructTypes; StructTypes.push_back(VoidPtrTy); // const void *in StructTypes.push_back(VoidPtrTy); // void *out StructTypes.push_back(VoidPtrTy); // const void *usr StructTypes.push_back(Int32Ty); // uint32_t usr_len StructTypes.push_back(Int32Ty); // uint32_t x StructTypes.push_back(Int32Ty); // uint32_t y StructTypes.push_back(Int32Ty); // uint32_t z StructTypes.push_back(Int32Ty); // uint32_t lod StructTypes.push_back(Int32Ty); // enum RsAllocationCubemapFace StructTypes.push_back(llvm::ArrayType::get(Int32Ty, 16)); // uint32_t ar[16] StructTypes.push_back(llvm::PointerType::getUnqual(VoidPtrTy)); // const void **ins StructTypes.push_back(Int32Ty->getPointerTo()); // uint32_t *eStrideIns ForEachStubType = llvm::StructType::create(StructTypes, "RsForEachStubParamStruct"); // Create the function type for expanded kernels. llvm::Type *ForEachStubPtrTy = ForEachStubType->getPointerTo(); llvm::SmallVector<llvm::Type*, 8> ParamTypes; ParamTypes.push_back(ForEachStubPtrTy); // const RsForEachStubParamStruct *p ParamTypes.push_back(Int32Ty); // uint32_t x1 ParamTypes.push_back(Int32Ty); // uint32_t x2 ParamTypes.push_back(Int32Ty); // uint32_t instep ParamTypes.push_back(Int32Ty); // uint32_t outstep ExpandedFunctionType = llvm::FunctionType::get(llvm::Type::getVoidTy(*Context), ParamTypes, false); } /// @brief Create skeleton of the expanded function. /// /// This creates a function with the following signature: /// /// void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2, /// uint32_t instep, uint32_t outstep) /// llvm::Function *createEmptyExpandedFunction(llvm::StringRef OldName) { llvm::Function *ExpandedFunction = llvm::Function::Create(ExpandedFunctionType, llvm::GlobalValue::ExternalLinkage, OldName + ".expand", Module); bccAssert(ExpandedFunction->arg_size() == NUM_EXPANDED_FUNCTION_PARAMS); llvm::Function::arg_iterator AI = ExpandedFunction->arg_begin(); (AI++)->setName("p"); (AI++)->setName("x1"); (AI++)->setName("x2"); (AI++)->setName("arg_instep"); (AI++)->setName("arg_outstep"); llvm::BasicBlock *Begin = llvm::BasicBlock::Create(*Context, "Begin", ExpandedFunction); llvm::IRBuilder<> Builder(Begin); Builder.CreateRetVoid(); return ExpandedFunction; } /// @brief Create an empty loop /// /// Create a loop of the form: /// /// for (i = LowerBound; i < UpperBound; i++) /// ; /// /// After the loop has been created, the builder is set such that /// instructions can be added to the loop body. /// /// @param Builder The builder to use to build this loop. The current /// position of the builder is the position the loop /// will be inserted. /// @param LowerBound The first value of the loop iterator /// @param UpperBound The maximal value of the loop iterator /// @param LoopIV A reference that will be set to the loop iterator. /// @return The BasicBlock that will be executed after the loop. llvm::BasicBlock *createLoop(llvm::IRBuilder<> &Builder, llvm::Value *LowerBound, llvm::Value *UpperBound, llvm::PHINode **LoopIV) { assert(LowerBound->getType() == UpperBound->getType()); llvm::BasicBlock *CondBB, *AfterBB, *HeaderBB; llvm::Value *Cond, *IVNext; llvm::PHINode *IV; CondBB = Builder.GetInsertBlock(); AfterBB = llvm::SplitBlock(CondBB, Builder.GetInsertPoint(), this); HeaderBB = llvm::BasicBlock::Create(*Context, "Loop", CondBB->getParent()); // if (LowerBound < Upperbound) // goto LoopHeader // else // goto AfterBB CondBB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(CondBB); Cond = Builder.CreateICmpULT(LowerBound, UpperBound); Builder.CreateCondBr(Cond, HeaderBB, AfterBB); // iv = PHI [CondBB -> LowerBound], [LoopHeader -> NextIV ] // iv.next = iv + 1 // if (iv.next < Upperbound) // goto LoopHeader // else // goto AfterBB Builder.SetInsertPoint(HeaderBB); IV = Builder.CreatePHI(LowerBound->getType(), 2, "X"); IV->addIncoming(LowerBound, CondBB); IVNext = Builder.CreateNUWAdd(IV, Builder.getInt32(1)); IV->addIncoming(IVNext, HeaderBB); Cond = Builder.CreateICmpULT(IVNext, UpperBound); Builder.CreateCondBr(Cond, HeaderBB, AfterBB); AfterBB->setName("Exit"); Builder.SetInsertPoint(HeaderBB->getFirstNonPHI()); *LoopIV = IV; return AfterBB; } public: RSForEachExpandPass(bool pEnableStepOpt) : ModulePass(ID), Module(NULL), Context(NULL), mEnableStepOpt(pEnableStepOpt) { } /* Performs the actual optimization on a selected function. On success, the * Module will contain a new function of the name "<NAME>.expand" that * invokes <NAME>() in a loop with the appropriate parameters. */ bool ExpandFunction(llvm::Function *Function, uint32_t Signature) { ALOGV("Expanding ForEach-able Function %s", Function->getName().str().c_str()); if (!Signature) { Signature = getRootSignature(Function); if (!Signature) { // We couldn't determine how to expand this function based on its // function signature. return false; } } llvm::DataLayout DL(Module); llvm::Function *ExpandedFunction = createEmptyExpandedFunction(Function->getName()); bccAssert(ExpandedFunction->arg_size() == NUM_EXPANDED_FUNCTION_PARAMS); /* * Extract the expanded function's parameters. It is guaranteed by * createEmptyExpandedFunction that there will be five parameters. */ llvm::Function::arg_iterator ExpandedFunctionArgIter = ExpandedFunction->arg_begin(); llvm::Value *Arg_p = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x1 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x2 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_instep = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_outstep = &*ExpandedFunctionArgIter; llvm::Value *InStep = NULL; llvm::Value *OutStep = NULL; // Construct the actual function body. llvm::IRBuilder<> Builder(ExpandedFunction->getEntryBlock().begin()); // Collect and construct the arguments for the kernel(). // Note that we load any loop-invariant arguments before entering the Loop. llvm::Function::arg_iterator FunctionArgIter = Function->arg_begin(); llvm::Type *InTy = NULL; llvm::Value *InBasePtr = NULL; if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) { InTy = (FunctionArgIter++)->getType(); InStep = getStepValue(&DL, InTy, Arg_instep); InStep->setName("instep"); InBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 0)); } llvm::Type *OutTy = NULL; llvm::Value *OutBasePtr = NULL; if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) { OutTy = (FunctionArgIter++)->getType(); OutStep = getStepValue(&DL, OutTy, Arg_outstep); OutStep->setName("outstep"); OutBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 1)); } llvm::Value *UsrData = NULL; if (bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)) { llvm::Type *UsrDataTy = (FunctionArgIter++)->getType(); UsrData = Builder.CreatePointerCast(Builder.CreateLoad( Builder.CreateStructGEP(Arg_p, 2)), UsrDataTy); UsrData->setName("UsrData"); } if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { FunctionArgIter++; } llvm::Value *Y = NULL; if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) { Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y"); FunctionArgIter++; } bccAssert(FunctionArgIter == Function->arg_end()); llvm::PHINode *IV; createLoop(Builder, Arg_x1, Arg_x2, &IV); // Populate the actual call to kernel(). llvm::SmallVector<llvm::Value*, 8> RootArgs; llvm::Value *InPtr = NULL; llvm::Value *OutPtr = NULL; // Calculate the current input and output pointers // // We always calculate the input/output pointers with a GEP operating on i8 // values and only cast at the very end to OutTy. This is because the step // between two values is given in bytes. // // TODO: We could further optimize the output by using a GEP operation of // type 'OutTy' in cases where the element type of the allocation allows. if (OutBasePtr) { llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1); OutOffset = Builder.CreateMul(OutOffset, OutStep); OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset); OutPtr = Builder.CreatePointerCast(OutPtr, OutTy); } if (InBasePtr) { llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1); InOffset = Builder.CreateMul(InOffset, InStep); InPtr = Builder.CreateGEP(InBasePtr, InOffset); InPtr = Builder.CreatePointerCast(InPtr, InTy); } if (InPtr) { RootArgs.push_back(InPtr); } if (OutPtr) { RootArgs.push_back(OutPtr); } if (UsrData) { RootArgs.push_back(UsrData); } llvm::Value *X = IV; if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { RootArgs.push_back(X); } if (Y) { RootArgs.push_back(Y); } Builder.CreateCall(Function, RootArgs); return true; } /* Expand a pass-by-value kernel. */ bool ExpandKernel(llvm::Function *Function, uint32_t Signature) { bccAssert(bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)); ALOGV("Expanding kernel Function %s", Function->getName().str().c_str()); // TODO: Refactor this to share functionality with ExpandFunction. llvm::DataLayout DL(Module); llvm::Function *ExpandedFunction = createEmptyExpandedFunction(Function->getName()); /* * Extract the expanded function's parameters. It is guaranteed by * createEmptyExpandedFunction that there will be five parameters. */ bccAssert(ExpandedFunction->arg_size() == NUM_EXPANDED_FUNCTION_PARAMS); llvm::Function::arg_iterator ExpandedFunctionArgIter = ExpandedFunction->arg_begin(); llvm::Value *Arg_p = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x1 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x2 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_instep = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_outstep = &*ExpandedFunctionArgIter; // Construct the actual function body. llvm::IRBuilder<> Builder(ExpandedFunction->getEntryBlock().begin()); // Create TBAA meta-data. llvm::MDNode *TBAARenderScript, *TBAAAllocation, *TBAAPointer; llvm::MDBuilder MDHelper(*Context); TBAARenderScript = MDHelper.createTBAARoot("RenderScript TBAA"); TBAAAllocation = MDHelper.createTBAAScalarTypeNode("allocation", TBAARenderScript); TBAAAllocation = MDHelper.createTBAAStructTagNode(TBAAAllocation, TBAAAllocation, 0); TBAAPointer = MDHelper.createTBAAScalarTypeNode("pointer", TBAARenderScript); TBAAPointer = MDHelper.createTBAAStructTagNode(TBAAPointer, TBAAPointer, 0); /* * Collect and construct the arguments for the kernel(). * * Note that we load any loop-invariant arguments before entering the Loop. */ size_t NumInputs = Function->arg_size(); llvm::Value *Y = NULL; if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) { Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y"); --NumInputs; } if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { --NumInputs; } // No usrData parameter on kernels. bccAssert( !bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)); llvm::Function::arg_iterator ArgIter = Function->arg_begin(); // Check the return type llvm::Type *OutTy = NULL; llvm::Value *OutStep = NULL; llvm::LoadInst *OutBasePtr = NULL; bool PassOutByReference = false; if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) { llvm::Type *OutBaseTy = Function->getReturnType(); if (OutBaseTy->isVoidTy()) { PassOutByReference = true; OutTy = ArgIter->getType(); ArgIter++; --NumInputs; } else { // We don't increment Args, since we are using the actual return type. OutTy = OutBaseTy->getPointerTo(); } OutStep = getStepValue(&DL, OutTy, Arg_outstep); OutStep->setName("outstep"); OutBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 1)); if (gEnableRsTbaa) { OutBasePtr->setMetadata("tbaa", TBAAPointer); } } llvm::SmallVector<llvm::Type*, 8> InTypes; llvm::SmallVector<llvm::Value*, 8> InSteps; llvm::SmallVector<llvm::LoadInst*, 8> InBasePtrs; llvm::SmallVector<bool, 8> InIsStructPointer; if (NumInputs == 1) { llvm::Type *InType = ArgIter->getType(); /* * AArch64 calling dictate that structs of sufficient size get passed by * poiter instead of passed by value. This, combined with the fact that * we don't allow kernels to operate on pointer data means that if we see * a kernel with a pointer parameter we know that it is struct input that * has been promoted. As such we don't need to convert its type to a * pointer. Later we will need to know to avoid a load, so we save this * information in InIsStructPointer. */ if (!InType->isPointerTy()) { InType = InType->getPointerTo(); InIsStructPointer.push_back(false); } else { InIsStructPointer.push_back(true); } llvm::Value *InStep = getStepValue(&DL, InType, Arg_instep); InStep->setName("instep"); llvm::Value *Input = Builder.CreateStructGEP(Arg_p, 0); llvm::LoadInst *InBasePtr = Builder.CreateLoad(Input, "input_base"); if (gEnableRsTbaa) { InBasePtr->setMetadata("tbaa", TBAAPointer); } InTypes.push_back(InType); InSteps.push_back(InStep); InBasePtrs.push_back(InBasePtr); } else if (NumInputs > 1) { llvm::Value *InsMember = Builder.CreateStructGEP(Arg_p, 10); llvm::LoadInst *InsBasePtr = Builder.CreateLoad(InsMember, "inputs_base"); llvm::Value *InStepsMember = Builder.CreateStructGEP(Arg_p, 11); llvm::LoadInst *InStepsBase = Builder.CreateLoad(InStepsMember, "insteps_base"); for (size_t InputIndex = 0; InputIndex < NumInputs; ++InputIndex, ArgIter++) { llvm::Value *IndexVal = Builder.getInt32(InputIndex); llvm::Value *InStepAddr = Builder.CreateGEP(InStepsBase, IndexVal); llvm::LoadInst *InStepArg = Builder.CreateLoad(InStepAddr, "instep_addr"); llvm::Type *InType = ArgIter->getType(); /* * AArch64 calling dictate that structs of sufficient size get passed by * poiter instead of passed by value. This, combined with the fact that * we don't allow kernels to operate on pointer data means that if we * see a kernel with a pointer parameter we know that it is struct input * that has been promoted. As such we don't need to convert its type to * a pointer. Later we will need to know to avoid a load, so we save * this information in InIsStructPointer. */ if (!InType->isPointerTy()) { InType = InType->getPointerTo(); InIsStructPointer.push_back(false); } else { InIsStructPointer.push_back(true); } llvm::Value *InStep = getStepValue(&DL, InType, InStepArg); InStep->setName("instep"); llvm::Value *InputAddr = Builder.CreateGEP(InsBasePtr, IndexVal); llvm::LoadInst *InBasePtr = Builder.CreateLoad(InputAddr, "input_base"); if (gEnableRsTbaa) { InBasePtr->setMetadata("tbaa", TBAAPointer); } InTypes.push_back(InType); InSteps.push_back(InStep); InBasePtrs.push_back(InBasePtr); } } llvm::PHINode *IV; createLoop(Builder, Arg_x1, Arg_x2, &IV); // Populate the actual call to kernel(). llvm::SmallVector<llvm::Value*, 8> RootArgs; // Calculate the current input and output pointers // // // We always calculate the input/output pointers with a GEP operating on i8 // values combined with a multiplication and only cast at the very end to // OutTy. This is to account for dynamic stepping sizes when the value // isn't apparent at compile time. In the (very common) case when we know // the step size at compile time, due to haveing complete type information // this multiplication will optmized out and produces code equivalent to a // a GEP on a pointer of the correct type. // Output llvm::Value *OutPtr = NULL; if (OutBasePtr) { llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1); OutOffset = Builder.CreateMul(OutOffset, OutStep); OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset); OutPtr = Builder.CreatePointerCast(OutPtr, OutTy); if (PassOutByReference) { RootArgs.push_back(OutPtr); } } // Inputs if (NumInputs > 0) { llvm::Value *Offset = Builder.CreateSub(IV, Arg_x1); for (size_t Index = 0; Index < NumInputs; ++Index) { llvm::Value *InOffset = Builder.CreateMul(Offset, InSteps[Index]); llvm::Value *InPtr = Builder.CreateGEP(InBasePtrs[Index], InOffset); InPtr = Builder.CreatePointerCast(InPtr, InTypes[Index]); llvm::Value *Input; if (InIsStructPointer[Index]) { Input = InPtr; } else { llvm::LoadInst *InputLoad = Builder.CreateLoad(InPtr, "input"); if (gEnableRsTbaa) { InputLoad->setMetadata("tbaa", TBAAAllocation); } Input = InputLoad; } RootArgs.push_back(Input); } } llvm::Value *X = IV; if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { RootArgs.push_back(X); } if (Y) { RootArgs.push_back(Y); } llvm::Value *RetVal = Builder.CreateCall(Function, RootArgs); if (OutPtr && !PassOutByReference) { llvm::StoreInst *Store = Builder.CreateStore(RetVal, OutPtr); if (gEnableRsTbaa) { Store->setMetadata("tbaa", TBAAAllocation); } } return true; } /// @brief Checks if pointers to allocation internals are exposed /// /// This function verifies if through the parameters passed to the kernel /// or through calls to the runtime library the script gains access to /// pointers pointing to data within a RenderScript Allocation. /// If we know we control all loads from and stores to data within /// RenderScript allocations and if we know the run-time internal accesses /// are all annotated with RenderScript TBAA metadata, only then we /// can safely use TBAA to distinguish between generic and from-allocation /// pointers. bool allocPointersExposed(llvm::Module &Module) { // Old style kernel function can expose pointers to elements within // allocations. // TODO: Extend analysis to allow simple cases of old-style kernels. for (size_t i = 0; i < mExportForEachCount; ++i) { const char *Name = mExportForEachNameList[i]; uint32_t Signature = mExportForEachSignatureList[i]; if (Module.getFunction(Name) && !bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)) { return true; } } // Check for library functions that expose a pointer to an Allocation or // that are not yet annotated with RenderScript-specific tbaa information. static std::vector<std::string> Funcs; // rsGetElementAt(...) Funcs.push_back("_Z14rsGetElementAt13rs_allocationj"); Funcs.push_back("_Z14rsGetElementAt13rs_allocationjj"); Funcs.push_back("_Z14rsGetElementAt13rs_allocationjjj"); // rsSetElementAt() Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvj"); Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjj"); Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjjj"); // rsGetElementAtYuv_uchar_Y() Funcs.push_back("_Z25rsGetElementAtYuv_uchar_Y13rs_allocationjj"); // rsGetElementAtYuv_uchar_U() Funcs.push_back("_Z25rsGetElementAtYuv_uchar_U13rs_allocationjj"); // rsGetElementAtYuv_uchar_V() Funcs.push_back("_Z25rsGetElementAtYuv_uchar_V13rs_allocationjj"); for (std::vector<std::string>::iterator FI = Funcs.begin(), FE = Funcs.end(); FI != FE; ++FI) { llvm::Function *Function = Module.getFunction(*FI); if (!Function) { ALOGE("Missing run-time function '%s'", FI->c_str()); return true; } if (Function->getNumUses() > 0) { return true; } } return false; } /// @brief Connect RenderScript TBAA metadata to C/C++ metadata /// /// The TBAA metadata used to annotate loads/stores from RenderScript /// Allocations is generated in a separate TBAA tree with a "RenderScript TBAA" /// root node. LLVM does assume may-alias for all nodes in unrelated alias /// analysis trees. This function makes the RenderScript TBAA a subtree of the /// normal C/C++ TBAA tree aside of normal C/C++ types. With the connected trees /// every access to an Allocation is resolved to must-alias if compared to /// a normal C/C++ access. void connectRenderScriptTBAAMetadata(llvm::Module &Module) { llvm::MDBuilder MDHelper(*Context); llvm::MDNode *TBAARenderScript = MDHelper.createTBAARoot("RenderScript TBAA"); llvm::MDNode *TBAARoot = MDHelper.createTBAARoot("Simple C/C++ TBAA"); llvm::MDNode *TBAAMergedRS = MDHelper.createTBAANode("RenderScript", TBAARoot); TBAARenderScript->replaceAllUsesWith(TBAAMergedRS); } virtual bool runOnModule(llvm::Module &Module) { bool Changed = false; this->Module = &Module; this->Context = &Module.getContext(); this->buildTypes(); bcinfo::MetadataExtractor me(&Module); if (!me.extract()) { ALOGE("Could not extract metadata from module!"); return false; } mExportForEachCount = me.getExportForEachSignatureCount(); mExportForEachNameList = me.getExportForEachNameList(); mExportForEachSignatureList = me.getExportForEachSignatureList(); bool AllocsExposed = allocPointersExposed(Module); for (size_t i = 0; i < mExportForEachCount; ++i) { const char *name = mExportForEachNameList[i]; uint32_t signature = mExportForEachSignatureList[i]; llvm::Function *kernel = Module.getFunction(name); if (kernel) { if (bcinfo::MetadataExtractor::hasForEachSignatureKernel(signature)) { Changed |= ExpandKernel(kernel, signature); kernel->setLinkage(llvm::GlobalValue::InternalLinkage); } else if (kernel->getReturnType()->isVoidTy()) { Changed |= ExpandFunction(kernel, signature); kernel->setLinkage(llvm::GlobalValue::InternalLinkage); } else { // There are some graphics root functions that are not // expanded, but that will be called directly. For those // functions, we can not set the linkage to internal. } } } if (gEnableRsTbaa && !AllocsExposed) { connectRenderScriptTBAAMetadata(Module); } return Changed; } virtual const char *getPassName() const { return "ForEach-able Function Expansion"; } }; // end RSForEachExpandPass } // end anonymous namespace char RSForEachExpandPass::ID = 0; namespace bcc { llvm::ModulePass * createRSForEachExpandPass(bool pEnableStepOpt){ return new RSForEachExpandPass(pEnableStepOpt); } } // end namespace bcc