// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Author: Jyrki Alakuijala (jyrki@google.com) // #include <assert.h> #include <math.h> #include "./backward_references.h" #include "./histogram.h" #include "../dsp/lossless.h" #include "../utils/color_cache.h" #include "../utils/utils.h" #define VALUES_IN_BYTE 256 #define HASH_MULTIPLIER (0xc6a4a7935bd1e995ULL) #define MIN_BLOCK_SIZE 256 // minimum block size for backward references #define MAX_ENTROPY (1e30f) // 1M window (4M bytes) minus 120 special codes for short distances. #define WINDOW_SIZE ((1 << 20) - 120) // Bounds for the match length. #define MIN_LENGTH 2 #define MAX_LENGTH 4096 // ----------------------------------------------------------------------------- static const uint8_t plane_to_code_lut[128] = { 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 }; static int DistanceToPlaneCode(int xsize, int dist) { const int yoffset = dist / xsize; const int xoffset = dist - yoffset * xsize; if (xoffset <= 8 && yoffset < 8) { return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; } else if (xoffset > xsize - 8 && yoffset < 7) { return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; } return dist + 120; } static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, const uint32_t* const array2, const int max_limit) { int match_len = 0; while (match_len < max_limit && array1[match_len] == array2[match_len]) { ++match_len; } return match_len; } // ----------------------------------------------------------------------------- // VP8LBackwardRefs struct PixOrCopyBlock { PixOrCopyBlock* next_; // next block (or NULL) PixOrCopy* start_; // data start int size_; // currently used size }; static void ClearBackwardRefs(VP8LBackwardRefs* const refs) { assert(refs != NULL); if (refs->tail_ != NULL) { *refs->tail_ = refs->free_blocks_; // recycle all blocks at once } refs->free_blocks_ = refs->refs_; refs->tail_ = &refs->refs_; refs->last_block_ = NULL; refs->refs_ = NULL; } void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) { assert(refs != NULL); ClearBackwardRefs(refs); while (refs->free_blocks_ != NULL) { PixOrCopyBlock* const next = refs->free_blocks_->next_; WebPSafeFree(refs->free_blocks_); refs->free_blocks_ = next; } } void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) { assert(refs != NULL); memset(refs, 0, sizeof(*refs)); refs->tail_ = &refs->refs_; refs->block_size_ = (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size; } VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) { VP8LRefsCursor c; c.cur_block_ = refs->refs_; if (refs->refs_ != NULL) { c.cur_pos = c.cur_block_->start_; c.last_pos_ = c.cur_pos + c.cur_block_->size_; } else { c.cur_pos = NULL; c.last_pos_ = NULL; } return c; } void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) { PixOrCopyBlock* const b = c->cur_block_->next_; c->cur_pos = (b == NULL) ? NULL : b->start_; c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_; c->cur_block_ = b; } // Create a new block, either from the free list or allocated static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) { PixOrCopyBlock* b = refs->free_blocks_; if (b == NULL) { // allocate new memory chunk const size_t total_size = sizeof(*b) + refs->block_size_ * sizeof(*b->start_); b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size); if (b == NULL) { refs->error_ |= 1; return NULL; } b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned } else { // recycle from free-list refs->free_blocks_ = b->next_; } *refs->tail_ = b; refs->tail_ = &b->next_; refs->last_block_ = b; b->next_ = NULL; b->size_ = 0; return b; } static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs, const PixOrCopy v) { PixOrCopyBlock* b = refs->last_block_; if (b == NULL || b->size_ == refs->block_size_) { b = BackwardRefsNewBlock(refs); if (b == NULL) return; // refs->error_ is set } b->start_[b->size_++] = v; } int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src, VP8LBackwardRefs* const dst) { const PixOrCopyBlock* b = src->refs_; ClearBackwardRefs(dst); assert(src->block_size_ == dst->block_size_); while (b != NULL) { PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst); if (new_b == NULL) return 0; // dst->error_ is set memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); new_b->size_ = b->size_; b = b->next_; } return 1; } // ----------------------------------------------------------------------------- // Hash chains // initialize as empty static void HashChainInit(VP8LHashChain* const p) { int i; assert(p != NULL); for (i = 0; i < p->size_; ++i) { p->chain_[i] = -1; } for (i = 0; i < HASH_SIZE; ++i) { p->hash_to_first_index_[i] = -1; } } int VP8LHashChainInit(VP8LHashChain* const p, int size) { assert(p->size_ == 0); assert(p->chain_ == NULL); assert(size > 0); p->chain_ = (int*)WebPSafeMalloc(size, sizeof(*p->chain_)); if (p->chain_ == NULL) return 0; p->size_ = size; HashChainInit(p); return 1; } void VP8LHashChainClear(VP8LHashChain* const p) { assert(p != NULL); WebPSafeFree(p->chain_); p->size_ = 0; p->chain_ = NULL; } // ----------------------------------------------------------------------------- static WEBP_INLINE uint64_t GetPixPairHash64(const uint32_t* const argb) { uint64_t key = ((uint64_t)argb[1] << 32) | argb[0]; key = (key * HASH_MULTIPLIER) >> (64 - HASH_BITS); return key; } // Insertion of two pixels at a time. static void HashChainInsert(VP8LHashChain* const p, const uint32_t* const argb, int pos) { const uint64_t hash_code = GetPixPairHash64(argb); p->chain_[pos] = p->hash_to_first_index_[hash_code]; p->hash_to_first_index_[hash_code] = pos; } static void GetParamsForHashChainFindCopy(int quality, int xsize, int cache_bits, int* window_size, int* iter_pos, int* iter_limit) { const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4); const int iter_neg = -iter_mult * (quality >> 1); // Limit the backward-ref window size for lower qualities. const int max_window_size = (quality > 50) ? WINDOW_SIZE : (quality > 25) ? (xsize << 8) : (xsize << 4); assert(xsize > 0); *window_size = (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; *iter_pos = 8 + (quality >> 3); // For lower entropy images, the rigorous search loop in HashChainFindCopy // can be relaxed. *iter_limit = (cache_bits > 0) ? iter_neg : iter_neg / 2; } static int HashChainFindCopy(const VP8LHashChain* const p, int base_position, int xsize_signed, const uint32_t* const argb, int max_len, int window_size, int iter_pos, int iter_limit, int* const distance_ptr, int* const length_ptr) { const uint32_t* const argb_start = argb + base_position; uint64_t best_val = 0; uint32_t best_length = 1; uint32_t best_distance = 0; const uint32_t xsize = (uint32_t)xsize_signed; const int min_pos = (base_position > window_size) ? base_position - window_size : 0; int pos; assert(xsize > 0); if (max_len > MAX_LENGTH) { max_len = MAX_LENGTH; } for (pos = p->hash_to_first_index_[GetPixPairHash64(argb_start)]; pos >= min_pos; pos = p->chain_[pos]) { uint64_t val; uint32_t curr_length; uint32_t distance; const uint32_t* const ptr1 = (argb + pos + best_length - 1); const uint32_t* const ptr2 = (argb_start + best_length - 1); if (iter_pos < 0) { if (iter_pos < iter_limit || best_val >= 0xff0000) { break; } } --iter_pos; // Before 'expensive' linear match, check if the two arrays match at the // current best length index and also for the succeeding elements. if (ptr1[0] != ptr2[0] || ptr1[1] != ptr2[1]) continue; curr_length = FindMatchLength(argb + pos, argb_start, max_len); if (curr_length < best_length) continue; distance = (uint32_t)(base_position - pos); val = curr_length << 16; // Favoring 2d locality here gives savings for certain images. if (distance < 9 * xsize) { const uint32_t y = distance / xsize; uint32_t x = distance % xsize; if (x > (xsize >> 1)) { x = xsize - x; } if (x <= 7) { val += 9 * 9 + 9 * 9; val -= y * y + x * x; } } if (best_val < val) { best_val = val; best_length = curr_length; best_distance = distance; if (curr_length >= (uint32_t)max_len) { break; } if ((best_distance == 1 || distance == xsize) && best_length >= 128) { break; } } } *distance_ptr = (int)best_distance; *length_ptr = best_length; return (best_length >= MIN_LENGTH); } static WEBP_INLINE void PushBackCopy(VP8LBackwardRefs* const refs, int length) { while (length >= MAX_LENGTH) { BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, MAX_LENGTH)); length -= MAX_LENGTH; } if (length > 0) { BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, length)); } } static int BackwardReferencesRle(int xsize, int ysize, const uint32_t* const argb, VP8LBackwardRefs* const refs) { const int pix_count = xsize * ysize; int match_len = 0; int i; ClearBackwardRefs(refs); PushBackCopy(refs, match_len); // i=0 case BackwardRefsCursorAdd(refs, PixOrCopyCreateLiteral(argb[0])); for (i = 1; i < pix_count; ++i) { if (argb[i] == argb[i - 1]) { ++match_len; } else { PushBackCopy(refs, match_len); match_len = 0; BackwardRefsCursorAdd(refs, PixOrCopyCreateLiteral(argb[i])); } } PushBackCopy(refs, match_len); return !refs->error_; } static int BackwardReferencesHashChain(int xsize, int ysize, const uint32_t* const argb, int cache_bits, int quality, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { int i; int ok = 0; int cc_init = 0; const int use_color_cache = (cache_bits > 0); const int pix_count = xsize * ysize; VP8LColorCache hashers; int window_size = WINDOW_SIZE; int iter_pos = 1; int iter_limit = -1; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } ClearBackwardRefs(refs); GetParamsForHashChainFindCopy(quality, xsize, cache_bits, &window_size, &iter_pos, &iter_limit); HashChainInit(hash_chain); for (i = 0; i < pix_count; ) { // Alternative#1: Code the pixels starting at 'i' using backward reference. int offset = 0; int len = 0; if (i < pix_count - 1) { // FindCopy(i,..) reads pixels at [i] and [i + 1]. int max_len = pix_count - i; HashChainFindCopy(hash_chain, i, xsize, argb, max_len, window_size, iter_pos, iter_limit, &offset, &len); } if (len >= MIN_LENGTH) { // Alternative#2: Insert the pixel at 'i' as literal, and code the // pixels starting at 'i + 1' using backward reference. int offset2 = 0; int len2 = 0; int k; HashChainInsert(hash_chain, &argb[i], i); if (i < pix_count - 2) { // FindCopy(i+1,..) reads [i + 1] and [i + 2]. int max_len = pix_count - (i + 1); HashChainFindCopy(hash_chain, i + 1, xsize, argb, max_len, window_size, iter_pos, iter_limit, &offset2, &len2); if (len2 > len + 1) { const uint32_t pixel = argb[i]; // Alternative#2 is a better match. So push pixel at 'i' as literal. PixOrCopy v; if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) { const int ix = VP8LColorCacheGetIndex(&hashers, pixel); v = PixOrCopyCreateCacheIdx(ix); } else { if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel); v = PixOrCopyCreateLiteral(pixel); } BackwardRefsCursorAdd(refs, v); i++; // Backward reference to be done for next pixel. len = len2; offset = offset2; } } if (len >= MAX_LENGTH) { len = MAX_LENGTH - 1; } BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } // Add to the hash_chain (but cannot add the last pixel). { const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; for (k = 1; k < last; ++k) { HashChainInsert(hash_chain, &argb[i + k], i + k); } } i += len; } else { const uint32_t pixel = argb[i]; PixOrCopy v; if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) { // push pixel as a PixOrCopyCreateCacheIdx pixel const int ix = VP8LColorCacheGetIndex(&hashers, pixel); v = PixOrCopyCreateCacheIdx(ix); } else { if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel); v = PixOrCopyCreateLiteral(pixel); } BackwardRefsCursorAdd(refs, v); if (i + 1 < pix_count) { HashChainInsert(hash_chain, &argb[i], i); } ++i; } } ok = !refs->error_; Error: if (cc_init) VP8LColorCacheClear(&hashers); return ok; } // ----------------------------------------------------------------------------- typedef struct { double alpha_[VALUES_IN_BYTE]; double red_[VALUES_IN_BYTE]; double literal_[PIX_OR_COPY_CODES_MAX]; double blue_[VALUES_IN_BYTE]; double distance_[NUM_DISTANCE_CODES]; } CostModel; static int BackwardReferencesTraceBackwards( int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs); static void ConvertPopulationCountTableToBitEstimates( int num_symbols, const uint32_t population_counts[], double output[]) { uint32_t sum = 0; int nonzeros = 0; int i; for (i = 0; i < num_symbols; ++i) { sum += population_counts[i]; if (population_counts[i] > 0) { ++nonzeros; } } if (nonzeros <= 1) { memset(output, 0, num_symbols * sizeof(*output)); } else { const double logsum = VP8LFastLog2(sum); for (i = 0; i < num_symbols; ++i) { output[i] = logsum - VP8LFastLog2(population_counts[i]); } } } static int CostModelBuild(CostModel* const m, int xsize, int ysize, int recursion_level, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { int ok = 0; VP8LHistogram* histo = NULL; ClearBackwardRefs(refs); if (recursion_level > 0) { if (!BackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1, argb, quality, cache_bits, hash_chain, refs)) { goto Error; } } else { if (!BackwardReferencesHashChain(xsize, ysize, argb, cache_bits, quality, hash_chain, refs)) { goto Error; } } histo = VP8LAllocateHistogram(cache_bits); if (histo == NULL) goto Error; VP8LHistogramCreate(histo, refs, cache_bits); ConvertPopulationCountTableToBitEstimates( VP8LHistogramNumCodes(histo->palette_code_bits_), histo->literal_, m->literal_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo->red_, m->red_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo->blue_, m->blue_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo->alpha_, m->alpha_); ConvertPopulationCountTableToBitEstimates( NUM_DISTANCE_CODES, histo->distance_, m->distance_); ok = 1; Error: VP8LFreeHistogram(histo); return ok; } static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) { return m->alpha_[v >> 24] + m->red_[(v >> 16) & 0xff] + m->literal_[(v >> 8) & 0xff] + m->blue_[v & 0xff]; } static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) { const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx; return m->literal_[literal_idx]; } static WEBP_INLINE double GetLengthCost(const CostModel* const m, uint32_t length) { int code, extra_bits; VP8LPrefixEncodeBits(length, &code, &extra_bits); return m->literal_[VALUES_IN_BYTE + code] + extra_bits; } static WEBP_INLINE double GetDistanceCost(const CostModel* const m, uint32_t distance) { int code, extra_bits; VP8LPrefixEncodeBits(distance, &code, &extra_bits); return m->distance_[code] + extra_bits; } static int BackwardReferencesHashChainDistanceOnly( int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs, uint32_t* const dist_array) { int i; int ok = 0; int cc_init = 0; const int pix_count = xsize * ysize; const int use_color_cache = (cache_bits > 0); float* const cost = (float*)WebPSafeMalloc(pix_count, sizeof(*cost)); CostModel* cost_model = (CostModel*)WebPSafeMalloc(1ULL, sizeof(*cost_model)); VP8LColorCache hashers; const double mul0 = (recursive_cost_model != 0) ? 1.0 : 0.68; const double mul1 = (recursive_cost_model != 0) ? 1.0 : 0.82; const int min_distance_code = 2; // TODO(vikasa): tune as function of quality int window_size = WINDOW_SIZE; int iter_pos = 1; int iter_limit = -1; if (cost == NULL || cost_model == NULL) goto Error; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } if (!CostModelBuild(cost_model, xsize, ysize, recursive_cost_model, argb, quality, cache_bits, hash_chain, refs)) { goto Error; } for (i = 0; i < pix_count; ++i) cost[i] = 1e38f; // We loop one pixel at a time, but store all currently best points to // non-processed locations from this point. dist_array[0] = 0; GetParamsForHashChainFindCopy(quality, xsize, cache_bits, &window_size, &iter_pos, &iter_limit); HashChainInit(hash_chain); for (i = 0; i < pix_count; ++i) { double prev_cost = 0.0; int shortmax; if (i > 0) { prev_cost = cost[i - 1]; } for (shortmax = 0; shortmax < 2; ++shortmax) { int offset = 0; int len = 0; if (i < pix_count - 1) { // FindCopy reads pixels at [i] and [i + 1]. int max_len = shortmax ? 2 : pix_count - i; HashChainFindCopy(hash_chain, i, xsize, argb, max_len, window_size, iter_pos, iter_limit, &offset, &len); } if (len >= MIN_LENGTH) { const int code = DistanceToPlaneCode(xsize, offset); const double distance_cost = prev_cost + GetDistanceCost(cost_model, code); int k; for (k = 1; k < len; ++k) { const double cost_val = distance_cost + GetLengthCost(cost_model, k); if (cost[i + k] > cost_val) { cost[i + k] = (float)cost_val; dist_array[i + k] = k + 1; } } // This if is for speedup only. It roughly doubles the speed, and // makes compression worse by .1 %. if (len >= 128 && code <= min_distance_code) { // Long copy for short distances, let's skip the middle // lookups for better copies. // 1) insert the hashes. if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } // 2) Add to the hash_chain (but cannot add the last pixel) { const int last = (len + i < pix_count - 1) ? len + i : pix_count - 1; for (k = i; k < last; ++k) { HashChainInsert(hash_chain, &argb[k], k); } } // 3) jump. i += len - 1; // for loop does ++i, thus -1 here. goto next_symbol; } } } if (i < pix_count - 1) { HashChainInsert(hash_chain, &argb[i], i); } { // inserting a literal pixel double cost_val = prev_cost; if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { const int ix = VP8LColorCacheGetIndex(&hashers, argb[i]); cost_val += GetCacheCost(cost_model, ix) * mul0; } else { if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); cost_val += GetLiteralCost(cost_model, argb[i]) * mul1; } if (cost[i] > cost_val) { cost[i] = (float)cost_val; dist_array[i] = 1; // only one is inserted. } } next_symbol: ; } // Last pixel still to do, it can only be a single step if not reached // through cheaper means already. ok = !refs->error_; Error: if (cc_init) VP8LColorCacheClear(&hashers); WebPSafeFree(cost_model); WebPSafeFree(cost); return ok; } // We pack the path at the end of *dist_array and return // a pointer to this part of the array. Example: // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] static void TraceBackwards(uint32_t* const dist_array, int dist_array_size, uint32_t** const chosen_path, int* const chosen_path_size) { uint32_t* path = dist_array + dist_array_size; uint32_t* cur = dist_array + dist_array_size - 1; while (cur >= dist_array) { const int k = *cur; --path; *path = k; cur -= k; } *chosen_path = path; *chosen_path_size = (int)(dist_array + dist_array_size - path); } static int BackwardReferencesHashChainFollowChosenPath( int xsize, int ysize, const uint32_t* const argb, int quality, int cache_bits, const uint32_t* const chosen_path, int chosen_path_size, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { const int pix_count = xsize * ysize; const int use_color_cache = (cache_bits > 0); int size = 0; int i = 0; int k; int ix; int ok = 0; int cc_init = 0; int window_size = WINDOW_SIZE; int iter_pos = 1; int iter_limit = -1; VP8LColorCache hashers; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } ClearBackwardRefs(refs); GetParamsForHashChainFindCopy(quality, xsize, cache_bits, &window_size, &iter_pos, &iter_limit); HashChainInit(hash_chain); for (ix = 0; ix < chosen_path_size; ++ix, ++size) { int offset = 0; int len = 0; int max_len = chosen_path[ix]; if (max_len != 1) { HashChainFindCopy(hash_chain, i, xsize, argb, max_len, window_size, iter_pos, iter_limit, &offset, &len); assert(len == max_len); BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } { const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; for (k = 0; k < last; ++k) { HashChainInsert(hash_chain, &argb[i + k], i + k); } } i += len; } else { PixOrCopy v; if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { // push pixel as a color cache index const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]); v = PixOrCopyCreateCacheIdx(idx); } else { if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); v = PixOrCopyCreateLiteral(argb[i]); } BackwardRefsCursorAdd(refs, v); if (i + 1 < pix_count) { HashChainInsert(hash_chain, &argb[i], i); } ++i; } } ok = !refs->error_; Error: if (cc_init) VP8LColorCacheClear(&hashers); return ok; } // Returns 1 on success. static int BackwardReferencesTraceBackwards(int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { int ok = 0; const int dist_array_size = xsize * ysize; uint32_t* chosen_path = NULL; int chosen_path_size = 0; uint32_t* dist_array = (uint32_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); if (dist_array == NULL) goto Error; if (!BackwardReferencesHashChainDistanceOnly( xsize, ysize, recursive_cost_model, argb, quality, cache_bits, hash_chain, refs, dist_array)) { goto Error; } TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); if (!BackwardReferencesHashChainFollowChosenPath( xsize, ysize, argb, quality, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) { goto Error; } ok = 1; Error: WebPSafeFree(dist_array); return ok; } static void BackwardReferences2DLocality(int xsize, const VP8LBackwardRefs* const refs) { VP8LRefsCursor c = VP8LRefsCursorInit(refs); while (VP8LRefsCursorOk(&c)) { if (PixOrCopyIsCopy(c.cur_pos)) { const int dist = c.cur_pos->argb_or_distance; const int transformed_dist = DistanceToPlaneCode(xsize, dist); c.cur_pos->argb_or_distance = transformed_dist; } VP8LRefsCursorNext(&c); } } VP8LBackwardRefs* VP8LGetBackwardReferences( int width, int height, const uint32_t* const argb, int quality, int cache_bits, int use_2d_locality, VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { int lz77_is_useful; const int num_pix = width * height; VP8LBackwardRefs* best = NULL; VP8LBackwardRefs* const refs_lz77 = &refs_array[0]; VP8LBackwardRefs* const refs_rle = &refs_array[1]; if (!BackwardReferencesHashChain(width, height, argb, cache_bits, quality, hash_chain, refs_lz77)) { return NULL; } if (!BackwardReferencesRle(width, height, argb, refs_rle)) { return NULL; } { double bit_cost_lz77, bit_cost_rle; VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits); if (histo == NULL) return NULL; // Evaluate LZ77 coding. VP8LHistogramCreate(histo, refs_lz77, cache_bits); bit_cost_lz77 = VP8LHistogramEstimateBits(histo); // Evaluate RLE coding. VP8LHistogramCreate(histo, refs_rle, cache_bits); bit_cost_rle = VP8LHistogramEstimateBits(histo); // Decide if LZ77 is useful. lz77_is_useful = (bit_cost_lz77 < bit_cost_rle); VP8LFreeHistogram(histo); } // Choose appropriate backward reference. if (lz77_is_useful) { // TraceBackwards is costly. Don't execute it at lower quality. const int try_lz77_trace_backwards = (quality >= 25); best = refs_lz77; // default guess: lz77 is better if (try_lz77_trace_backwards) { // Set recursion level for large images using a color cache. const int recursion_level = (num_pix < 320 * 200) && (cache_bits > 0) ? 1 : 0; VP8LBackwardRefs* const refs_trace = &refs_array[1]; ClearBackwardRefs(refs_trace); if (BackwardReferencesTraceBackwards(width, height, recursion_level, argb, quality, cache_bits, hash_chain, refs_trace)) { best = refs_trace; } } } else { best = refs_rle; } if (use_2d_locality) BackwardReferences2DLocality(width, best); return best; } // Returns entropy for the given cache bits. static double ComputeCacheEntropy(const uint32_t* const argb, int xsize, int ysize, const VP8LBackwardRefs* const refs, int cache_bits) { int pixel_index = 0; uint32_t k; const int use_color_cache = (cache_bits > 0); int cc_init = 0; double entropy = MAX_ENTROPY; const double kSmallPenaltyForLargeCache = 4.0; VP8LColorCache hashers; VP8LRefsCursor c = VP8LRefsCursorInit(refs); VP8LHistogram* histo = VP8LAllocateHistogram(cache_bits); if (histo == NULL) goto Error; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } while (VP8LRefsCursorOk(&c)) { const PixOrCopy* const v = c.cur_pos; if (PixOrCopyIsLiteral(v)) { if (use_color_cache && VP8LColorCacheContains(&hashers, argb[pixel_index])) { // push pixel as a cache index const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]); const PixOrCopy token = PixOrCopyCreateCacheIdx(ix); VP8LHistogramAddSinglePixOrCopy(histo, &token); } else { VP8LHistogramAddSinglePixOrCopy(histo, v); } } else { VP8LHistogramAddSinglePixOrCopy(histo, v); } if (use_color_cache) { for (k = 0; k < PixOrCopyLength(v); ++k) { VP8LColorCacheInsert(&hashers, argb[pixel_index + k]); } } pixel_index += PixOrCopyLength(v); VP8LRefsCursorNext(&c); } assert(pixel_index == xsize * ysize); (void)xsize; // xsize is not used in non-debug compilations otherwise. (void)ysize; // ysize is not used in non-debug compilations otherwise. entropy = VP8LHistogramEstimateBits(histo) + kSmallPenaltyForLargeCache * cache_bits; Error: if (cc_init) VP8LColorCacheClear(&hashers); VP8LFreeHistogram(histo); return entropy; } // *best_cache_bits will contain how many bits are to be used for a color cache. // Returns 0 in case of memory error. int VP8LCalculateEstimateForCacheSize(const uint32_t* const argb, int xsize, int ysize, int quality, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs, int* const best_cache_bits) { int eval_low = 1; int eval_high = 1; double entropy_low = MAX_ENTROPY; double entropy_high = MAX_ENTROPY; int cache_bits_low = 0; int cache_bits_high = MAX_COLOR_CACHE_BITS; if (!BackwardReferencesHashChain(xsize, ysize, argb, 0, quality, hash_chain, refs)) { return 0; } // Do a binary search to find the optimal entropy for cache_bits. while (cache_bits_high - cache_bits_low > 1) { if (eval_low) { entropy_low = ComputeCacheEntropy(argb, xsize, ysize, refs, cache_bits_low); eval_low = 0; } if (eval_high) { entropy_high = ComputeCacheEntropy(argb, xsize, ysize, refs, cache_bits_high); eval_high = 0; } if (entropy_high < entropy_low) { *best_cache_bits = cache_bits_high; cache_bits_low = (cache_bits_low + cache_bits_high) / 2; eval_low = 1; } else { *best_cache_bits = cache_bits_low; cache_bits_high = (cache_bits_low + cache_bits_high) / 2; eval_high = 1; } } return 1; }