/*--------------------------------------------------------------------*/ /*--- Support for doing system calls. syscall-mips32-linux.S ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2010-2013 RT-RK mips-valgrind@rt-rk.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #if defined(VGP_mips32_linux) #include "pub_core_basics_asm.h" #include "pub_core_vkiscnums_asm.h" #include "libvex_guest_offsets.h" /*----------------------------------------------------------------*/ /* Perform a syscall for the client. This will run a syscall with the client's specific per-thread signal mask. The structure of this function is such that, if the syscall is interrupted by a signal, we can determine exactly what execution state we were in with respect to the execution of the syscall by examining the value of IP in the signal handler. This means that we can always do the appropriate thing to precisely emulate the kernel's signal/syscall interactions. The syscall number is taken from the argument, even though it should also be in regs->v0. The syscall result is written back to regs->v0 on completion. Returns 0 if the syscall was successfully called (even if the syscall itself failed), or a nonzero error code in the lowest 8 bits if one of the sigprocmasks failed (there's no way to determine which one failed). And there's no obvious way to recover from that either, but nevertheless we want to know. VG_(fixup_guest_state_after_syscall_interrupted) does the thread state fixup in the case where we were interrupted by a signal. Prototype: UWord ML_(do_syscall_for_client_WRK)( Int syscallno, // $4 - a0 void* guest_state, // $5 - a1 const vki_sigset_t *sysmask, // $6 - a2 const vki_sigset_t *postmask, // $7 - a3 Int nsigwords) // stack */ /* from vki_arch.h */ #define VKI_SIG_SETMASK 3 .globl ML_(do_syscall_for_client_WRK) ML_(do_syscall_for_client_WRK): subu $29, $29, 56 #set up the steck frame, sw $4, 52($29) sw $5, 48($29) sw $6, 44($29) sw $7, 40($29) sw $31, 36($29) sw $30, 32($29) sw $16, 28($29) sw $17, 24($29) sw $18, 20($29) sw $19, 16($29) sw $20, 12($29) sw $21, 8($29) sw $22, 4($29) sw $23, 0($29) addu $30, $29, 56 /* Set the signal mask which should be current during the syscall. */ 1: li $2, __NR_rt_sigprocmask li $4, VKI_SIG_SETMASK move $5, $6 /* sysmask */ move $6, $7 /* postmask */ lw $7, 72($29) /* nsigwords */ syscall nop # TODO: this should remain, keep it just for now bnez $7, 7f nop lw $8, 48($29) /* t0 == ThreadState */ lw $2, 52($29) /* v0 == syscallno */ lw $4, OFFSET_mips32_r4($8) lw $5, OFFSET_mips32_r5($8) lw $6, OFFSET_mips32_r6($8) lw $7, OFFSET_mips32_r7($8) subu $29, $29, 24 #set up the steck frame, lw $9, OFFSET_mips32_r29($8) lw $10, 16($9) sw $10, 16($29) lw $10, 20($9) sw $10, 20($29) 2: syscall 3: addu $29, $29, 24 #set up the steck frame, lw $8, 48($29) /* t0 == ThreadState */ sw $2, OFFSET_mips32_r2($8) sw $3, OFFSET_mips32_r3($8) sw $7, OFFSET_mips32_r7($8) 4: li $2, __NR_rt_sigprocmask li $4, VKI_SIG_SETMASK lw $5, 40($29) li $6, 0 lw $7, 72($29) /* nsigwords */ syscall nop bnez $7, 7f nop /* Success */ li $2, 0 5: lw $4, 52($29) lw $5, 48($29) lw $6, 44($29) lw $7, 40($29) lw $31, 36($29) lw $30, 32($29) lw $16, 28($29) lw $17, 24($29) lw $18, 20($29) lw $19, 16($29) lw $20, 12($29) lw $21, 8($29) lw $22, 4($29) lw $23, 0($29) addu $29, $29, 56 #release the stack frame. jr $31 nop 7: /* Failure: return 0x8000 | error code */ li $2, 0x8000 lw $4, 52($29) lw $5, 48($29) lw $6, 44($29) lw $7, 40($29) lw $31, 36($29) lw $30, 32($29) lw $16, 28($29) lw $17, 24($29) lw $18, 20($29) lw $19, 16($29) lw $20, 12($29) lw $21, 8($29) lw $22, 4($29) lw $23, 0($29) addu $29, $29, 56 #release the stack frame. jr $31 nop .section .rodata /* export the ranges so that VG_(fixup_guest_state_after_syscall_interrupted) can do the right thing */ .globl ML_(blksys_setup) .globl ML_(blksys_restart) .globl ML_(blksys_complete) .globl ML_(blksys_committed) .globl ML_(blksys_finished) ML_(blksys_setup): .long 1b ML_(blksys_restart): .long 2b ML_(blksys_complete): .long 3b ML_(blksys_committed): .long 4b ML_(blksys_finished): .long 5b .previous /* Let the linker know we don't need an executable stack */ .section .note.GNU-stack,"",%progbits #endif // defined(VGP_mips32_linux) /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/