/* * Copyright (c) 1992, 1993, 1994, 1995, 1996, 1997 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * OSPF support contributed by Jeffrey Honig (jch@mitchell.cit.cornell.edu) */ #ifndef lint static const char rcsid[] _U_ = "@(#) $Header: /tcpdump/master/tcpdump/print-ospf.c,v 1.66 2007-10-08 07:53:21 hannes Exp $ (LBL)"; #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <tcpdump-stdinc.h> #include <stdio.h> #include "interface.h" #include "addrtoname.h" #include "extract.h" #include "gmpls.h" #include "ospf.h" #include "ip.h" static const struct tok ospf_option_values[] = { { OSPF_OPTION_T, "MultiTopology" }, /* draft-ietf-ospf-mt-09 */ { OSPF_OPTION_E, "External" }, { OSPF_OPTION_MC, "Multicast" }, { OSPF_OPTION_NP, "NSSA" }, { OSPF_OPTION_L, "LLS" }, { OSPF_OPTION_DC, "Demand Circuit" }, { OSPF_OPTION_O, "Opaque" }, { OSPF_OPTION_DN, "Up/Down" }, { 0, NULL } }; static const struct tok ospf_authtype_values[] = { { OSPF_AUTH_NONE, "none" }, { OSPF_AUTH_SIMPLE, "simple" }, { OSPF_AUTH_MD5, "MD5" }, { 0, NULL } }; static const struct tok ospf_rla_flag_values[] = { { RLA_FLAG_B, "ABR" }, { RLA_FLAG_E, "ASBR" }, { RLA_FLAG_W1, "Virtual" }, { RLA_FLAG_W2, "W2" }, { 0, NULL } }; static const struct tok type2str[] = { { OSPF_TYPE_UMD, "UMD" }, { OSPF_TYPE_HELLO, "Hello" }, { OSPF_TYPE_DD, "Database Description" }, { OSPF_TYPE_LS_REQ, "LS-Request" }, { OSPF_TYPE_LS_UPDATE, "LS-Update" }, { OSPF_TYPE_LS_ACK, "LS-Ack" }, { 0, NULL } }; static const struct tok lsa_values[] = { { LS_TYPE_ROUTER, "Router" }, { LS_TYPE_NETWORK, "Network" }, { LS_TYPE_SUM_IP, "Summary" }, { LS_TYPE_SUM_ABR, "ASBR Summary" }, { LS_TYPE_ASE, "External" }, { LS_TYPE_GROUP, "Multicast Group" }, { LS_TYPE_NSSA, "NSSA" }, { LS_TYPE_OPAQUE_LL, "Link Local Opaque" }, { LS_TYPE_OPAQUE_AL, "Area Local Opaque" }, { LS_TYPE_OPAQUE_DW, "Domain Wide Opaque" }, { 0, NULL } }; static const struct tok ospf_dd_flag_values[] = { { OSPF_DB_INIT, "Init" }, { OSPF_DB_MORE, "More" }, { OSPF_DB_MASTER, "Master" }, { OSPF_DB_RESYNC, "OOBResync" }, { 0, NULL } }; static const struct tok lsa_opaque_values[] = { { LS_OPAQUE_TYPE_TE, "Traffic Engineering" }, { LS_OPAQUE_TYPE_GRACE, "Graceful restart" }, { LS_OPAQUE_TYPE_RI, "Router Information" }, { 0, NULL } }; static const struct tok lsa_opaque_te_tlv_values[] = { { LS_OPAQUE_TE_TLV_ROUTER, "Router Address" }, { LS_OPAQUE_TE_TLV_LINK, "Link" }, { 0, NULL } }; static const struct tok lsa_opaque_te_link_tlv_subtlv_values[] = { { LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE, "Link Type" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_ID, "Link ID" }, { LS_OPAQUE_TE_LINK_SUBTLV_LOCAL_IP, "Local Interface IP address" }, { LS_OPAQUE_TE_LINK_SUBTLV_REMOTE_IP, "Remote Interface IP address" }, { LS_OPAQUE_TE_LINK_SUBTLV_TE_METRIC, "Traffic Engineering Metric" }, { LS_OPAQUE_TE_LINK_SUBTLV_MAX_BW, "Maximum Bandwidth" }, { LS_OPAQUE_TE_LINK_SUBTLV_MAX_RES_BW, "Maximum Reservable Bandwidth" }, { LS_OPAQUE_TE_LINK_SUBTLV_UNRES_BW, "Unreserved Bandwidth" }, { LS_OPAQUE_TE_LINK_SUBTLV_ADMIN_GROUP, "Administrative Group" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_LOCAL_REMOTE_ID, "Link Local/Remote Identifier" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_PROTECTION_TYPE, "Link Protection Type" }, { LS_OPAQUE_TE_LINK_SUBTLV_INTF_SW_CAP_DESCR, "Interface Switching Capability" }, { LS_OPAQUE_TE_LINK_SUBTLV_SHARED_RISK_GROUP, "Shared Risk Link Group" }, { LS_OPAQUE_TE_LINK_SUBTLV_BW_CONSTRAINTS, "Bandwidth Constraints" }, { 0, NULL } }; static const struct tok lsa_opaque_grace_tlv_values[] = { { LS_OPAQUE_GRACE_TLV_PERIOD, "Grace Period" }, { LS_OPAQUE_GRACE_TLV_REASON, "Graceful restart Reason" }, { LS_OPAQUE_GRACE_TLV_INT_ADDRESS, "IPv4 interface address" }, { 0, NULL } }; static const struct tok lsa_opaque_grace_tlv_reason_values[] = { { LS_OPAQUE_GRACE_TLV_REASON_UNKNOWN, "Unknown" }, { LS_OPAQUE_GRACE_TLV_REASON_SW_RESTART, "Software Restart" }, { LS_OPAQUE_GRACE_TLV_REASON_SW_UPGRADE, "Software Reload/Upgrade" }, { LS_OPAQUE_GRACE_TLV_REASON_CP_SWITCH, "Control Processor Switch" }, { 0, NULL } }; static const struct tok lsa_opaque_te_tlv_link_type_sub_tlv_values[] = { { LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE_PTP, "Point-to-point" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE_MA, "Multi-Access" }, { 0, NULL } }; static const struct tok lsa_opaque_ri_tlv_values[] = { { LS_OPAQUE_RI_TLV_CAP, "Router Capabilities" }, { 0, NULL } }; static const struct tok lsa_opaque_ri_tlv_cap_values[] = { { 1, "Reserved" }, { 2, "Reserved" }, { 4, "Reserved" }, { 8, "Reserved" }, { 16, "graceful restart capable" }, { 32, "graceful restart helper" }, { 64, "Stub router support" }, { 128, "Traffic engineering" }, { 256, "p2p over LAN" }, { 512, "path computation server" }, { 0, NULL } }; static const struct tok ospf_lls_tlv_values[] = { { OSPF_LLS_EO, "Extended Options" }, { OSPF_LLS_MD5, "MD5 Authentication" }, { 0, NULL } }; static const struct tok ospf_lls_eo_options[] = { { OSPF_LLS_EO_LR, "LSDB resync" }, { OSPF_LLS_EO_RS, "Restart" }, { 0, NULL } }; static char tstr[] = " [|ospf2]"; static int ospf_print_lshdr(const struct lsa_hdr *); static const u_char *ospf_print_lsa(const struct lsa *); static int ospf_decode_v2(const struct ospfhdr *, const u_char *); static int ospf_decode_lls(const struct ospfhdr *, register u_int); int ospf_print_grace_lsa (const u_int8_t *tptr, u_int ls_length) { u_int tlv_type, tlv_length; while (ls_length > 0) { TCHECK2(*tptr, 4); if (ls_length < 4) { printf("\n\t Remaining LS length %u < 4", ls_length); return -1; } tlv_type = EXTRACT_16BITS(tptr); tlv_length = EXTRACT_16BITS(tptr+2); tptr+=4; ls_length-=4; printf("\n\t %s TLV (%u), length %u, value: ", tok2str(lsa_opaque_grace_tlv_values,"unknown",tlv_type), tlv_type, tlv_length); if (tlv_length > ls_length) { printf("\n\t Bogus length %u > %u", tlv_length, ls_length); return -1; } /* Infinite loop protection. */ if (tlv_type == 0 || tlv_length ==0) { return -1; } TCHECK2(*tptr, tlv_length); switch(tlv_type) { case LS_OPAQUE_GRACE_TLV_PERIOD: if (tlv_length != 4) { printf("\n\t Bogus length %u != 4", tlv_length); return -1; } printf("%us",EXTRACT_32BITS(tptr)); break; case LS_OPAQUE_GRACE_TLV_REASON: if (tlv_length != 1) { printf("\n\t Bogus length %u != 1", tlv_length); return -1; } printf("%s (%u)", tok2str(lsa_opaque_grace_tlv_reason_values, "Unknown", *tptr), *tptr); break; case LS_OPAQUE_GRACE_TLV_INT_ADDRESS: if (tlv_length != 4) { printf("\n\t Bogus length %u != 4", tlv_length); return -1; } printf("%s", ipaddr_string(tptr)); break; default: if (vflag <= 1) { if(!print_unknown_data(tptr,"\n\t ",tlv_length)) return -1; } break; } /* in OSPF everything has to be 32-bit aligned, including TLVs */ if (tlv_length%4 != 0) tlv_length+=4-(tlv_length%4); ls_length-=tlv_length; tptr+=tlv_length; } return 0; trunc: return -1; } int ospf_print_te_lsa (const u_int8_t *tptr, u_int ls_length) { u_int tlv_type, tlv_length, subtlv_type, subtlv_length; u_int priority_level, te_class, count_srlg; union { /* int to float conversion buffer for several subTLVs */ float f; u_int32_t i; } bw; while (ls_length != 0) { TCHECK2(*tptr, 4); if (ls_length < 4) { printf("\n\t Remaining LS length %u < 4", ls_length); return -1; } tlv_type = EXTRACT_16BITS(tptr); tlv_length = EXTRACT_16BITS(tptr+2); tptr+=4; ls_length-=4; printf("\n\t %s TLV (%u), length: %u", tok2str(lsa_opaque_te_tlv_values,"unknown",tlv_type), tlv_type, tlv_length); if (tlv_length > ls_length) { printf("\n\t Bogus length %u > %u", tlv_length, ls_length); return -1; } /* Infinite loop protection. */ if (tlv_type == 0 || tlv_length ==0) { return -1; } switch(tlv_type) { case LS_OPAQUE_TE_TLV_LINK: while (tlv_length >= sizeof(subtlv_type) + sizeof(subtlv_length)) { if (tlv_length < 4) { printf("\n\t Remaining TLV length %u < 4", tlv_length); return -1; } TCHECK2(*tptr, 4); subtlv_type = EXTRACT_16BITS(tptr); subtlv_length = EXTRACT_16BITS(tptr+2); tptr+=4; tlv_length-=4; printf("\n\t %s subTLV (%u), length: %u", tok2str(lsa_opaque_te_link_tlv_subtlv_values,"unknown",subtlv_type), subtlv_type, subtlv_length); TCHECK2(*tptr, subtlv_length); switch(subtlv_type) { case LS_OPAQUE_TE_LINK_SUBTLV_ADMIN_GROUP: printf(", 0x%08x", EXTRACT_32BITS(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_LINK_ID: case LS_OPAQUE_TE_LINK_SUBTLV_LINK_LOCAL_REMOTE_ID: printf(", %s (0x%08x)", ipaddr_string(tptr), EXTRACT_32BITS(tptr)); if (subtlv_length == 8) /* rfc4203 */ printf(", %s (0x%08x)", ipaddr_string(tptr+4), EXTRACT_32BITS(tptr+4)); break; case LS_OPAQUE_TE_LINK_SUBTLV_LOCAL_IP: case LS_OPAQUE_TE_LINK_SUBTLV_REMOTE_IP: printf(", %s", ipaddr_string(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_MAX_BW: case LS_OPAQUE_TE_LINK_SUBTLV_MAX_RES_BW: bw.i = EXTRACT_32BITS(tptr); printf(", %.3f Mbps", bw.f*8/1000000 ); break; case LS_OPAQUE_TE_LINK_SUBTLV_UNRES_BW: for (te_class = 0; te_class < 8; te_class++) { bw.i = EXTRACT_32BITS(tptr+te_class*4); printf("\n\t\tTE-Class %u: %.3f Mbps", te_class, bw.f*8/1000000 ); } break; case LS_OPAQUE_TE_LINK_SUBTLV_BW_CONSTRAINTS: printf("\n\t\tBandwidth Constraints Model ID: %s (%u)", tok2str(diffserv_te_bc_values, "unknown", *tptr), *tptr); /* decode BCs until the subTLV ends */ for (te_class = 0; te_class < (subtlv_length-4)/4; te_class++) { bw.i = EXTRACT_32BITS(tptr+4+te_class*4); printf("\n\t\t Bandwidth constraint CT%u: %.3f Mbps", te_class, bw.f*8/1000000 ); } break; case LS_OPAQUE_TE_LINK_SUBTLV_TE_METRIC: printf(", Metric %u", EXTRACT_32BITS(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_LINK_PROTECTION_TYPE: printf(", %s, Priority %u", bittok2str(gmpls_link_prot_values, "none", *tptr), *(tptr+1)); break; case LS_OPAQUE_TE_LINK_SUBTLV_INTF_SW_CAP_DESCR: printf("\n\t\tInterface Switching Capability: %s", tok2str(gmpls_switch_cap_values, "Unknown", *(tptr))); printf("\n\t\tLSP Encoding: %s\n\t\tMax LSP Bandwidth:", tok2str(gmpls_encoding_values, "Unknown", *(tptr+1))); for (priority_level = 0; priority_level < 8; priority_level++) { bw.i = EXTRACT_32BITS(tptr+4+(priority_level*4)); printf("\n\t\t priority level %d: %.3f Mbps", priority_level, bw.f*8/1000000 ); } break; case LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE: printf(", %s (%u)", tok2str(lsa_opaque_te_tlv_link_type_sub_tlv_values,"unknown",*tptr), *tptr); break; case LS_OPAQUE_TE_LINK_SUBTLV_SHARED_RISK_GROUP: count_srlg = subtlv_length / 4; if (count_srlg != 0) printf("\n\t\t Shared risk group: "); while (count_srlg > 0) { bw.i = EXTRACT_32BITS(tptr); printf("%d",bw.i); tptr+=4; count_srlg--; if (count_srlg > 0) printf(", "); } break; default: if (vflag <= 1) { if(!print_unknown_data(tptr,"\n\t\t",subtlv_length)) return -1; } break; } /* in OSPF everything has to be 32-bit aligned, including subTLVs */ if (subtlv_length%4 != 0) subtlv_length+=4-(subtlv_length%4); tlv_length-=subtlv_length; tptr+=subtlv_length; } break; case LS_OPAQUE_TE_TLV_ROUTER: if (tlv_length < 4) { printf("\n\t TLV length %u < 4", tlv_length); return -1; } TCHECK2(*tptr, 4); printf(", %s", ipaddr_string(tptr)); break; default: if (vflag <= 1) { if(!print_unknown_data(tptr,"\n\t ",tlv_length)) return -1; } break; } /* in OSPF everything has to be 32-bit aligned, including TLVs */ if (tlv_length%4 != 0) tlv_length+=4-(tlv_length%4); ls_length-=tlv_length; tptr+=tlv_length; } return 0; trunc: return -1; } static int ospf_print_lshdr(register const struct lsa_hdr *lshp) { u_int ls_length; TCHECK(lshp->ls_length); ls_length = EXTRACT_16BITS(&lshp->ls_length); if (ls_length < sizeof(struct lsa_hdr)) { printf("\n\t Bogus length %u < header (%lu)", ls_length, (unsigned long)sizeof(struct lsa_hdr)); return(-1); } TCHECK(lshp->ls_seq); /* XXX - ls_length check checked this */ printf("\n\t Advertising Router %s, seq 0x%08x, age %us, length %u", ipaddr_string(&lshp->ls_router), EXTRACT_32BITS(&lshp->ls_seq), EXTRACT_16BITS(&lshp->ls_age), ls_length-(u_int)sizeof(struct lsa_hdr)); TCHECK(lshp->ls_type); /* XXX - ls_length check checked this */ switch (lshp->ls_type) { /* the LSA header for opaque LSAs was slightly changed */ case LS_TYPE_OPAQUE_LL: case LS_TYPE_OPAQUE_AL: case LS_TYPE_OPAQUE_DW: printf("\n\t %s LSA (%d), Opaque-Type %s LSA (%u), Opaque-ID %u", tok2str(lsa_values,"unknown",lshp->ls_type), lshp->ls_type, tok2str(lsa_opaque_values, "unknown", *(&lshp->un_lsa_id.opaque_field.opaque_type)), *(&lshp->un_lsa_id.opaque_field.opaque_type), EXTRACT_24BITS(&lshp->un_lsa_id.opaque_field.opaque_id) ); break; /* all other LSA types use regular style LSA headers */ default: printf("\n\t %s LSA (%d), LSA-ID: %s", tok2str(lsa_values,"unknown",lshp->ls_type), lshp->ls_type, ipaddr_string(&lshp->un_lsa_id.lsa_id)); break; } TCHECK(lshp->ls_options); /* XXX - ls_length check checked this */ printf("\n\t Options: [%s]", bittok2str(ospf_option_values,"none",lshp->ls_options)); return (ls_length); trunc: return (-1); } /* draft-ietf-ospf-mt-09 */ static const struct tok ospf_topology_values[] = { { 0, "default " }, { 1, "multicast " }, { 2, "management " }, { 0, NULL } }; /* * Print all the per-topology metrics. */ static void ospf_print_tos_metrics(const union un_tos *tos) { int metric_count; int toscount; toscount = tos->link.link_tos_count+1; metric_count = 0; /* * All but the first metric contain a valid topology id. */ while (toscount) { printf("\n\t\ttopology %s(%u), metric %u", tok2str(ospf_topology_values, "", metric_count ? tos->metrics.tos_type : 0), metric_count ? tos->metrics.tos_type : 0, EXTRACT_16BITS(&tos->metrics.tos_metric)); metric_count++; tos++; toscount--; } } /* * Print a single link state advertisement. If truncated or if LSA length * field is less than the length of the LSA header, return NULl, else * return pointer to data past end of LSA. */ static const u_int8_t * ospf_print_lsa(register const struct lsa *lsap) { register const u_int8_t *ls_end; register const struct rlalink *rlp; register const struct in_addr *ap; register const struct aslametric *almp; register const struct mcla *mcp; register const u_int32_t *lp; register int j, tlv_type, tlv_length, topology; register int ls_length; const u_int8_t *tptr; tptr = (u_int8_t *)lsap->lsa_un.un_unknown; /* squelch compiler warnings */ ls_length = ospf_print_lshdr(&lsap->ls_hdr); if (ls_length == -1) return(NULL); ls_end = (u_int8_t *)lsap + ls_length; ls_length -= sizeof(struct lsa_hdr); switch (lsap->ls_hdr.ls_type) { case LS_TYPE_ROUTER: TCHECK(lsap->lsa_un.un_rla.rla_flags); printf("\n\t Router LSA Options: [%s]", bittok2str(ospf_rla_flag_values,"none",lsap->lsa_un.un_rla.rla_flags)); TCHECK(lsap->lsa_un.un_rla.rla_count); j = EXTRACT_16BITS(&lsap->lsa_un.un_rla.rla_count); TCHECK(lsap->lsa_un.un_rla.rla_link); rlp = lsap->lsa_un.un_rla.rla_link; while (j--) { TCHECK(*rlp); switch (rlp->un_tos.link.link_type) { case RLA_TYPE_VIRTUAL: printf("\n\t Virtual Link: Neighbor Router-ID: %s, Interface Address: %s", ipaddr_string(&rlp->link_id), ipaddr_string(&rlp->link_data)); break; case RLA_TYPE_ROUTER: printf("\n\t Neighbor Router-ID: %s, Interface Address: %s", ipaddr_string(&rlp->link_id), ipaddr_string(&rlp->link_data)); break; case RLA_TYPE_TRANSIT: printf("\n\t Neighbor Network-ID: %s, Interface Address: %s", ipaddr_string(&rlp->link_id), ipaddr_string(&rlp->link_data)); break; case RLA_TYPE_STUB: printf("\n\t Stub Network: %s, Mask: %s", ipaddr_string(&rlp->link_id), ipaddr_string(&rlp->link_data)); break; default: printf("\n\t Unknown Router Link Type (%u)", rlp->un_tos.link.link_type); return (ls_end); } ospf_print_tos_metrics(&rlp->un_tos); rlp = (struct rlalink *)((u_char *)(rlp + 1) + ((rlp->un_tos.link.link_tos_count) * sizeof(union un_tos))); } break; case LS_TYPE_NETWORK: TCHECK(lsap->lsa_un.un_nla.nla_mask); printf("\n\t Mask %s\n\t Connected Routers:", ipaddr_string(&lsap->lsa_un.un_nla.nla_mask)); ap = lsap->lsa_un.un_nla.nla_router; while ((u_char *)ap < ls_end) { TCHECK(*ap); printf("\n\t %s", ipaddr_string(ap)); ++ap; } break; case LS_TYPE_SUM_IP: TCHECK(lsap->lsa_un.un_nla.nla_mask); printf("\n\t Mask %s", ipaddr_string(&lsap->lsa_un.un_sla.sla_mask)); TCHECK(lsap->lsa_un.un_sla.sla_tosmetric); lp = lsap->lsa_un.un_sla.sla_tosmetric; while ((u_char *)lp < ls_end) { register u_int32_t ul; TCHECK(*lp); ul = EXTRACT_32BITS(lp); topology = (ul & SLA_MASK_TOS) >> SLA_SHIFT_TOS; printf("\n\t\ttopology %s(%u) metric %d", tok2str(ospf_topology_values, "", topology), topology, ul & SLA_MASK_METRIC); ++lp; } break; case LS_TYPE_SUM_ABR: TCHECK(lsap->lsa_un.un_sla.sla_tosmetric); lp = lsap->lsa_un.un_sla.sla_tosmetric; while ((u_char *)lp < ls_end) { register u_int32_t ul; TCHECK(*lp); ul = EXTRACT_32BITS(lp); topology = (ul & SLA_MASK_TOS) >> SLA_SHIFT_TOS; printf("\n\t\ttopology %s(%u) metric %d", tok2str(ospf_topology_values, "", topology), topology, ul & SLA_MASK_METRIC); ++lp; } break; case LS_TYPE_ASE: case LS_TYPE_NSSA: /* fall through - those LSAs share the same format */ TCHECK(lsap->lsa_un.un_nla.nla_mask); printf("\n\t Mask %s", ipaddr_string(&lsap->lsa_un.un_asla.asla_mask)); TCHECK(lsap->lsa_un.un_sla.sla_tosmetric); almp = lsap->lsa_un.un_asla.asla_metric; while ((u_char *)almp < ls_end) { register u_int32_t ul; TCHECK(almp->asla_tosmetric); ul = EXTRACT_32BITS(&almp->asla_tosmetric); topology = ((ul & ASLA_MASK_TOS) >> ASLA_SHIFT_TOS); printf("\n\t\ttopology %s(%u), type %d, metric", tok2str(ospf_topology_values, "", topology), topology, (ul & ASLA_FLAG_EXTERNAL) ? 2 : 1); if ((ul & ASLA_MASK_METRIC)==0xffffff) printf(" infinite"); else printf(" %d", (ul & ASLA_MASK_METRIC)); TCHECK(almp->asla_forward); if (almp->asla_forward.s_addr) { printf(", forward %s", ipaddr_string(&almp->asla_forward)); } TCHECK(almp->asla_tag); if (almp->asla_tag.s_addr) { printf(", tag %s", ipaddr_string(&almp->asla_tag)); } ++almp; } break; case LS_TYPE_GROUP: /* Multicast extensions as of 23 July 1991 */ mcp = lsap->lsa_un.un_mcla; while ((u_char *)mcp < ls_end) { TCHECK(mcp->mcla_vid); switch (EXTRACT_32BITS(&mcp->mcla_vtype)) { case MCLA_VERTEX_ROUTER: printf("\n\t Router Router-ID %s", ipaddr_string(&mcp->mcla_vid)); break; case MCLA_VERTEX_NETWORK: printf("\n\t Network Designated Router %s", ipaddr_string(&mcp->mcla_vid)); break; default: printf("\n\t unknown VertexType (%u)", EXTRACT_32BITS(&mcp->mcla_vtype)); break; } ++mcp; } break; case LS_TYPE_OPAQUE_LL: /* fall through */ case LS_TYPE_OPAQUE_AL: case LS_TYPE_OPAQUE_DW: switch (*(&lsap->ls_hdr.un_lsa_id.opaque_field.opaque_type)) { case LS_OPAQUE_TYPE_RI: tptr = (u_int8_t *)(&lsap->lsa_un.un_ri_tlv.type); while (ls_length != 0) { TCHECK2(*tptr, 4); if (ls_length < 4) { printf("\n\t Remaining LS length %u < 4", ls_length); return(ls_end); } tlv_type = EXTRACT_16BITS(tptr); tlv_length = EXTRACT_16BITS(tptr+2); tptr+=4; ls_length-=4; printf("\n\t %s TLV (%u), length: %u, value: ", tok2str(lsa_opaque_ri_tlv_values,"unknown",tlv_type), tlv_type, tlv_length); if (tlv_length > ls_length) { printf("\n\t Bogus length %u > %u", tlv_length, ls_length); return(ls_end); } TCHECK2(*tptr, tlv_length); switch(tlv_type) { case LS_OPAQUE_RI_TLV_CAP: if (tlv_length != 4) { printf("\n\t Bogus length %u != 4", tlv_length); return(ls_end); } printf("Capabilities: %s", bittok2str(lsa_opaque_ri_tlv_cap_values, "Unknown", EXTRACT_32BITS(tptr))); break; default: if (vflag <= 1) { if(!print_unknown_data(tptr,"\n\t ",tlv_length)) return(ls_end); } break; } tptr+=tlv_length; ls_length-=tlv_length; } break; case LS_OPAQUE_TYPE_GRACE: if (ospf_print_grace_lsa((u_int8_t *)(&lsap->lsa_un.un_grace_tlv.type), ls_length) == -1) { return(ls_end); } break; case LS_OPAQUE_TYPE_TE: if (ospf_print_te_lsa((u_int8_t *)(&lsap->lsa_un.un_te_lsa_tlv.type), ls_length) == -1) { return(ls_end); } break; default: if (vflag <= 1) { if(!print_unknown_data((u_int8_t *)lsap->lsa_un.un_unknown, "\n\t ", ls_length)) return(ls_end); } break; } } /* do we want to see an additionally hexdump ? */ if (vflag> 1) if(!print_unknown_data((u_int8_t *)lsap->lsa_un.un_unknown, "\n\t ", ls_length)) { return(ls_end); } return (ls_end); trunc: return (NULL); } static int ospf_decode_lls(register const struct ospfhdr *op, register u_int length) { register const u_char *dptr; register const u_char *dataend; register u_int length2; register u_int16_t lls_type, lls_len; register u_int32_t lls_flags; switch (op->ospf_type) { case OSPF_TYPE_HELLO: if (!(op->ospf_hello.hello_options & OSPF_OPTION_L)) return (0); break; case OSPF_TYPE_DD: if (!(op->ospf_db.db_options & OSPF_OPTION_L)) return (0); break; default: return (0); } /* dig deeper if LLS data is available; see RFC4813 */ length2 = EXTRACT_16BITS(&op->ospf_len); dptr = (u_char *)op + length2; dataend = (u_char *)op + length; if (EXTRACT_16BITS(&op->ospf_authtype) == OSPF_AUTH_MD5) { dptr = dptr + op->ospf_authdata[3]; length2 += op->ospf_authdata[3]; } if (length2 >= length) { printf("\n\t[LLS truncated]"); return (1); } TCHECK2(*dptr, 2); printf("\n\t LLS: checksum: 0x%04x", (u_int)EXTRACT_16BITS(dptr)); dptr += 2; TCHECK2(*dptr, 2); length2 = EXTRACT_16BITS(dptr); printf(", length: %u", length2); dptr += 2; TCHECK(*dptr); while (dptr < dataend) { TCHECK2(*dptr, 2); lls_type = EXTRACT_16BITS(dptr); printf("\n\t %s (%u)", tok2str(ospf_lls_tlv_values,"Unknown TLV",lls_type), lls_type); dptr += 2; TCHECK2(*dptr, 2); lls_len = EXTRACT_16BITS(dptr); printf(", length: %u", lls_len); dptr += 2; switch (lls_type) { case OSPF_LLS_EO: if (lls_len != 4) { printf(" [should be 4]"); lls_len = 4; } TCHECK2(*dptr, 4); lls_flags = EXTRACT_32BITS(dptr); printf("\n\t Options: 0x%08x [%s]", lls_flags, bittok2str(ospf_lls_eo_options,"?",lls_flags)); break; case OSPF_LLS_MD5: if (lls_len != 20) { printf(" [should be 20]"); lls_len = 20; } TCHECK2(*dptr, 4); printf("\n\t Sequence number: 0x%08x", EXTRACT_32BITS(dptr)); break; } dptr += lls_len; } return (0); trunc: return (1); } static int ospf_decode_v2(register const struct ospfhdr *op, register const u_char *dataend) { register const struct in_addr *ap; register const struct lsr *lsrp; register const struct lsa_hdr *lshp; register const struct lsa *lsap; register u_int32_t lsa_count,lsa_count_max; switch (op->ospf_type) { case OSPF_TYPE_UMD: /* * Rob Coltun's special monitoring packets; * do nothing */ break; case OSPF_TYPE_HELLO: printf("\n\tOptions [%s]", bittok2str(ospf_option_values,"none",op->ospf_hello.hello_options)); TCHECK(op->ospf_hello.hello_deadint); printf("\n\t Hello Timer %us, Dead Timer %us, Mask %s, Priority %u", EXTRACT_16BITS(&op->ospf_hello.hello_helloint), EXTRACT_32BITS(&op->ospf_hello.hello_deadint), ipaddr_string(&op->ospf_hello.hello_mask), op->ospf_hello.hello_priority); TCHECK(op->ospf_hello.hello_dr); if (op->ospf_hello.hello_dr.s_addr != 0) printf("\n\t Designated Router %s", ipaddr_string(&op->ospf_hello.hello_dr)); TCHECK(op->ospf_hello.hello_bdr); if (op->ospf_hello.hello_bdr.s_addr != 0) printf(", Backup Designated Router %s", ipaddr_string(&op->ospf_hello.hello_bdr)); ap = op->ospf_hello.hello_neighbor; if ((u_char *)ap < dataend) printf("\n\t Neighbor List:"); while ((u_char *)ap < dataend) { TCHECK(*ap); printf("\n\t %s", ipaddr_string(ap)); ++ap; } break; /* HELLO */ case OSPF_TYPE_DD: TCHECK(op->ospf_db.db_options); printf("\n\tOptions [%s]", bittok2str(ospf_option_values,"none",op->ospf_db.db_options)); TCHECK(op->ospf_db.db_flags); printf(", DD Flags [%s]", bittok2str(ospf_dd_flag_values,"none",op->ospf_db.db_flags)); TCHECK(op->ospf_db.db_ifmtu); if (op->ospf_db.db_ifmtu) { printf(", MTU: %u", EXTRACT_16BITS(&op->ospf_db.db_ifmtu)); } TCHECK(op->ospf_db.db_seq); printf(", Sequence: 0x%08x", EXTRACT_32BITS(&op->ospf_db.db_seq)); /* Print all the LS adv's */ lshp = op->ospf_db.db_lshdr; while (((u_char *)lshp < dataend) && ospf_print_lshdr(lshp) != -1) { ++lshp; } break; case OSPF_TYPE_LS_REQ: lsrp = op->ospf_lsr; while ((u_char *)lsrp < dataend) { TCHECK(*lsrp); printf("\n\t Advertising Router: %s, %s LSA (%u)", ipaddr_string(&lsrp->ls_router), tok2str(lsa_values,"unknown",EXTRACT_32BITS(lsrp->ls_type)), EXTRACT_32BITS(&lsrp->ls_type)); switch (EXTRACT_32BITS(lsrp->ls_type)) { /* the LSA header for opaque LSAs was slightly changed */ case LS_TYPE_OPAQUE_LL: case LS_TYPE_OPAQUE_AL: case LS_TYPE_OPAQUE_DW: printf(", Opaque-Type: %s LSA (%u), Opaque-ID: %u", tok2str(lsa_opaque_values, "unknown",lsrp->un_ls_stateid.opaque_field.opaque_type), lsrp->un_ls_stateid.opaque_field.opaque_type, EXTRACT_24BITS(&lsrp->un_ls_stateid.opaque_field.opaque_id)); break; default: printf(", LSA-ID: %s", ipaddr_string(&lsrp->un_ls_stateid.ls_stateid)); break; } ++lsrp; } break; case OSPF_TYPE_LS_UPDATE: lsap = op->ospf_lsu.lsu_lsa; TCHECK(op->ospf_lsu.lsu_count); lsa_count_max = EXTRACT_32BITS(&op->ospf_lsu.lsu_count); printf(", %d LSA%s",lsa_count_max, PLURAL_SUFFIX(lsa_count_max)); for (lsa_count=1;lsa_count <= lsa_count_max;lsa_count++) { printf("\n\t LSA #%u",lsa_count); lsap = (const struct lsa *)ospf_print_lsa(lsap); if (lsap == NULL) goto trunc; } break; case OSPF_TYPE_LS_ACK: lshp = op->ospf_lsa.lsa_lshdr; while (ospf_print_lshdr(lshp) != -1) { ++lshp; } break; default: break; } return (0); trunc: return (1); } void ospf_print(register const u_char *bp, register u_int length, const u_char *bp2 _U_) { register const struct ospfhdr *op; register const u_char *dataend; register const char *cp; op = (struct ospfhdr *)bp; /* XXX Before we do anything else, strip off the MD5 trailer */ TCHECK(op->ospf_authtype); if (EXTRACT_16BITS(&op->ospf_authtype) == OSPF_AUTH_MD5) { length -= OSPF_AUTH_MD5_LEN; snapend -= OSPF_AUTH_MD5_LEN; } /* If the type is valid translate it, or just print the type */ /* value. If it's not valid, say so and return */ TCHECK(op->ospf_type); cp = tok2str(type2str, "unknown LS-type", op->ospf_type); printf("OSPFv%u, %s, length %u", op->ospf_version, cp, length); if (*cp == 'u') return; if(!vflag) { /* non verbose - so lets bail out here */ return; } TCHECK(op->ospf_len); if (length != EXTRACT_16BITS(&op->ospf_len)) { printf(" [len %d]", EXTRACT_16BITS(&op->ospf_len)); } if (length > EXTRACT_16BITS(&op->ospf_len)) { dataend = bp + EXTRACT_16BITS(&op->ospf_len); } else { dataend = bp + length; } TCHECK(op->ospf_routerid); printf("\n\tRouter-ID %s", ipaddr_string(&op->ospf_routerid)); TCHECK(op->ospf_areaid); if (op->ospf_areaid.s_addr != 0) printf(", Area %s", ipaddr_string(&op->ospf_areaid)); else printf(", Backbone Area"); if (vflag) { /* Print authentication data (should we really do this?) */ TCHECK2(op->ospf_authdata[0], sizeof(op->ospf_authdata)); printf(", Authentication Type: %s (%u)", tok2str(ospf_authtype_values,"unknown",EXTRACT_16BITS(&op->ospf_authtype)), EXTRACT_16BITS(&op->ospf_authtype)); switch (EXTRACT_16BITS(&op->ospf_authtype)) { case OSPF_AUTH_NONE: break; case OSPF_AUTH_SIMPLE: printf("\n\tSimple text password: "); safeputs((const char *)op->ospf_authdata, OSPF_AUTH_SIMPLE_LEN); break; case OSPF_AUTH_MD5: printf("\n\tKey-ID: %u, Auth-Length: %u, Crypto Sequence Number: 0x%08x", *((op->ospf_authdata)+2), *((op->ospf_authdata)+3), EXTRACT_32BITS((op->ospf_authdata)+4)); break; default: return; } } /* Do rest according to version. */ switch (op->ospf_version) { case 2: /* ospf version 2 */ if (ospf_decode_v2(op, dataend)) goto trunc; if (length > EXTRACT_16BITS(&op->ospf_len)) { if (ospf_decode_lls(op, length)) goto trunc; } break; default: printf(" ospf [version %d]", op->ospf_version); break; } /* end switch on version */ return; trunc: fputs(tstr, stdout); }