/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkRandom.h" #include "SkQuadTree.h" #include "SkRTree.h" #include "SkTSort.h" static const size_t RTREE_MIN_CHILDREN = 6; static const size_t RTREE_MAX_CHILDREN = 11; static const size_t QUADTREE_MIN_CHILDREN = 0; static const size_t QUADTREE_MAX_CHILDREN = 0; // No hard limit for quadtree static const int NUM_RECTS = 200; static const size_t NUM_ITERATIONS = 100; static const size_t NUM_QUERIES = 50; static const int MAX_SIZE = 1000; struct DataRect { SkIRect rect; void* data; }; static SkIRect random_rect(SkRandom& rand) { SkIRect rect = {0,0,0,0}; while (rect.isEmpty()) { rect.fLeft = rand.nextS() % MAX_SIZE; rect.fRight = rand.nextS() % MAX_SIZE; rect.fTop = rand.nextS() % MAX_SIZE; rect.fBottom = rand.nextS() % MAX_SIZE; rect.sort(); } return rect; } static void random_data_rects(SkRandom& rand, DataRect out[], int n) { for (int i = 0; i < n; ++i) { out[i].rect = random_rect(rand); out[i].data = reinterpret_cast<void*>(i); } } static bool verify_query(SkIRect query, DataRect rects[], SkTDArray<void*>& found) { SkTDArray<void*> expected; // manually intersect with every rectangle for (int i = 0; i < NUM_RECTS; ++i) { if (SkIRect::IntersectsNoEmptyCheck(query, rects[i].rect)) { expected.push(rects[i].data); } } if (expected.count() != found.count()) { return false; } if (0 == expected.count()) { return true; } // Just cast to long since sorting by the value of the void*'s was being problematic... SkTQSort(reinterpret_cast<long*>(expected.begin()), reinterpret_cast<long*>(expected.end() - 1)); SkTQSort(reinterpret_cast<long*>(found.begin()), reinterpret_cast<long*>(found.end() - 1)); return found == expected; } static void run_queries(skiatest::Reporter* reporter, SkRandom& rand, DataRect rects[], SkBBoxHierarchy& tree) { for (size_t i = 0; i < NUM_QUERIES; ++i) { SkTDArray<void*> hits; SkIRect query = random_rect(rand); tree.search(query, &hits); REPORTER_ASSERT(reporter, verify_query(query, rects, hits)); } } static void tree_test_main(SkBBoxHierarchy* tree, int minChildren, int maxChildren, skiatest::Reporter* reporter) { DataRect rects[NUM_RECTS]; SkRandom rand; REPORTER_ASSERT(reporter, NULL != tree); int expectedDepthMin = -1; int expectedDepthMax = -1; int tmp = NUM_RECTS; if (maxChildren > 0) { while (tmp > 0) { tmp -= static_cast<int>(pow(static_cast<double>(maxChildren), static_cast<double>(expectedDepthMin + 1))); ++expectedDepthMin; } } tmp = NUM_RECTS; if (minChildren > 0) { while (tmp > 0) { tmp -= static_cast<int>(pow(static_cast<double>(minChildren), static_cast<double>(expectedDepthMax + 1))); ++expectedDepthMax; } } for (size_t i = 0; i < NUM_ITERATIONS; ++i) { random_data_rects(rand, rects, NUM_RECTS); // First try bulk-loaded inserts for (int i = 0; i < NUM_RECTS; ++i) { tree->insert(rects[i].data, rects[i].rect, true); } tree->flushDeferredInserts(); run_queries(reporter, rand, rects, *tree); REPORTER_ASSERT(reporter, NUM_RECTS == tree->getCount()); REPORTER_ASSERT(reporter, ((expectedDepthMin <= 0) || (expectedDepthMin <= tree->getDepth())) && ((expectedDepthMax <= 0) || (expectedDepthMax >= tree->getDepth()))); tree->clear(); REPORTER_ASSERT(reporter, 0 == tree->getCount()); // Then try immediate inserts tree->insert(rects[0].data, rects[0].rect); tree->flushDeferredInserts(); for (int i = 1; i < NUM_RECTS; ++i) { tree->insert(rects[i].data, rects[i].rect); } run_queries(reporter, rand, rects, *tree); REPORTER_ASSERT(reporter, NUM_RECTS == tree->getCount()); REPORTER_ASSERT(reporter, ((expectedDepthMin <= 0) || (expectedDepthMin <= tree->getDepth())) && ((expectedDepthMax <= 0) || (expectedDepthMax >= tree->getDepth()))); tree->clear(); REPORTER_ASSERT(reporter, 0 == tree->getCount()); // And for good measure try immediate inserts, but in reversed order tree->insert(rects[NUM_RECTS - 1].data, rects[NUM_RECTS - 1].rect); tree->flushDeferredInserts(); for (int i = NUM_RECTS - 2; i >= 0; --i) { tree->insert(rects[i].data, rects[i].rect); } run_queries(reporter, rand, rects, *tree); REPORTER_ASSERT(reporter, NUM_RECTS == tree->getCount()); REPORTER_ASSERT(reporter, ((expectedDepthMin < 0) || (expectedDepthMin <= tree->getDepth())) && ((expectedDepthMax < 0) || (expectedDepthMax >= tree->getDepth()))); tree->clear(); REPORTER_ASSERT(reporter, 0 == tree->getCount()); } } DEF_TEST(BBoxHierarchy, reporter) { // RTree { SkRTree* rtree = SkRTree::Create(RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN); SkAutoUnref au(rtree); tree_test_main(rtree, RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN, reporter); // Rtree that orders input rectangles on deferred insert. SkRTree* unsortedRtree = SkRTree::Create(RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN, 1, false); SkAutoUnref auo(unsortedRtree); tree_test_main(unsortedRtree, RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN, reporter); } // QuadTree { SkQuadTree* quadtree = SkNEW_ARGS(SkQuadTree, ( SkIRect::MakeLTRB(-MAX_SIZE, -MAX_SIZE, MAX_SIZE, MAX_SIZE))); SkAutoUnref au(quadtree); tree_test_main(quadtree, QUADTREE_MIN_CHILDREN, QUADTREE_MAX_CHILDREN, reporter); // QuadTree that orders input rectangles on deferred insert. SkQuadTree* unsortedQuadTree = SkNEW_ARGS(SkQuadTree, ( SkIRect::MakeLTRB(-MAX_SIZE, -MAX_SIZE, MAX_SIZE, MAX_SIZE))); SkAutoUnref auo(unsortedQuadTree); tree_test_main(unsortedQuadTree, QUADTREE_MIN_CHILDREN, QUADTREE_MAX_CHILDREN, reporter); } }