/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColorPriv.h" #include "SkColor_opts_SSE2.h" #include "SkMathPriv.h" #include "SkMath_opts_SSE2.h" #include "SkXfermode.h" #include "SkXfermode_opts_SSE2.h" #include "SkXfermode_proccoeff.h" //////////////////////////////////////////////////////////////////////////////// // 4 pixels SSE2 version functions //////////////////////////////////////////////////////////////////////////////// static inline __m128i SkDiv255Round_SSE2(const __m128i& a) { __m128i prod = _mm_add_epi32(a, _mm_set1_epi32(128)); // prod += 128; prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8)); // prod + (prod >> 8) prod = _mm_srli_epi32(prod, 8); // >> 8 return prod; } static inline __m128i saturated_add_SSE2(const __m128i& a, const __m128i& b) { __m128i sum = _mm_add_epi32(a, b); __m128i cmp = _mm_cmpgt_epi32(sum, _mm_set1_epi32(255)); sum = _mm_or_si128(_mm_and_si128(cmp, _mm_set1_epi32(255)), _mm_andnot_si128(cmp, sum)); return sum; } static inline __m128i clamp_signed_byte_SSE2(const __m128i& n) { __m128i cmp1 = _mm_cmplt_epi32(n, _mm_setzero_si128()); __m128i cmp2 = _mm_cmpgt_epi32(n, _mm_set1_epi32(255)); __m128i ret = _mm_and_si128(cmp2, _mm_set1_epi32(255)); __m128i cmp = _mm_or_si128(cmp1, cmp2); ret = _mm_or_si128(_mm_and_si128(cmp, ret), _mm_andnot_si128(cmp, n)); return ret; } static inline __m128i clamp_div255round_SSE2(const __m128i& prod) { // test if > 0 __m128i cmp1 = _mm_cmpgt_epi32(prod, _mm_setzero_si128()); // test if < 255*255 __m128i cmp2 = _mm_cmplt_epi32(prod, _mm_set1_epi32(255*255)); __m128i ret = _mm_setzero_si128(); // if value >= 255*255, value = 255 ret = _mm_andnot_si128(cmp2, _mm_set1_epi32(255)); __m128i div = SkDiv255Round_SSE2(prod); // test if > 0 && < 255*255 __m128i cmp = _mm_and_si128(cmp1, cmp2); ret = _mm_or_si128(_mm_and_si128(cmp, div), _mm_andnot_si128(cmp, ret)); return ret; } static __m128i srcover_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)); return _mm_add_epi32(src, SkAlphaMulQ_SSE2(dst, isa)); } static __m128i dstover_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst)); return _mm_add_epi32(dst, SkAlphaMulQ_SSE2(src, ida)); } static __m128i srcin_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i da = SkGetPackedA32_SSE2(dst); return SkAlphaMulQ_SSE2(src, SkAlpha255To256_SSE2(da)); } static __m128i dstin_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); return SkAlphaMulQ_SSE2(dst, SkAlpha255To256_SSE2(sa)); } static __m128i srcout_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst)); return SkAlphaMulQ_SSE2(src, ida); } static __m128i dstout_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)); return SkAlphaMulQ_SSE2(dst, isa); } static __m128i srcatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); __m128i a = da; __m128i r1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedR32_SSE2(src)); __m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst)); __m128i r = _mm_add_epi32(r1, r2); __m128i g1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedG32_SSE2(src)); __m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst)); __m128i g = _mm_add_epi32(g1, g2); __m128i b1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedB32_SSE2(src)); __m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst)); __m128i b = _mm_add_epi32(b1, b2); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i dstatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i a = sa; __m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src)); __m128i r2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedR32_SSE2(dst)); __m128i r = _mm_add_epi32(r1, r2); __m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src)); __m128i g2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedG32_SSE2(dst)); __m128i g = _mm_add_epi32(g1, g2); __m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src)); __m128i b2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedB32_SSE2(dst)); __m128i b = _mm_add_epi32(b1, b2); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i xor_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i a1 = _mm_add_epi32(sa, da); __m128i a2 = SkAlphaMulAlpha_SSE2(sa, da); a2 = _mm_slli_epi32(a2, 1); __m128i a = _mm_sub_epi32(a1, a2); __m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src)); __m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst)); __m128i r = _mm_add_epi32(r1, r2); __m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src)); __m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst)); __m128i g = _mm_add_epi32(g1, g2); __m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src)); __m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst)); __m128i b = _mm_add_epi32(b1, b2); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i plus_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i b = saturated_add_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst)); __m128i g = saturated_add_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst)); __m128i r = saturated_add_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst)); __m128i a = saturated_add_SSE2(SkGetPackedA32_SSE2(src), SkGetPackedA32_SSE2(dst)); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i modulate_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i a = SkAlphaMulAlpha_SSE2(SkGetPackedA32_SSE2(src), SkGetPackedA32_SSE2(dst)); __m128i r = SkAlphaMulAlpha_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst)); __m128i g = SkAlphaMulAlpha_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst)); __m128i b = SkAlphaMulAlpha_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst)); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i SkMin32_SSE2(const __m128i& a, const __m128i& b) { __m128i cmp = _mm_cmplt_epi32(a, b); return _mm_or_si128(_mm_and_si128(cmp, a), _mm_andnot_si128(cmp, b)); } static inline __m128i srcover_byte_SSE2(const __m128i& a, const __m128i& b) { // a + b - SkAlphaMulAlpha(a, b); return _mm_sub_epi32(_mm_add_epi32(a, b), SkAlphaMulAlpha_SSE2(a, b)); } static inline __m128i blendfunc_multiply_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { // sc * (255 - da) __m128i ret1 = _mm_sub_epi32(_mm_set1_epi32(255), da); ret1 = _mm_mullo_epi16(sc, ret1); // dc * (255 - sa) __m128i ret2 = _mm_sub_epi32(_mm_set1_epi32(255), sa); ret2 = _mm_mullo_epi16(dc, ret2); // sc * dc __m128i ret3 = _mm_mullo_epi16(sc, dc); __m128i ret = _mm_add_epi32(ret1, ret2); ret = _mm_add_epi32(ret, ret3); return clamp_div255round_SSE2(ret); } static __m128i multiply_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i sr = SkGetPackedR32_SSE2(src); __m128i dr = SkGetPackedR32_SSE2(dst); __m128i r = blendfunc_multiply_byte_SSE2(sr, dr, sa, da); __m128i sg = SkGetPackedG32_SSE2(src); __m128i dg = SkGetPackedG32_SSE2(dst); __m128i g = blendfunc_multiply_byte_SSE2(sg, dg, sa, da); __m128i sb = SkGetPackedB32_SSE2(src); __m128i db = SkGetPackedB32_SSE2(dst); __m128i b = blendfunc_multiply_byte_SSE2(sb, db, sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i screen_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i a = srcover_byte_SSE2(SkGetPackedA32_SSE2(src), SkGetPackedA32_SSE2(dst)); __m128i r = srcover_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst)); __m128i g = srcover_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst)); __m128i b = srcover_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst)); return SkPackARGB32_SSE2(a, r, g, b); } // Portable version overlay_byte() is in SkXfermode.cpp. static inline __m128i overlay_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i tmp1 = _mm_mullo_epi16(sc, ida); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); __m128i tmp2 = _mm_mullo_epi16(dc, isa); __m128i tmp = _mm_add_epi32(tmp1, tmp2); __m128i cmp = _mm_cmpgt_epi32(_mm_slli_epi32(dc, 1), da); __m128i rc1 = _mm_slli_epi32(sc, 1); // 2 * sc rc1 = Multiply32_SSE2(rc1, dc); // *dc __m128i rc2 = _mm_mullo_epi16(sa, da); // sa * da __m128i tmp3 = _mm_slli_epi32(_mm_sub_epi32(da, dc), 1); // 2 * (da - dc) tmp3 = Multiply32_SSE2(tmp3, _mm_sub_epi32(sa, sc)); // * (sa - sc) rc2 = _mm_sub_epi32(rc2, tmp3); __m128i rc = _mm_or_si128(_mm_andnot_si128(cmp, rc1), _mm_and_si128(cmp, rc2)); return clamp_div255round_SSE2(_mm_add_epi32(rc, tmp)); } static __m128i overlay_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = overlay_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = overlay_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = overlay_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i darken_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i sd = _mm_mullo_epi16(sc, da); __m128i ds = _mm_mullo_epi16(dc, sa); __m128i cmp = _mm_cmplt_epi32(sd, ds); __m128i tmp = _mm_add_epi32(sc, dc); __m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds)); __m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd)); __m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1), _mm_andnot_si128(cmp, ret2)); return ret; } static __m128i darken_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = darken_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = darken_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = darken_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i lighten_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i sd = _mm_mullo_epi16(sc, da); __m128i ds = _mm_mullo_epi16(dc, sa); __m128i cmp = _mm_cmpgt_epi32(sd, ds); __m128i tmp = _mm_add_epi32(sc, dc); __m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds)); __m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd)); __m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1), _mm_andnot_si128(cmp, ret2)); return ret; } static __m128i lighten_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = lighten_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = lighten_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = lighten_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i colordodge_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i diff = _mm_sub_epi32(sa, sc); __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); // if (0 == dc) __m128i cmp1 = _mm_cmpeq_epi32(dc, _mm_setzero_si128()); __m128i rc1 = _mm_and_si128(cmp1, SkAlphaMulAlpha_SSE2(sc, ida)); // else if (0 == diff) __m128i cmp2 = _mm_cmpeq_epi32(diff, _mm_setzero_si128()); __m128i cmp = _mm_andnot_si128(cmp1, cmp2); __m128i tmp1 = _mm_mullo_epi16(sa, da); __m128i tmp2 = _mm_mullo_epi16(sc, ida); __m128i tmp3 = _mm_mullo_epi16(dc, isa); __m128i rc2 = _mm_add_epi32(tmp1, tmp2); rc2 = _mm_add_epi32(rc2, tmp3); rc2 = clamp_div255round_SSE2(rc2); rc2 = _mm_and_si128(cmp, rc2); // else __m128i cmp3 = _mm_or_si128(cmp1, cmp2); __m128i value = _mm_mullo_epi16(dc, sa); diff = shim_mm_div_epi32(value, diff); __m128i tmp4 = SkMin32_SSE2(da, diff); tmp4 = Multiply32_SSE2(sa, tmp4); __m128i rc3 = _mm_add_epi32(tmp4, tmp2); rc3 = _mm_add_epi32(rc3, tmp3); rc3 = clamp_div255round_SSE2(rc3); rc3 = _mm_andnot_si128(cmp3, rc3); __m128i rc = _mm_or_si128(rc1, rc2); rc = _mm_or_si128(rc, rc3); return rc; } static __m128i colordodge_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = colordodge_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = colordodge_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = colordodge_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i colorburn_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); // if (dc == da) __m128i cmp1 = _mm_cmpeq_epi32(dc, da); __m128i tmp1 = _mm_mullo_epi16(sa, da); __m128i tmp2 = _mm_mullo_epi16(sc, ida); __m128i tmp3 = _mm_mullo_epi16(dc, isa); __m128i rc1 = _mm_add_epi32(tmp1, tmp2); rc1 = _mm_add_epi32(rc1, tmp3); rc1 = clamp_div255round_SSE2(rc1); rc1 = _mm_and_si128(cmp1, rc1); // else if (0 == sc) __m128i cmp2 = _mm_cmpeq_epi32(sc, _mm_setzero_si128()); __m128i rc2 = SkAlphaMulAlpha_SSE2(dc, isa); __m128i cmp = _mm_andnot_si128(cmp1, cmp2); rc2 = _mm_and_si128(cmp, rc2); // else __m128i cmp3 = _mm_or_si128(cmp1, cmp2); __m128i tmp4 = _mm_sub_epi32(da, dc); tmp4 = Multiply32_SSE2(tmp4, sa); tmp4 = shim_mm_div_epi32(tmp4, sc); __m128i tmp5 = _mm_sub_epi32(da, SkMin32_SSE2(da, tmp4)); tmp5 = Multiply32_SSE2(sa, tmp5); __m128i rc3 = _mm_add_epi32(tmp5, tmp2); rc3 = _mm_add_epi32(rc3, tmp3); rc3 = clamp_div255round_SSE2(rc3); rc3 = _mm_andnot_si128(cmp3, rc3); __m128i rc = _mm_or_si128(rc1, rc2); rc = _mm_or_si128(rc, rc3); return rc; } static __m128i colorburn_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = colorburn_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = colorburn_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = colorburn_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i hardlight_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { // if (2 * sc <= sa) __m128i tmp1 = _mm_slli_epi32(sc, 1); __m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa); __m128i rc1 = _mm_mullo_epi16(sc, dc); // sc * dc; rc1 = _mm_slli_epi32(rc1, 1); // 2 * sc * dc rc1 = _mm_andnot_si128(cmp1, rc1); // else tmp1 = _mm_mullo_epi16(sa, da); __m128i tmp2 = Multiply32_SSE2(_mm_sub_epi32(da, dc), _mm_sub_epi32(sa, sc)); tmp2 = _mm_slli_epi32(tmp2, 1); __m128i rc2 = _mm_sub_epi32(tmp1, tmp2); rc2 = _mm_and_si128(cmp1, rc2); __m128i rc = _mm_or_si128(rc1, rc2); __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); tmp1 = _mm_mullo_epi16(sc, ida); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); tmp2 = _mm_mullo_epi16(dc, isa); rc = _mm_add_epi32(rc, tmp1); rc = _mm_add_epi32(rc, tmp2); return clamp_div255round_SSE2(rc); } static __m128i hardlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = hardlight_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = hardlight_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = hardlight_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i sqrt_unit_byte_SSE2(const __m128i& n) { return SkSqrtBits_SSE2(n, 15+4); } static inline __m128i softlight_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i tmp1, tmp2, tmp3; // int m = da ? dc * 256 / da : 0; __m128i cmp = _mm_cmpeq_epi32(da, _mm_setzero_si128()); __m128i m = _mm_slli_epi32(dc, 8); __m128 x = _mm_cvtepi32_ps(m); __m128 y = _mm_cvtepi32_ps(da); m = _mm_cvttps_epi32(_mm_div_ps(x, y)); m = _mm_andnot_si128(cmp, m); // if (2 * sc <= sa) tmp1 = _mm_slli_epi32(sc, 1); // 2 * sc __m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa); tmp1 = _mm_sub_epi32(tmp1, sa); // 2 * sc - sa tmp2 = _mm_sub_epi32(_mm_set1_epi32(256), m); // 256 - m tmp1 = Multiply32_SSE2(tmp1, tmp2); tmp1 = _mm_srai_epi32(tmp1, 8); tmp1 = _mm_add_epi32(sa, tmp1); tmp1 = Multiply32_SSE2(dc, tmp1); __m128i rc1 = _mm_andnot_si128(cmp1, tmp1); // else if (4 * dc <= da) tmp2 = _mm_slli_epi32(dc, 2); // dc * 4 __m128i cmp2 = _mm_cmpgt_epi32(tmp2, da); __m128i i = _mm_slli_epi32(m, 2); // 4 * m __m128i j = _mm_add_epi32(i, _mm_set1_epi32(256)); // 4 * m + 256 __m128i k = Multiply32_SSE2(i, j); // 4 * m * (4 * m + 256) __m128i t = _mm_sub_epi32(m, _mm_set1_epi32(256)); // m - 256 i = Multiply32_SSE2(k, t); // 4 * m * (4 * m + 256) * (m - 256) i = _mm_srai_epi32(i, 16); // >> 16 j = Multiply32_SSE2(_mm_set1_epi32(7), m); // 7 * m tmp2 = _mm_add_epi32(i, j); i = Multiply32_SSE2(dc, sa); // dc * sa j = _mm_slli_epi32(sc, 1); // 2 * sc j = _mm_sub_epi32(j, sa); // 2 * sc - sa j = Multiply32_SSE2(da, j); // da * (2 * sc - sa) tmp2 = Multiply32_SSE2(j, tmp2); // * tmp tmp2 = _mm_srai_epi32(tmp2, 8); // >> 8 tmp2 = _mm_add_epi32(i, tmp2); cmp = _mm_andnot_si128(cmp2, cmp1); __m128i rc2 = _mm_and_si128(cmp, tmp2); __m128i rc = _mm_or_si128(rc1, rc2); // else tmp3 = sqrt_unit_byte_SSE2(m); tmp3 = _mm_sub_epi32(tmp3, m); tmp3 = Multiply32_SSE2(j, tmp3); // j = da * (2 * sc - sa) tmp3 = _mm_srai_epi32(tmp3, 8); tmp3 = _mm_add_epi32(i, tmp3); // i = dc * sa cmp = _mm_and_si128(cmp1, cmp2); __m128i rc3 = _mm_and_si128(cmp, tmp3); rc = _mm_or_si128(rc, rc3); tmp1 = _mm_sub_epi32(_mm_set1_epi32(255), da); // 255 - da tmp1 = _mm_mullo_epi16(sc, tmp1); tmp2 = _mm_sub_epi32(_mm_set1_epi32(255), sa); // 255 - sa tmp2 = _mm_mullo_epi16(dc, tmp2); rc = _mm_add_epi32(rc, tmp1); rc = _mm_add_epi32(rc, tmp2); return clamp_div255round_SSE2(rc); } static __m128i softlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = softlight_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = softlight_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = softlight_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i difference_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { __m128i tmp1 = _mm_mullo_epi16(sc, da); __m128i tmp2 = _mm_mullo_epi16(dc, sa); __m128i tmp = SkMin32_SSE2(tmp1, tmp2); __m128i ret1 = _mm_add_epi32(sc, dc); __m128i ret2 = _mm_slli_epi32(SkDiv255Round_SSE2(tmp), 1); __m128i ret = _mm_sub_epi32(ret1, ret2); ret = clamp_signed_byte_SSE2(ret); return ret; } static __m128i difference_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = difference_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = difference_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = difference_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i exclusion_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i&, __m128i&) { __m128i tmp1 = _mm_mullo_epi16(_mm_set1_epi32(255), sc); // 255 * sc __m128i tmp2 = _mm_mullo_epi16(_mm_set1_epi32(255), dc); // 255 * dc tmp1 = _mm_add_epi32(tmp1, tmp2); tmp2 = _mm_mullo_epi16(sc, dc); // sc * dc tmp2 = _mm_slli_epi32(tmp2, 1); // 2 * sc * dc __m128i r = _mm_sub_epi32(tmp1, tmp2); return clamp_div255round_SSE2(r); } static __m128i exclusion_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i r = exclusion_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst), sa, da); __m128i g = exclusion_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst), sa, da); __m128i b = exclusion_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst), sa, da); return SkPackARGB32_SSE2(a, r, g, b); } //////////////////////////////////////////////////////////////////////////////// typedef __m128i (*SkXfermodeProcSIMD)(const __m128i& src, const __m128i& dst); extern SkXfermodeProcSIMD gSSE2XfermodeProcs[]; SkSSE2ProcCoeffXfermode::SkSSE2ProcCoeffXfermode(SkReadBuffer& buffer) : INHERITED(buffer) { fProcSIMD = reinterpret_cast<void*>(gSSE2XfermodeProcs[this->getMode()]); buffer.validate(fProcSIMD != NULL); } void SkSSE2ProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[], int count, const SkAlpha aa[]) const { SkASSERT(dst && src && count >= 0); SkXfermodeProc proc = this->getProc(); SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); SkASSERT(procSIMD != NULL); if (NULL == aa) { if (count >= 4) { while (((size_t)dst & 0x0F) != 0) { *dst = proc(*src, *dst); dst++; src++; count--; } const __m128i* s = reinterpret_cast<const __m128i*>(src); __m128i* d = reinterpret_cast<__m128i*>(dst); while (count >= 4) { __m128i src_pixel = _mm_loadu_si128(s++); __m128i dst_pixel = _mm_load_si128(d); dst_pixel = procSIMD(src_pixel, dst_pixel); _mm_store_si128(d++, dst_pixel); count -= 4; } src = reinterpret_cast<const SkPMColor*>(s); dst = reinterpret_cast<SkPMColor*>(d); } for (int i = count - 1; i >= 0; --i) { *dst = proc(*src, *dst); dst++; src++; } } else { for (int i = count - 1; i >= 0; --i) { unsigned a = aa[i]; if (0 != a) { SkPMColor dstC = dst[i]; SkPMColor C = proc(src[i], dstC); if (a != 0xFF) { C = SkFourByteInterp(C, dstC, a); } dst[i] = C; } } } } void SkSSE2ProcCoeffXfermode::xfer16(uint16_t dst[], const SkPMColor src[], int count, const SkAlpha aa[]) const { SkASSERT(dst && src && count >= 0); SkXfermodeProc proc = this->getProc(); SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); SkASSERT(procSIMD != NULL); if (NULL == aa) { if (count >= 8) { while (((size_t)dst & 0x0F) != 0) { SkPMColor dstC = SkPixel16ToPixel32(*dst); *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC)); dst++; src++; count--; } const __m128i* s = reinterpret_cast<const __m128i*>(src); __m128i* d = reinterpret_cast<__m128i*>(dst); while (count >= 8) { __m128i src_pixel1 = _mm_loadu_si128(s++); __m128i src_pixel2 = _mm_loadu_si128(s++); __m128i dst_pixel = _mm_load_si128(d); __m128i dst_pixel1 = _mm_unpacklo_epi16(dst_pixel, _mm_setzero_si128()); __m128i dst_pixel2 = _mm_unpackhi_epi16(dst_pixel, _mm_setzero_si128()); __m128i dstC1 = SkPixel16ToPixel32_SSE2(dst_pixel1); __m128i dstC2 = SkPixel16ToPixel32_SSE2(dst_pixel2); dst_pixel1 = procSIMD(src_pixel1, dstC1); dst_pixel2 = procSIMD(src_pixel2, dstC2); dst_pixel = SkPixel32ToPixel16_ToU16_SSE2(dst_pixel1, dst_pixel2); _mm_store_si128(d++, dst_pixel); count -= 8; } src = reinterpret_cast<const SkPMColor*>(s); dst = reinterpret_cast<uint16_t*>(d); } for (int i = count - 1; i >= 0; --i) { SkPMColor dstC = SkPixel16ToPixel32(*dst); *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC)); dst++; src++; } } else { for (int i = count - 1; i >= 0; --i) { unsigned a = aa[i]; if (0 != a) { SkPMColor dstC = SkPixel16ToPixel32(dst[i]); SkPMColor C = proc(src[i], dstC); if (0xFF != a) { C = SkFourByteInterp(C, dstC, a); } dst[i] = SkPixel32ToPixel16_ToU16(C); } } } } #ifndef SK_IGNORE_TO_STRING void SkSSE2ProcCoeffXfermode::toString(SkString* str) const { this->INHERITED::toString(str); } #endif //////////////////////////////////////////////////////////////////////////////// // 4 pixels modeprocs with SSE2 SkXfermodeProcSIMD gSSE2XfermodeProcs[] = { NULL, // kClear_Mode NULL, // kSrc_Mode NULL, // kDst_Mode srcover_modeproc_SSE2, dstover_modeproc_SSE2, srcin_modeproc_SSE2, dstin_modeproc_SSE2, srcout_modeproc_SSE2, dstout_modeproc_SSE2, srcatop_modeproc_SSE2, dstatop_modeproc_SSE2, xor_modeproc_SSE2, plus_modeproc_SSE2, modulate_modeproc_SSE2, screen_modeproc_SSE2, overlay_modeproc_SSE2, darken_modeproc_SSE2, lighten_modeproc_SSE2, colordodge_modeproc_SSE2, colorburn_modeproc_SSE2, hardlight_modeproc_SSE2, softlight_modeproc_SSE2, difference_modeproc_SSE2, exclusion_modeproc_SSE2, multiply_modeproc_SSE2, NULL, // kHue_Mode NULL, // kSaturation_Mode NULL, // kColor_Mode NULL, // kLuminosity_Mode }; SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec, SkXfermode::Mode mode) { void* procSIMD = reinterpret_cast<void*>(gSSE2XfermodeProcs[mode]); if (procSIMD != NULL) { return SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, procSIMD)); } return NULL; }