/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGpuGL.h" #include "GrGLNameAllocator.h" #include "GrGLStencilBuffer.h" #include "GrGLPath.h" #include "GrGLShaderBuilder.h" #include "GrTemplates.h" #include "GrTypes.h" #include "SkStrokeRec.h" #include "SkTemplates.h" #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) #define SKIP_CACHE_CHECK true #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif /////////////////////////////////////////////////////////////////////////////// static const GrGLenum gXfermodeCoeff2Blend[] = { GR_GL_ZERO, GR_GL_ONE, GR_GL_SRC_COLOR, GR_GL_ONE_MINUS_SRC_COLOR, GR_GL_DST_COLOR, GR_GL_ONE_MINUS_DST_COLOR, GR_GL_SRC_ALPHA, GR_GL_ONE_MINUS_SRC_ALPHA, GR_GL_DST_ALPHA, GR_GL_ONE_MINUS_DST_ALPHA, GR_GL_CONSTANT_COLOR, GR_GL_ONE_MINUS_CONSTANT_COLOR, GR_GL_CONSTANT_ALPHA, GR_GL_ONE_MINUS_CONSTANT_ALPHA, // extended blend coeffs GR_GL_SRC1_COLOR, GR_GL_ONE_MINUS_SRC1_COLOR, GR_GL_SRC1_ALPHA, GR_GL_ONE_MINUS_SRC1_ALPHA, }; bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); } /////////////////////////////////////////////////////////////////////////////// static bool gPrintStartupSpew; GrGpuGL::GrGpuGL(const GrGLContext& ctx, GrContext* context) : GrGpu(context) , fGLContext(ctx) { SkASSERT(ctx.isInitialized()); fCaps.reset(SkRef(ctx.caps())); fHWBoundTextures.reset(this->glCaps().maxFragmentTextureUnits()); fHWPathTexGenSettings.reset(this->glCaps().maxFixedFunctionTextureCoords()); GrGLClearErr(fGLContext.interface()); if (gPrintStartupSpew) { const GrGLubyte* vendor; const GrGLubyte* renderer; const GrGLubyte* version; GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); GL_CALL_RET(version, GetString(GR_GL_VERSION)); GrPrintf("------------------------- create GrGpuGL %p --------------\n", this); GrPrintf("------ VENDOR %s\n", vendor); GrPrintf("------ RENDERER %s\n", renderer); GrPrintf("------ VERSION %s\n", version); GrPrintf("------ EXTENSIONS\n"); #if 0 // TODO: Reenable this after GrGLInterface's extensions can be accessed safely. ctx.extensions().print(); #endif GrPrintf("\n"); GrPrintf(this->glCaps().dump().c_str()); } fProgramCache = SkNEW_ARGS(ProgramCache, (this)); SkASSERT(this->glCaps().maxVertexAttributes() >= GrDrawState::kMaxVertexAttribCnt); fLastSuccessfulStencilFmtIdx = 0; fHWProgramID = 0; } GrGpuGL::~GrGpuGL() { if (0 != fHWProgramID) { // detach the current program so there is no confusion on OpenGL's part // that we want it to be deleted SkASSERT(fHWProgramID == fCurrentProgram->programID()); GL_CALL(UseProgram(0)); } delete fProgramCache; // This must be called by before the GrDrawTarget destructor this->releaseGeometry(); // This subclass must do this before the base class destructor runs // since we will unref the GrGLInterface. this->releaseResources(); } /////////////////////////////////////////////////////////////////////////////// GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig readConfig, GrPixelConfig surfaceConfig) const { if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == readConfig) { return kBGRA_8888_GrPixelConfig; } else if (this->glContext().isMesa() && GrBytesPerPixel(readConfig) == 4 && GrPixelConfigSwapRAndB(readConfig) == surfaceConfig) { // Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa. // Perhaps this should be guarded by some compiletime or runtime check. return surfaceConfig; } else if (readConfig == kBGRA_8888_GrPixelConfig && !this->glCaps().readPixelsSupported(this->glInterface(), GR_GL_BGRA, GR_GL_UNSIGNED_BYTE)) { return kRGBA_8888_GrPixelConfig; } else { return readConfig; } } GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig writeConfig, GrPixelConfig surfaceConfig) const { if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == writeConfig) { return kBGRA_8888_GrPixelConfig; } else { return writeConfig; } } bool GrGpuGL::canWriteTexturePixels(const GrTexture* texture, GrPixelConfig srcConfig) const { if (kIndex_8_GrPixelConfig == srcConfig || kIndex_8_GrPixelConfig == texture->config()) { return false; } if (srcConfig != texture->config() && kGLES_GrGLStandard == this->glStandard()) { // In general ES2 requires the internal format of the texture and the format of the src // pixels to match. However, It may or may not be possible to upload BGRA data to a RGBA // texture. It depends upon which extension added BGRA. The Apple extension allows it // (BGRA's internal format is RGBA) while the EXT extension does not (BGRA is its own // internal format). if (this->glCaps().isConfigTexturable(kBGRA_8888_GrPixelConfig) && !this->glCaps().bgraIsInternalFormat() && kBGRA_8888_GrPixelConfig == srcConfig && kRGBA_8888_GrPixelConfig == texture->config()) { return true; } else { return false; } } else { return true; } } bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const { return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL); } void GrGpuGL::onResetContext(uint32_t resetBits) { // we don't use the zb at all if (resetBits & kMisc_GrGLBackendState) { GL_CALL(Disable(GR_GL_DEPTH_TEST)); GL_CALL(DepthMask(GR_GL_FALSE)); fHWDrawFace = GrDrawState::kInvalid_DrawFace; fHWDitherEnabled = kUnknown_TriState; if (kGL_GrGLStandard == this->glStandard()) { // Desktop-only state that we never change if (!this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_POINT_SMOOTH)); GL_CALL(Disable(GR_GL_LINE_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); } // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a // core profile. This seems like a bug since the core spec removes any mention of // GL_ARB_imaging. if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_COLOR_TABLE)); } GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); // Since ES doesn't support glPointSize at all we always use the VS to // set the point size GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't // currently part of our gl interface. There are probably others as // well. } fHWWriteToColor = kUnknown_TriState; // we only ever use lines in hairline mode GL_CALL(LineWidth(1)); } if (resetBits & kAA_GrGLBackendState) { fHWAAState.invalidate(); } fHWActiveTextureUnitIdx = -1; // invalid if (resetBits & kTextureBinding_GrGLBackendState) { for (int s = 0; s < fHWBoundTextures.count(); ++s) { fHWBoundTextures[s] = NULL; } } if (resetBits & kBlend_GrGLBackendState) { fHWBlendState.invalidate(); } if (resetBits & kView_GrGLBackendState) { fHWScissorSettings.invalidate(); fHWViewport.invalidate(); } if (resetBits & kStencil_GrGLBackendState) { fHWStencilSettings.invalidate(); fHWStencilTestEnabled = kUnknown_TriState; } // Vertex if (resetBits & kVertex_GrGLBackendState) { fHWGeometryState.invalidate(); } if (resetBits & kRenderTarget_GrGLBackendState) { fHWBoundRenderTarget = NULL; } if (resetBits & kPathRendering_GrGLBackendState) { if (this->caps()->pathRenderingSupport()) { fHWProjectionMatrixState.invalidate(); // we don't use the model view matrix. GL_CALL(MatrixLoadIdentity(GR_GL_MODELVIEW)); for (int i = 0; i < this->glCaps().maxFixedFunctionTextureCoords(); ++i) { GL_CALL(PathTexGen(GR_GL_TEXTURE0 + i, GR_GL_NONE, 0, NULL)); fHWPathTexGenSettings[i].fMode = GR_GL_NONE; fHWPathTexGenSettings[i].fNumComponents = 0; } fHWActivePathTexGenSets = 0; } fHWPathStencilSettings.invalidate(); } // we assume these values if (resetBits & kPixelStore_GrGLBackendState) { if (this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (this->glCaps().packRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (this->glCaps().unpackFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } if (this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); } } if (resetBits & kProgram_GrGLBackendState) { fHWProgramID = 0; fSharedGLProgramState.invalidate(); } } namespace { GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { // By default, GrRenderTargets are GL's normal orientation so that they // can be drawn to by the outside world without the client having // to render upside down. if (kDefault_GrSurfaceOrigin == origin) { return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; } else { return origin; } } } GrTexture* GrGpuGL::onWrapBackendTexture(const GrBackendTextureDesc& desc) { if (!this->configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) { return NULL; } if (0 == desc.fTextureHandle) { return NULL; } int maxSize = this->caps()->maxTextureSize(); if (desc.fWidth > maxSize || desc.fHeight > maxSize) { return NULL; } GrGLTexture::Desc glTexDesc; // next line relies on GrBackendTextureDesc's flags matching GrTexture's glTexDesc.fFlags = (GrTextureFlags) desc.fFlags; glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fSampleCnt = desc.fSampleCnt; glTexDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle); glTexDesc.fIsWrapped = true; bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag); // FIXME: this should be calling resolve_origin(), but Chrome code is currently // assuming the old behaviour, which is that backend textures are always // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); if (kDefault_GrSurfaceOrigin == desc.fOrigin) { glTexDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; } else { glTexDesc.fOrigin = desc.fOrigin; } GrGLTexture* texture = NULL; if (renderTarget) { GrGLRenderTarget::Desc glRTDesc; glRTDesc.fRTFBOID = 0; glRTDesc.fTexFBOID = 0; glRTDesc.fMSColorRenderbufferID = 0; glRTDesc.fConfig = desc.fConfig; glRTDesc.fSampleCnt = desc.fSampleCnt; glRTDesc.fOrigin = glTexDesc.fOrigin; glRTDesc.fCheckAllocation = false; if (!this->createRenderTargetObjects(glTexDesc.fWidth, glTexDesc.fHeight, glTexDesc.fTextureID, &glRTDesc)) { return NULL; } texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); } else { texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); } if (NULL == texture) { return NULL; } return texture; } GrRenderTarget* GrGpuGL::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { GrGLRenderTarget::Desc glDesc; glDesc.fConfig = desc.fConfig; glDesc.fRTFBOID = static_cast<GrGLuint>(desc.fRenderTargetHandle); glDesc.fMSColorRenderbufferID = 0; glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; glDesc.fSampleCnt = desc.fSampleCnt; glDesc.fIsWrapped = true; glDesc.fCheckAllocation = false; glDesc.fOrigin = resolve_origin(desc.fOrigin, true); GrGLIRect viewport; viewport.fLeft = 0; viewport.fBottom = 0; viewport.fWidth = desc.fWidth; viewport.fHeight = desc.fHeight; GrRenderTarget* tgt = SkNEW_ARGS(GrGLRenderTarget, (this, glDesc, viewport)); if (desc.fStencilBits) { GrGLStencilBuffer::Format format; format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat; format.fPacked = false; format.fStencilBits = desc.fStencilBits; format.fTotalBits = desc.fStencilBits; static const bool kIsSBWrapped = false; GrGLStencilBuffer* sb = SkNEW_ARGS(GrGLStencilBuffer, (this, kIsSBWrapped, 0, desc.fWidth, desc.fHeight, desc.fSampleCnt, format)); tgt->setStencilBuffer(sb); sb->unref(); } return tgt; } //////////////////////////////////////////////////////////////////////////////// bool GrGpuGL::onWriteTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes) { if (NULL == buffer) { return false; } GrGLTexture* glTex = static_cast<GrGLTexture*>(texture); this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); GrGLTexture::Desc desc; desc.fFlags = glTex->desc().fFlags; desc.fWidth = glTex->width(); desc.fHeight = glTex->height(); desc.fConfig = glTex->config(); desc.fSampleCnt = glTex->desc().fSampleCnt; desc.fTextureID = glTex->textureID(); desc.fOrigin = glTex->origin(); bool success = false; if (GrPixelConfigIsCompressed(desc.fConfig)) { // We check that config == desc.fConfig in GrGpuGL::canWriteTexturePixels() SkASSERT(config == desc.fConfig); success = this->uploadCompressedTexData(desc, buffer, false, left, top, width, height); } else { success = this->uploadTexData(desc, false, left, top, width, height, config, buffer, rowBytes); } if (success) { texture->impl()->dirtyMipMaps(true); return true; } return false; } namespace { bool adjust_pixel_ops_params(int surfaceWidth, int surfaceHeight, size_t bpp, int* left, int* top, int* width, int* height, const void** data, size_t* rowBytes) { if (!*rowBytes) { *rowBytes = *width * bpp; } SkIRect subRect = SkIRect::MakeXYWH(*left, *top, *width, *height); SkIRect bounds = SkIRect::MakeWH(surfaceWidth, surfaceHeight); if (!subRect.intersect(bounds)) { return false; } *data = reinterpret_cast<const void*>(reinterpret_cast<intptr_t>(*data) + (subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp); *left = subRect.fLeft; *top = subRect.fTop; *width = subRect.width(); *height = subRect.height(); return true; } GrGLenum check_alloc_error(const GrTextureDesc& desc, const GrGLInterface* interface) { if (SkToBool(desc.fFlags & kCheckAllocation_GrTextureFlagBit)) { return GR_GL_GET_ERROR(interface); } else { return CHECK_ALLOC_ERROR(interface); } } } bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc, bool isNewTexture, int left, int top, int width, int height, GrPixelConfig dataConfig, const void* data, size_t rowBytes) { SkASSERT(NULL != data || isNewTexture); // If we're uploading compressed data then we should be using uploadCompressedTexData SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); size_t bpp = GrBytesPerPixel(dataConfig); if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top, &width, &height, &data, &rowBytes)) { return false; } size_t trimRowBytes = width * bpp; // in case we need a temporary, trimmed copy of the src pixels SkAutoSMalloc<128 * 128> tempStorage; // paletted textures cannot be partially updated // We currently lazily create MIPMAPs when the we see a draw with // GrTextureParams::kMipMap_FilterMode. Using texture storage requires that the // MIP levels are all created when the texture is created. So for now we don't use // texture storage. bool useTexStorage = false && isNewTexture && kIndex_8_GrPixelConfig != desc.fConfig && this->glCaps().texStorageSupport(); if (useTexStorage && kGL_GrGLStandard == this->glStandard()) { // 565 is not a sized internal format on desktop GL. So on desktop with // 565 we always use an unsized internal format to let the system pick // the best sized format to convert the 565 data to. Since TexStorage // only allows sized internal formats we will instead use TexImage2D. useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; } GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; // glTexStorage requires sized internal formats on both desktop and ES. ES2 requires an unsized // format for glTexImage, unlike ES3 and desktop. However, we allow the driver to decide the // size of the internal format whenever possible and so only use a sized internal format when // using texture storage. if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat, &externalFormat, &externalType)) { return false; } if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) { // paletted textures cannot be updated return false; } /* * check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ bool restoreGLRowLength = false; bool swFlipY = false; bool glFlipY = false; if (NULL != data) { if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { if (this->glCaps().unpackFlipYSupport()) { glFlipY = true; } else { swFlipY = true; } } if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { // can't use this for flipping, only non-neg values allowed. :( if (rowBytes != trimRowBytes) { GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); restoreGLRowLength = true; } } else { if (trimRowBytes != rowBytes || swFlipY) { // copy data into our new storage, skipping the trailing bytes size_t trimSize = height * trimRowBytes; const char* src = (const char*)data; if (swFlipY) { src += (height - 1) * rowBytes; } char* dst = (char*)tempStorage.reset(trimSize); for (int y = 0; y < height; y++) { memcpy(dst, src, trimRowBytes); if (swFlipY) { src -= rowBytes; } else { src += rowBytes; } dst += trimRowBytes; } // now point data to our copied version data = tempStorage.get(); } } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); } GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast<GrGLint>(bpp))); } bool succeeded = true; if (isNewTexture && 0 == left && 0 == top && desc.fWidth == width && desc.fHeight == height) { CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); if (useTexStorage) { // We never resize or change formats of textures. GL_ALLOC_CALL(this->glInterface(), TexStorage2D(GR_GL_TEXTURE_2D, 1, // levels internalFormat, desc.fWidth, desc.fHeight)); } else { if (GR_GL_PALETTE8_RGBA8 == internalFormat) { GrGLsizei imageSize = desc.fWidth * desc.fHeight + kGrColorTableSize; GL_ALLOC_CALL(this->glInterface(), CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border imageSize, data)); } else { GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border externalFormat, externalType, data)); } } GrGLenum error = check_alloc_error(desc, this->glInterface()); if (error != GR_GL_NO_ERROR) { succeeded = false; } else { // if we have data and we used TexStorage to create the texture, we // now upload with TexSubImage. if (NULL != data && useTexStorage) { GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } } } else { if (swFlipY || glFlipY) { top = desc.fHeight - (top + height); } GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } if (restoreGLRowLength) { SkASSERT(this->glCaps().unpackRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } return succeeded; } // TODO: This function is using a lot of wonky semantics like, if width == -1 // then set width = desc.fWdith ... blah. A better way to do it might be to // create a CompressedTexData struct that takes a desc/ptr and figures out // the proper upload semantics. Then users can construct this function how they // see fit if they want to go against the "standard" way to do it. bool GrGpuGL::uploadCompressedTexData(const GrGLTexture::Desc& desc, const void* data, bool isNewTexture, int left, int top, int width, int height) { SkASSERT(NULL != data || isNewTexture); // No support for software flip y, yet... SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin); if (-1 == width) { width = desc.fWidth; } #ifdef SK_DEBUG else { SkASSERT(width <= desc.fWidth); } #endif if (-1 == height) { height = desc.fHeight; } #ifdef SK_DEBUG else { SkASSERT(height <= desc.fHeight); } #endif // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. int dataSize = GrCompressedFormatDataSize(desc.fConfig, width, height); // We only need the internal format for compressed 2D textures. GrGLenum internalFormat = 0; if (!this->configToGLFormats(desc.fConfig, false, &internalFormat, NULL, NULL)) { return false; } bool succeeded = true; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); if (isNewTexture) { GL_ALLOC_CALL(this->glInterface(), CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, width, height, 0, // border dataSize, data)); } else { GL_ALLOC_CALL(this->glInterface(), CompressedTexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, internalFormat, dataSize, data)); } GrGLenum error = check_alloc_error(desc, this->glInterface()); if (error != GR_GL_NO_ERROR) { succeeded = false; } return succeeded; } static bool renderbuffer_storage_msaa(GrGLContext& ctx, int sampleCount, GrGLenum format, int width, int height) { CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); switch (ctx.caps()->msFBOType()) { case GrGLCaps::kDesktop_ARB_MSFBOType: case GrGLCaps::kDesktop_EXT_MSFBOType: case GrGLCaps::kES_3_0_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_Apple_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kNone_MSFBOType: SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers."); break; } return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));; } bool GrGpuGL::createRenderTargetObjects(int width, int height, GrGLuint texID, GrGLRenderTarget::Desc* desc) { desc->fMSColorRenderbufferID = 0; desc->fRTFBOID = 0; desc->fTexFBOID = 0; desc->fIsWrapped = false; GrGLenum status; GrGLenum msColorFormat = 0; // suppress warning if (desc->fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { goto FAILED; } GL_CALL(GenFramebuffers(1, &desc->fTexFBOID)); if (!desc->fTexFBOID) { goto FAILED; } // If we are using multisampling we will create two FBOS. We render to one and then resolve to // the texture bound to the other. The exception is the IMG multisample extension. With this // extension the texture is multisampled when rendered to and then auto-resolves it when it is // rendered from. if (desc->fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) { GL_CALL(GenFramebuffers(1, &desc->fRTFBOID)); GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID)); if (!desc->fRTFBOID || !desc->fMSColorRenderbufferID || !this->configToGLFormats(desc->fConfig, // ES2 and ES3 require sized internal formats for rb storage. kGLES_GrGLStandard == this->glStandard(), &msColorFormat, NULL, NULL)) { goto FAILED; } } else { desc->fRTFBOID = desc->fTexFBOID; } // below here we may bind the FBO fHWBoundRenderTarget = NULL; if (desc->fRTFBOID != desc->fTexFBOID) { SkASSERT(desc->fSampleCnt > 0); GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, desc->fMSColorRenderbufferID)); if (!renderbuffer_storage_msaa(fGLContext, desc->fSampleCnt, msColorFormat, width, height)) { goto FAILED; } GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, desc->fMSColorRenderbufferID)); if (desc->fCheckAllocation || !this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext.caps()->markConfigAsValidColorAttachment(desc->fConfig); } } GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID)); if (this->glCaps().usesImplicitMSAAResolve() && desc->fSampleCnt > 0) { GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0, desc->fSampleCnt)); } else { GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0)); } if (desc->fCheckAllocation || !this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext.caps()->markConfigAsValidColorAttachment(desc->fConfig); } return true; FAILED: if (desc->fMSColorRenderbufferID) { GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID)); } if (desc->fRTFBOID != desc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID)); } if (desc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID)); } return false; } // good to set a break-point here to know when createTexture fails static GrTexture* return_null_texture() { // SkDEBUGFAIL("null texture"); return NULL; } #if 0 && defined(SK_DEBUG) static size_t as_size_t(int x) { return x; } #endif GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc, const void* srcData, size_t rowBytes) { GrGLTexture::Desc glTexDesc; GrGLRenderTarget::Desc glRTDesc; // Attempt to catch un- or wrongly initialized sample counts; SkASSERT(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64); // We fail if the MSAA was requested and is not available. if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { //GrPrintf("MSAA RT requested but not supported on this platform."); return return_null_texture(); } // If the sample count exceeds the max then we clamp it. glTexDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); glTexDesc.fFlags = desc.fFlags; glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fIsWrapped = false; glRTDesc.fMSColorRenderbufferID = 0; glRTDesc.fRTFBOID = 0; glRTDesc.fTexFBOID = 0; glRTDesc.fIsWrapped = false; glRTDesc.fConfig = glTexDesc.fConfig; glRTDesc.fCheckAllocation = SkToBool(desc.fFlags & kCheckAllocation_GrTextureFlagBit); bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrTextureFlagBit); glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); glRTDesc.fOrigin = glTexDesc.fOrigin; glRTDesc.fSampleCnt = glTexDesc.fSampleCnt; if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { //GrPrintf("MSAA RT requested but not supported on this platform."); return return_null_texture(); } if (renderTarget) { int maxRTSize = this->caps()->maxRenderTargetSize(); if (glTexDesc.fWidth > maxRTSize || glTexDesc.fHeight > maxRTSize) { return return_null_texture(); } } else { int maxSize = this->caps()->maxTextureSize(); if (glTexDesc.fWidth > maxSize || glTexDesc.fHeight > maxSize) { return return_null_texture(); } } GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); if (!glTexDesc.fTextureID) { return return_null_texture(); } this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); if (renderTarget && this->glCaps().textureUsageSupport()) { // provides a hint about how this texture will be used GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); } // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::TexParams initialTexParams; // we only set a subset here so invalidate first initialTexParams.invalidate(); initialTexParams.fMinFilter = GR_GL_NEAREST; initialTexParams.fMagFilter = GR_GL_NEAREST; initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, initialTexParams.fMagFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, initialTexParams.fMinFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, initialTexParams.fWrapS)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, initialTexParams.fWrapT)); if (!this->uploadTexData(glTexDesc, true, 0, 0, glTexDesc.fWidth, glTexDesc.fHeight, desc.fConfig, srcData, rowBytes)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } GrGLTexture* tex; if (renderTarget) { // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); if (!this->createRenderTargetObjects(glTexDesc.fWidth, glTexDesc.fHeight, glTexDesc.fTextureID, &glRTDesc)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); } else { tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); } tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n", glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } GrTexture* GrGpuGL::onCreateCompressedTexture(const GrTextureDesc& desc, const void* srcData) { if(SkToBool(desc.fFlags & kRenderTarget_GrTextureFlagBit)) { return return_null_texture(); } // Make sure that we're not flipping Y. GrSurfaceOrigin texOrigin = resolve_origin(desc.fOrigin, false); if (kBottomLeft_GrSurfaceOrigin == texOrigin) { return return_null_texture(); } GrGLTexture::Desc glTexDesc; glTexDesc.fFlags = desc.fFlags; glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fIsWrapped = false; glTexDesc.fOrigin = texOrigin; int maxSize = this->caps()->maxTextureSize(); if (glTexDesc.fWidth > maxSize || glTexDesc.fHeight > maxSize) { return return_null_texture(); } GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); if (!glTexDesc.fTextureID) { return return_null_texture(); } this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::TexParams initialTexParams; // we only set a subset here so invalidate first initialTexParams.invalidate(); initialTexParams.fMinFilter = GR_GL_NEAREST; initialTexParams.fMagFilter = GR_GL_NEAREST; initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, initialTexParams.fMagFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, initialTexParams.fMinFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, initialTexParams.fWrapS)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, initialTexParams.fWrapT)); if (!this->uploadCompressedTexData(glTexDesc, srcData)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } GrGLTexture* tex; tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION GrPrintf("--- new compressed texture [%d] size=(%d %d) config=%d\n", glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } namespace { const GrGLuint kUnknownBitCount = GrGLStencilBuffer::kUnknownBitCount; void inline get_stencil_rb_sizes(const GrGLInterface* gl, GrGLStencilBuffer::Format* format) { // we shouldn't ever know one size and not the other SkASSERT((kUnknownBitCount == format->fStencilBits) == (kUnknownBitCount == format->fTotalBits)); if (kUnknownBitCount == format->fStencilBits) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_STENCIL_SIZE, (GrGLint*)&format->fStencilBits); if (format->fPacked) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_DEPTH_SIZE, (GrGLint*)&format->fTotalBits); format->fTotalBits += format->fStencilBits; } else { format->fTotalBits = format->fStencilBits; } } } } bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt, int width, int height) { // All internally created RTs are also textures. We don't create // SBs for a client's standalone RT (that is a RT that isn't also a texture). SkASSERT(rt->asTexture()); SkASSERT(width >= rt->width()); SkASSERT(height >= rt->height()); int samples = rt->numSamples(); GrGLuint sbID; GL_CALL(GenRenderbuffers(1, &sbID)); if (!sbID) { return false; } int stencilFmtCnt = this->glCaps().stencilFormats().count(); for (int i = 0; i < stencilFmtCnt; ++i) { GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID)); // we start with the last stencil format that succeeded in hopes // that we won't go through this loop more than once after the // first (painful) stencil creation. int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt; const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // we do this "if" so that we don't call the multisample // version on a GL that doesn't have an MSAA extension. bool created; if (samples > 0) { created = renderbuffer_storage_msaa(fGLContext, samples, sFmt.fInternalFormat, width, height); } else { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, width, height)); created = (GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface())); } if (created) { // After sized formats we attempt an unsized format and take // whatever sizes GL gives us. In that case we query for the size. GrGLStencilBuffer::Format format = sFmt; get_stencil_rb_sizes(this->glInterface(), &format); static const bool kIsWrapped = false; SkAutoTUnref<GrStencilBuffer> sb(SkNEW_ARGS(GrGLStencilBuffer, (this, kIsWrapped, sbID, width, height, samples, format))); if (this->attachStencilBufferToRenderTarget(sb, rt)) { fLastSuccessfulStencilFmtIdx = sIdx; sb->transferToCache(); rt->setStencilBuffer(sb); return true; } sb->abandon(); // otherwise we lose sbID } } GL_CALL(DeleteRenderbuffers(1, &sbID)); return false; } bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb, GrRenderTarget* rt) { GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt; GrGLuint fbo = glrt->renderFBOID(); if (NULL == sb) { if (NULL != rt->getStencilBuffer()) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); #ifdef SK_DEBUG GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); SkASSERT(GR_GL_FRAMEBUFFER_COMPLETE == status); #endif } return true; } else { GrGLStencilBuffer* glsb = static_cast<GrGLStencilBuffer*>(sb); GrGLuint rb = glsb->renderbufferID(); fHWBoundRenderTarget = NULL; GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, rb)); if (glsb->format().fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, rb)); } else { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GrGLenum status; if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); if (glsb->format().fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } return false; } else { fGLContext.caps()->markColorConfigAndStencilFormatAsVerified( rt->config(), glsb->format()); } } return true; } } //////////////////////////////////////////////////////////////////////////////// GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(size_t size, bool dynamic) { GrGLVertexBuffer::Desc desc; desc.fDynamic = dynamic; desc.fSizeInBytes = size; desc.fIsWrapped = false; if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { desc.fID = 0; GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); return vertexBuffer; } else { GL_CALL(GenBuffers(1, &desc.fID)); if (desc.fID) { fHWGeometryState.setVertexBufferID(this, desc.fID); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ARRAY_BUFFER, (GrGLsizeiptr) desc.fSizeInBytes, NULL, // data ptr desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &desc.fID)); this->notifyVertexBufferDelete(desc.fID); return NULL; } GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); return vertexBuffer; } return NULL; } } GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(size_t size, bool dynamic) { GrGLIndexBuffer::Desc desc; desc.fDynamic = dynamic; desc.fSizeInBytes = size; desc.fIsWrapped = false; if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { desc.fID = 0; GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); return indexBuffer; } else { GL_CALL(GenBuffers(1, &desc.fID)); if (desc.fID) { fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, (GrGLsizeiptr) desc.fSizeInBytes, NULL, // data ptr desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &desc.fID)); this->notifyIndexBufferDelete(desc.fID); return NULL; } GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); return indexBuffer; } return NULL; } } GrPath* GrGpuGL::onCreatePath(const SkPath& inPath, const SkStrokeRec& stroke) { SkASSERT(this->caps()->pathRenderingSupport()); return SkNEW_ARGS(GrGLPath, (this, inPath, stroke)); } void GrGpuGL::flushScissor() { if (fScissorState.fEnabled) { // Only access the RT if scissoring is being enabled. We can call this before performing // a glBitframebuffer for a surface->surface copy, which requires no RT to be bound to the // GrDrawState. const GrDrawState& drawState = this->getDrawState(); const GrGLRenderTarget* rt = static_cast<const GrGLRenderTarget*>(drawState.getRenderTarget()); SkASSERT(NULL != rt); const GrGLIRect& vp = rt->getViewport(); GrGLIRect scissor; scissor.setRelativeTo(vp, fScissorState.fRect.fLeft, fScissorState.fRect.fTop, fScissorState.fRect.width(), fScissorState.fRect.height(), rt->origin()); // if the scissor fully contains the viewport then we fall through and // disable the scissor test. if (!scissor.contains(vp)) { if (fHWScissorSettings.fRect != scissor) { scissor.pushToGLScissor(this->glInterface()); fHWScissorSettings.fRect = scissor; } if (kYes_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Enable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kYes_TriState; } return; } } if (kNo_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kNo_TriState; return; } } void GrGpuGL::onClear(const SkIRect* rect, GrColor color, bool canIgnoreRect) { const GrDrawState& drawState = this->getDrawState(); const GrRenderTarget* rt = drawState.getRenderTarget(); // parent class should never let us get here with no RT SkASSERT(NULL != rt); if (canIgnoreRect && this->glCaps().fullClearIsFree()) { rect = NULL; } SkIRect clippedRect; if (NULL != rect) { // flushScissor expects rect to be clipped to the target. clippedRect = *rect; SkIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height()); if (clippedRect.intersect(rtRect)) { rect = &clippedRect; } else { return; } } this->flushRenderTarget(rect); GrAutoTRestore<ScissorState> asr(&fScissorState); fScissorState.fEnabled = (NULL != rect); if (fScissorState.fEnabled) { fScissorState.fRect = *rect; } this->flushScissor(); GrGLfloat r, g, b, a; static const GrGLfloat scale255 = 1.f / 255.f; a = GrColorUnpackA(color) * scale255; GrGLfloat scaleRGB = scale255; r = GrColorUnpackR(color) * scaleRGB; g = GrColorUnpackG(color) * scaleRGB; b = GrColorUnpackB(color) * scaleRGB; GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; GL_CALL(ClearColor(r, g, b, a)); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); } void GrGpuGL::discard(GrRenderTarget* renderTarget) { if (!this->caps()->discardRenderTargetSupport()) { return; } if (NULL == renderTarget) { renderTarget = this->drawState()->getRenderTarget(); if (NULL == renderTarget) { return; } } GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget); if (renderTarget != fHWBoundRenderTarget) { fHWBoundRenderTarget = NULL; GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, glRT->renderFBOID())); } switch (this->glCaps().invalidateFBType()) { case GrGLCaps::kNone_FBFetchType: SkFAIL("Should never get here."); break; case GrGLCaps::kInvalidate_InvalidateFBType: if (0 == glRT->renderFBOID()) { // When rendering to the default framebuffer the legal values for attachments // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment // types. static const GrGLenum attachments[] = { GR_GL_COLOR }; GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } else { static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } break; case GrGLCaps::kDiscard_InvalidateFBType: { if (0 == glRT->renderFBOID()) { // When rendering to the default framebuffer the legal values for attachments // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment // types. See glDiscardFramebuffer() spec. static const GrGLenum attachments[] = { GR_GL_COLOR }; GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } else { static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } break; } } renderTarget->flagAsResolved(); } void GrGpuGL::clearStencil() { if (NULL == this->getDrawState().getRenderTarget()) { return; } this->flushRenderTarget(&SkIRect::EmptyIRect()); GrAutoTRestore<ScissorState> asr(&fScissorState); fScissorState.fEnabled = false; this->flushScissor(); GL_CALL(StencilMask(0xffffffff)); GL_CALL(ClearStencil(0)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } void GrGpuGL::clearStencilClip(const SkIRect& rect, bool insideClip) { const GrDrawState& drawState = this->getDrawState(); const GrRenderTarget* rt = drawState.getRenderTarget(); SkASSERT(NULL != rt); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(NULL != rt->getStencilBuffer()); GrGLint stencilBitCount = rt->getStencilBuffer()->bits(); #if 0 SkASSERT(stencilBitCount > 0); GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); #else // we could just clear the clip bit but when we go through // ANGLE a partial stencil mask will cause clears to be // turned into draws. Our contract on GrDrawTarget says that // changing the clip between stencil passes may or may not // zero the client's clip bits. So we just clear the whole thing. static const GrGLint clipStencilMask = ~0; #endif GrGLint value; if (insideClip) { value = (1 << (stencilBitCount - 1)); } else { value = 0; } this->flushRenderTarget(&SkIRect::EmptyIRect()); GrAutoTRestore<ScissorState> asr(&fScissorState); fScissorState.fEnabled = true; fScissorState.fRect = rect; this->flushScissor(); GL_CALL(StencilMask((uint32_t) clipStencilMask)); GL_CALL(ClearStencil(value)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, int left, int top, int width, int height, GrPixelConfig config, size_t rowBytes) const { // If this rendertarget is aready TopLeft, we don't need to flip. if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { return false; } // if GL can do the flip then we'll never pay for it. if (this->glCaps().packFlipYSupport()) { return false; } // If we have to do memcpy to handle non-trim rowBytes then we // get the flip for free. Otherwise it costs. if (this->glCaps().packRowLengthSupport()) { return true; } // If we have to do memcpys to handle rowBytes then y-flip is free // Note the rowBytes might be tight to the passed in data, but if data // gets clipped in x to the target the rowBytes will no longer be tight. if (left >= 0 && (left + width) < renderTarget->width()) { return 0 == rowBytes || GrBytesPerPixel(config) * width == rowBytes; } else { return false; } } bool GrGpuGL::onReadPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes) { // We cannot read pixels into a compressed buffer if (GrPixelConfigIsCompressed(config)) { return false; } GrGLenum format = 0; GrGLenum type = 0; bool flipY = kBottomLeft_GrSurfaceOrigin == target->origin(); if (!this->configToGLFormats(config, false, NULL, &format, &type)) { return false; } size_t bpp = GrBytesPerPixel(config); if (!adjust_pixel_ops_params(target->width(), target->height(), bpp, &left, &top, &width, &height, const_cast<const void**>(&buffer), &rowBytes)) { return false; } // resolve the render target if necessary GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target); GrDrawState::AutoRenderTargetRestore artr; switch (tgt->getResolveType()) { case GrGLRenderTarget::kCantResolve_ResolveType: return false; case GrGLRenderTarget::kAutoResolves_ResolveType: artr.set(this->drawState(), target); this->flushRenderTarget(&SkIRect::EmptyIRect()); break; case GrGLRenderTarget::kCanResolve_ResolveType: this->onResolveRenderTarget(tgt); // we don't track the state of the READ FBO ID. GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, tgt->textureFBOID())); break; default: SkFAIL("Unknown resolve type"); } const GrGLIRect& glvp = tgt->getViewport(); // the read rect is viewport-relative GrGLIRect readRect; readRect.setRelativeTo(glvp, left, top, width, height, target->origin()); size_t tightRowBytes = bpp * width; if (0 == rowBytes) { rowBytes = tightRowBytes; } size_t readDstRowBytes = tightRowBytes; void* readDst = buffer; // determine if GL can read using the passed rowBytes or if we need // a scratch buffer. SkAutoSMalloc<32 * sizeof(GrColor)> scratch; if (rowBytes != tightRowBytes) { if (this->glCaps().packRowLengthSupport()) { SkASSERT(!(rowBytes % sizeof(GrColor))); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, static_cast<GrGLint>(rowBytes / sizeof(GrColor)))); readDstRowBytes = rowBytes; } else { scratch.reset(tightRowBytes * height); readDst = scratch.get(); } } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); } GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight, format, type, readDst)); if (readDstRowBytes != tightRowBytes) { SkASSERT(this->glCaps().packRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); flipY = false; } // now reverse the order of the rows, since GL's are bottom-to-top, but our // API presents top-to-bottom. We must preserve the padding contents. Note // that the above readPixels did not overwrite the padding. if (readDst == buffer) { SkASSERT(rowBytes == readDstRowBytes); if (flipY) { scratch.reset(tightRowBytes); void* tmpRow = scratch.get(); // flip y in-place by rows const int halfY = height >> 1; char* top = reinterpret_cast<char*>(buffer); char* bottom = top + (height - 1) * rowBytes; for (int y = 0; y < halfY; y++) { memcpy(tmpRow, top, tightRowBytes); memcpy(top, bottom, tightRowBytes); memcpy(bottom, tmpRow, tightRowBytes); top += rowBytes; bottom -= rowBytes; } } } else { SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes); // copy from readDst to buffer while flipping y // const int halfY = height >> 1; const char* src = reinterpret_cast<const char*>(readDst); char* dst = reinterpret_cast<char*>(buffer); if (flipY) { dst += (height-1) * rowBytes; } for (int y = 0; y < height; y++) { memcpy(dst, src, tightRowBytes); src += readDstRowBytes; if (!flipY) { dst += rowBytes; } else { dst -= rowBytes; } } } return true; } void GrGpuGL::flushRenderTarget(const SkIRect* bound) { GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(this->drawState()->getRenderTarget()); SkASSERT(NULL != rt); if (fHWBoundRenderTarget != rt) { GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID())); #ifdef SK_DEBUG // don't do this check in Chromium -- this is causing // lots of repeated command buffer flushes when the compositor is // rendering with Ganesh, which is really slow; even too slow for // Debug mode. if (!this->glContext().isChromium()) { GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status); } } #endif fHWBoundRenderTarget = rt; const GrGLIRect& vp = rt->getViewport(); if (fHWViewport != vp) { vp.pushToGLViewport(this->glInterface()); fHWViewport = vp; } } if (NULL == bound || !bound->isEmpty()) { rt->flagAsNeedingResolve(bound); } GrTexture *texture = rt->asTexture(); if (NULL != texture) { texture->impl()->dirtyMipMaps(true); } } GrGLenum gPrimitiveType2GLMode[] = { GR_GL_TRIANGLES, GR_GL_TRIANGLE_STRIP, GR_GL_TRIANGLE_FAN, GR_GL_POINTS, GR_GL_LINES, GR_GL_LINE_STRIP }; #define SWAP_PER_DRAW 0 #if SWAP_PER_DRAW #if defined(SK_BUILD_FOR_MAC) #include <AGL/agl.h> #elif defined(SK_BUILD_FOR_WIN32) #include <gl/GL.h> void SwapBuf() { DWORD procID = GetCurrentProcessId(); HWND hwnd = GetTopWindow(GetDesktopWindow()); while(hwnd) { DWORD wndProcID = 0; GetWindowThreadProcessId(hwnd, &wndProcID); if(wndProcID == procID) { SwapBuffers(GetDC(hwnd)); } hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); } } #endif #endif void GrGpuGL::onGpuDraw(const DrawInfo& info) { size_t indexOffsetInBytes; this->setupGeometry(info, &indexOffsetInBytes); SkASSERT((size_t)info.primitiveType() < SK_ARRAY_COUNT(gPrimitiveType2GLMode)); if (info.isIndexed()) { GrGLvoid* indices = reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + sizeof(uint16_t) * info.startIndex()); // info.startVertex() was accounted for by setupGeometry. GL_CALL(DrawElements(gPrimitiveType2GLMode[info.primitiveType()], info.indexCount(), GR_GL_UNSIGNED_SHORT, indices)); } else { // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for // startVertex in the DrawElements case. So we always rely on setupGeometry to have // accounted for startVertex. GL_CALL(DrawArrays(gPrimitiveType2GLMode[info.primitiveType()], 0, info.vertexCount())); } #if SWAP_PER_DRAW glFlush(); #if defined(SK_BUILD_FOR_MAC) aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif defined(SK_BUILD_FOR_WIN32) SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } static GrGLenum gr_stencil_op_to_gl_path_rendering_fill_mode(GrStencilOp op) { switch (op) { default: SkFAIL("Unexpected path fill."); /* fallthrough */; case kIncClamp_StencilOp: return GR_GL_COUNT_UP; case kInvert_StencilOp: return GR_GL_INVERT; } } void GrGpuGL::onGpuStencilPath(const GrPath* path, SkPath::FillType fill) { SkASSERT(this->caps()->pathRenderingSupport()); GrGLuint id = static_cast<const GrGLPath*>(path)->pathID(); SkASSERT(NULL != this->drawState()->getRenderTarget()); SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer()); flushPathStencilSettings(fill); // Decide how to manipulate the stencil buffer based on the fill rule. SkASSERT(!fHWPathStencilSettings.isTwoSided()); GrGLenum fillMode = gr_stencil_op_to_gl_path_rendering_fill_mode(fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face)); GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face); GL_CALL(StencilFillPath(id, fillMode, writeMask)); } void GrGpuGL::onGpuDrawPath(const GrPath* path, SkPath::FillType fill) { SkASSERT(this->caps()->pathRenderingSupport()); GrGLuint id = static_cast<const GrGLPath*>(path)->pathID(); SkASSERT(NULL != this->drawState()->getRenderTarget()); SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer()); SkASSERT(!fCurrentProgram->hasVertexShader()); flushPathStencilSettings(fill); const SkStrokeRec& stroke = path->getStroke(); SkPath::FillType nonInvertedFill = SkPath::ConvertToNonInverseFillType(fill); SkASSERT(!fHWPathStencilSettings.isTwoSided()); GrGLenum fillMode = gr_stencil_op_to_gl_path_rendering_fill_mode(fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face)); GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face); if (stroke.isFillStyle() || SkStrokeRec::kStrokeAndFill_Style == stroke.getStyle()) { GL_CALL(StencilFillPath(id, fillMode, writeMask)); } if (stroke.needToApply()) { GL_CALL(StencilStrokePath(id, 0xffff, writeMask)); } if (nonInvertedFill == fill) { if (stroke.needToApply()) { GL_CALL(CoverStrokePath(id, GR_GL_BOUNDING_BOX)); } else { GL_CALL(CoverFillPath(id, GR_GL_BOUNDING_BOX)); } } else { GrDrawState* drawState = this->drawState(); GrDrawState::AutoViewMatrixRestore avmr; SkRect bounds = SkRect::MakeLTRB(0, 0, SkIntToScalar(drawState->getRenderTarget()->width()), SkIntToScalar(drawState->getRenderTarget()->height())); SkMatrix vmi; // mapRect through persp matrix may not be correct if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) { vmi.mapRect(&bounds); // theoretically could set bloat = 0, instead leave it because of matrix inversion // precision. SkScalar bloat = drawState->getViewMatrix().getMaxScale() * SK_ScalarHalf; bounds.outset(bloat, bloat); } else { avmr.setIdentity(drawState); } this->drawSimpleRect(bounds, NULL); } } void GrGpuGL::onGpuDrawPaths(int pathCount, const GrPath** paths, const SkMatrix* transforms, SkPath::FillType fill, SkStrokeRec::Style stroke) { SkASSERT(this->caps()->pathRenderingSupport()); SkASSERT(NULL != this->drawState()->getRenderTarget()); SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer()); SkASSERT(!fCurrentProgram->hasVertexShader()); SkASSERT(stroke != SkStrokeRec::kHairline_Style); SkAutoMalloc pathData(pathCount * sizeof(GrGLuint)); SkAutoMalloc transformData(pathCount * sizeof(GrGLfloat) * 6); GrGLfloat* transformValues = reinterpret_cast<GrGLfloat*>(transformData.get()); GrGLuint* pathIDs = reinterpret_cast<GrGLuint*>(pathData.get()); for (int i = 0; i < pathCount; ++i) { SkASSERT(transforms[i].asAffine(NULL)); const SkMatrix& m = transforms[i]; transformValues[i * 6] = m.getScaleX(); transformValues[i * 6 + 1] = m.getSkewY(); transformValues[i * 6 + 2] = m.getSkewX(); transformValues[i * 6 + 3] = m.getScaleY(); transformValues[i * 6 + 4] = m.getTranslateX(); transformValues[i * 6 + 5] = m.getTranslateY(); pathIDs[i] = static_cast<const GrGLPath*>(paths[i])->pathID(); } flushPathStencilSettings(fill); SkPath::FillType nonInvertedFill = SkPath::ConvertToNonInverseFillType(fill); SkASSERT(!fHWPathStencilSettings.isTwoSided()); GrGLenum fillMode = gr_stencil_op_to_gl_path_rendering_fill_mode( fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face)); GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face); bool doFill = stroke == SkStrokeRec::kFill_Style || stroke == SkStrokeRec::kStrokeAndFill_Style; bool doStroke = stroke == SkStrokeRec::kStroke_Style || stroke == SkStrokeRec::kStrokeAndFill_Style; if (doFill) { GL_CALL(StencilFillPathInstanced(pathCount, GR_GL_UNSIGNED_INT, pathIDs, 0, fillMode, writeMask, GR_GL_AFFINE_2D, transformValues)); } if (doStroke) { GL_CALL(StencilStrokePathInstanced(pathCount, GR_GL_UNSIGNED_INT, pathIDs, 0, 0xffff, writeMask, GR_GL_AFFINE_2D, transformValues)); } if (nonInvertedFill == fill) { if (doStroke) { GL_CALL(CoverStrokePathInstanced( pathCount, GR_GL_UNSIGNED_INT, pathIDs, 0, GR_GL_BOUNDING_BOX_OF_BOUNDING_BOXES, GR_GL_AFFINE_2D, transformValues)); } else { GL_CALL(CoverFillPathInstanced( pathCount, GR_GL_UNSIGNED_INT, pathIDs, 0, GR_GL_BOUNDING_BOX_OF_BOUNDING_BOXES, GR_GL_AFFINE_2D, transformValues)); } } else { GrDrawState* drawState = this->drawState(); GrDrawState::AutoViewMatrixRestore avmr; SkRect bounds = SkRect::MakeLTRB(0, 0, SkIntToScalar(drawState->getRenderTarget()->width()), SkIntToScalar(drawState->getRenderTarget()->height())); SkMatrix vmi; // mapRect through persp matrix may not be correct if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) { vmi.mapRect(&bounds); // theoretically could set bloat = 0, instead leave it because of matrix inversion // precision. SkScalar bloat = drawState->getViewMatrix().getMaxScale() * SK_ScalarHalf; bounds.outset(bloat, bloat); } else { avmr.setIdentity(drawState); } this->drawSimpleRect(bounds, NULL); } } void GrGpuGL::onResolveRenderTarget(GrRenderTarget* target) { GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); if (rt->needsResolve()) { // Some extensions automatically resolves the texture when it is read. if (this->glCaps().usesMSAARenderBuffers()) { SkASSERT(rt->textureFBOID() != rt->renderFBOID()); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); // make sure we go through flushRenderTarget() since we've modified // the bound DRAW FBO ID. fHWBoundRenderTarget = NULL; const GrGLIRect& vp = rt->getViewport(); const SkIRect dirtyRect = rt->getResolveRect(); GrGLIRect r; r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, dirtyRect.width(), dirtyRect.height(), target->origin()); GrAutoTRestore<ScissorState> asr; if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { // Apple's extension uses the scissor as the blit bounds. asr.reset(&fScissorState); fScissorState.fEnabled = true; fScissorState.fRect = dirtyRect; this->flushScissor(); GL_CALL(ResolveMultisampleFramebuffer()); } else { if (GrGLCaps::kDesktop_EXT_MSFBOType == this->glCaps().msFBOType()) { // this respects the scissor during the blit, so disable it. asr.reset(&fScissorState); fScissorState.fEnabled = false; this->flushScissor(); } int right = r.fLeft + r.fWidth; int top = r.fBottom + r.fHeight; GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, r.fLeft, r.fBottom, right, top, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); } } rt->flagAsResolved(); } } namespace { GrGLenum gr_to_gl_stencil_func(GrStencilFunc basicFunc) { static const GrGLenum gTable[] = { GR_GL_ALWAYS, // kAlways_StencilFunc GR_GL_NEVER, // kNever_StencilFunc GR_GL_GREATER, // kGreater_StencilFunc GR_GL_GEQUAL, // kGEqual_StencilFunc GR_GL_LESS, // kLess_StencilFunc GR_GL_LEQUAL, // kLEqual_StencilFunc, GR_GL_EQUAL, // kEqual_StencilFunc, GR_GL_NOTEQUAL, // kNotEqual_StencilFunc, }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kBasicStencilFuncCount); GR_STATIC_ASSERT(0 == kAlways_StencilFunc); GR_STATIC_ASSERT(1 == kNever_StencilFunc); GR_STATIC_ASSERT(2 == kGreater_StencilFunc); GR_STATIC_ASSERT(3 == kGEqual_StencilFunc); GR_STATIC_ASSERT(4 == kLess_StencilFunc); GR_STATIC_ASSERT(5 == kLEqual_StencilFunc); GR_STATIC_ASSERT(6 == kEqual_StencilFunc); GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc); SkASSERT((unsigned) basicFunc < kBasicStencilFuncCount); return gTable[basicFunc]; } GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { static const GrGLenum gTable[] = { GR_GL_KEEP, // kKeep_StencilOp GR_GL_REPLACE, // kReplace_StencilOp GR_GL_INCR_WRAP, // kIncWrap_StencilOp GR_GL_INCR, // kIncClamp_StencilOp GR_GL_DECR_WRAP, // kDecWrap_StencilOp GR_GL_DECR, // kDecClamp_StencilOp GR_GL_ZERO, // kZero_StencilOp GR_GL_INVERT, // kInvert_StencilOp }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount); GR_STATIC_ASSERT(0 == kKeep_StencilOp); GR_STATIC_ASSERT(1 == kReplace_StencilOp); GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); GR_STATIC_ASSERT(6 == kZero_StencilOp); GR_STATIC_ASSERT(7 == kInvert_StencilOp); SkASSERT((unsigned) op < kStencilOpCount); return gTable[op]; } void set_gl_stencil(const GrGLInterface* gl, const GrStencilSettings& settings, GrGLenum glFace, GrStencilSettings::Face grFace) { GrGLenum glFunc = gr_to_gl_stencil_func(settings.func(grFace)); GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); GrGLint ref = settings.funcRef(grFace); GrGLint mask = settings.funcMask(grFace); GrGLint writeMask = settings.writeMask(grFace); if (GR_GL_FRONT_AND_BACK == glFace) { // we call the combined func just in case separate stencil is not // supported. GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); GR_GL_CALL(gl, StencilMask(writeMask)); GR_GL_CALL(gl, StencilOp(glFailOp, glPassOp, glPassOp)); } else { GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, glPassOp, glPassOp)); } } } void GrGpuGL::flushStencil(DrawType type) { if (kStencilPath_DrawType != type && fHWStencilSettings != fStencilSettings) { if (fStencilSettings.isDisabled()) { if (kNo_TriState != fHWStencilTestEnabled) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kNo_TriState; } } else { if (kYes_TriState != fHWStencilTestEnabled) { GL_CALL(Enable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kYes_TriState; } } if (!fStencilSettings.isDisabled()) { if (this->caps()->twoSidedStencilSupport()) { set_gl_stencil(this->glInterface(), fStencilSettings, GR_GL_FRONT, GrStencilSettings::kFront_Face); set_gl_stencil(this->glInterface(), fStencilSettings, GR_GL_BACK, GrStencilSettings::kBack_Face); } else { set_gl_stencil(this->glInterface(), fStencilSettings, GR_GL_FRONT_AND_BACK, GrStencilSettings::kFront_Face); } } fHWStencilSettings = fStencilSettings; } } void GrGpuGL::flushAAState(DrawType type) { // At least some ATI linux drivers will render GL_LINES incorrectly when MSAA state is enabled but // the target is not multisampled. Single pixel wide lines are rendered thicker than 1 pixel wide. #if 0 // Replace RT_HAS_MSAA with this definition once this driver bug is no longer a relevant concern #define RT_HAS_MSAA rt->isMultisampled() #else #define RT_HAS_MSAA (rt->isMultisampled() || kDrawLines_DrawType == type) #endif const GrRenderTarget* rt = this->getDrawState().getRenderTarget(); if (kGL_GrGLStandard == this->glStandard()) { // ES doesn't support toggling GL_MULTISAMPLE and doesn't have // smooth lines. // we prefer smooth lines over multisampled lines bool smoothLines = false; if (kDrawLines_DrawType == type) { smoothLines = this->willUseHWAALines(); if (smoothLines) { if (kYes_TriState != fHWAAState.fSmoothLineEnabled) { GL_CALL(Enable(GR_GL_LINE_SMOOTH)); fHWAAState.fSmoothLineEnabled = kYes_TriState; // must disable msaa to use line smoothing if (RT_HAS_MSAA && kNo_TriState != fHWAAState.fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = kNo_TriState; } } } else { if (kNo_TriState != fHWAAState.fSmoothLineEnabled) { GL_CALL(Disable(GR_GL_LINE_SMOOTH)); fHWAAState.fSmoothLineEnabled = kNo_TriState; } } } if (!smoothLines && RT_HAS_MSAA) { // FIXME: GL_NV_pr doesn't seem to like MSAA disabled. The paths // convex hulls of each segment appear to get filled. bool enableMSAA = kStencilPath_DrawType == type || this->getDrawState().isHWAntialiasState(); if (enableMSAA) { if (kYes_TriState != fHWAAState.fMSAAEnabled) { GL_CALL(Enable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = kYes_TriState; } } else { if (kNo_TriState != fHWAAState.fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = kNo_TriState; } } } } } void GrGpuGL::flushPathStencilSettings(SkPath::FillType fill) { GrStencilSettings pathStencilSettings; this->getPathStencilSettingsForFillType(fill, &pathStencilSettings); if (fHWPathStencilSettings != pathStencilSettings) { // Just the func, ref, and mask is set here. The op and write mask are params to the call // that draws the path to the SB (glStencilFillPath) GrGLenum func = gr_to_gl_stencil_func(pathStencilSettings.func(GrStencilSettings::kFront_Face)); GL_CALL(PathStencilFunc(func, pathStencilSettings.funcRef(GrStencilSettings::kFront_Face), pathStencilSettings.funcMask(GrStencilSettings::kFront_Face))); fHWPathStencilSettings = pathStencilSettings; } } void GrGpuGL::flushBlend(bool isLines, GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { if (isLines && this->willUseHWAALines()) { if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (kSA_GrBlendCoeff != fHWBlendState.fSrcCoeff || kISA_GrBlendCoeff != fHWBlendState.fDstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_GrBlendCoeff], gXfermodeCoeff2Blend[kISA_GrBlendCoeff])); fHWBlendState.fSrcCoeff = kSA_GrBlendCoeff; fHWBlendState.fDstCoeff = kISA_GrBlendCoeff; } } else { // any optimization to disable blending should // have already been applied and tweaked the coeffs // to (1, 0). bool blendOff = kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; if (blendOff) { if (kNo_TriState != fHWBlendState.fEnabled) { GL_CALL(Disable(GR_GL_BLEND)); fHWBlendState.fEnabled = kNo_TriState; } } else { if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], gXfermodeCoeff2Blend[dstCoeff])); fHWBlendState.fSrcCoeff = srcCoeff; fHWBlendState.fDstCoeff = dstCoeff; } GrColor blendConst = this->getDrawState().getBlendConstant(); if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff)) && (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst)) { GrGLfloat c[4]; GrColorToRGBAFloat(blendConst, c); GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); fHWBlendState.fConstColor = blendConst; fHWBlendState.fConstColorValid = true; } } } } static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { static const GrGLenum gWrapModes[] = { GR_GL_CLAMP_TO_EDGE, GR_GL_REPEAT, GR_GL_MIRRORED_REPEAT }; GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes)); GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); return gWrapModes[tm]; } void GrGpuGL::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) { SkASSERT(NULL != texture); // If we created a rt/tex and rendered to it without using a texture and now we're texturing // from the rt it will still be the last bound texture, but it needs resolving. So keep this // out of the "last != next" check. GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); if (NULL != texRT) { this->onResolveRenderTarget(texRT); } if (fHWBoundTextures[unitIdx] != texture) { this->setTextureUnit(unitIdx); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID())); fHWBoundTextures[unitIdx] = texture; } ResetTimestamp timestamp; const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); bool setAll = timestamp < this->getResetTimestamp(); GrGLTexture::TexParams newTexParams; static GrGLenum glMinFilterModes[] = { GR_GL_NEAREST, GR_GL_LINEAR, GR_GL_LINEAR_MIPMAP_LINEAR }; static GrGLenum glMagFilterModes[] = { GR_GL_NEAREST, GR_GL_LINEAR, GR_GL_LINEAR }; GrTextureParams::FilterMode filterMode = params.filterMode(); if (!this->caps()->mipMapSupport() && GrTextureParams::kMipMap_FilterMode == filterMode) { filterMode = GrTextureParams::kBilerp_FilterMode; } newTexParams.fMinFilter = glMinFilterModes[filterMode]; newTexParams.fMagFilter = glMagFilterModes[filterMode]; if (GrTextureParams::kMipMap_FilterMode == filterMode && texture->mipMapsAreDirty() && !GrPixelConfigIsCompressed(texture->config())) { GL_CALL(GenerateMipmap(GR_GL_TEXTURE_2D)); texture->dirtyMipMaps(false); } newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); memcpy(newTexParams.fSwizzleRGBA, GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()), sizeof(newTexParams.fSwizzleRGBA)); if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fMagFilter)); } if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fMinFilter)); } if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS)); } if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT)); } if (this->glCaps().textureSwizzleSupport() && (setAll || memcmp(newTexParams.fSwizzleRGBA, oldTexParams.fSwizzleRGBA, sizeof(newTexParams.fSwizzleRGBA)))) { this->setTextureUnit(unitIdx); if (this->glStandard() == kGLES_GrGLStandard) { // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. const GrGLenum* swizzle = newTexParams.fSwizzleRGBA; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); } else { GR_STATIC_ASSERT(sizeof(newTexParams.fSwizzleRGBA[0]) == sizeof(GrGLint)); const GrGLint* swizzle = reinterpret_cast<const GrGLint*>(newTexParams.fSwizzleRGBA); GL_CALL(TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, swizzle)); } } texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); } void GrGpuGL::setProjectionMatrix(const SkMatrix& matrix, const SkISize& renderTargetSize, GrSurfaceOrigin renderTargetOrigin) { SkASSERT(this->glCaps().pathRenderingSupport()); if (renderTargetOrigin == fHWProjectionMatrixState.fRenderTargetOrigin && renderTargetSize == fHWProjectionMatrixState.fRenderTargetSize && matrix.cheapEqualTo(fHWProjectionMatrixState.fViewMatrix)) { return; } fHWProjectionMatrixState.fViewMatrix = matrix; fHWProjectionMatrixState.fRenderTargetSize = renderTargetSize; fHWProjectionMatrixState.fRenderTargetOrigin = renderTargetOrigin; GrGLfloat glMatrix[4 * 4]; fHWProjectionMatrixState.getRTAdjustedGLMatrix<4>(glMatrix); GL_CALL(MatrixLoadf(GR_GL_PROJECTION, glMatrix)); } void GrGpuGL::enablePathTexGen(int unitIdx, PathTexGenComponents components, const GrGLfloat* coefficients) { SkASSERT(this->glCaps().pathRenderingSupport()); SkASSERT(components >= kS_PathTexGenComponents && components <= kSTR_PathTexGenComponents); SkASSERT(this->glCaps().maxFixedFunctionTextureCoords() >= unitIdx); if (GR_GL_OBJECT_LINEAR == fHWPathTexGenSettings[unitIdx].fMode && components == fHWPathTexGenSettings[unitIdx].fNumComponents && !memcmp(coefficients, fHWPathTexGenSettings[unitIdx].fCoefficients, 3 * components * sizeof(GrGLfloat))) { return; } this->setTextureUnit(unitIdx); fHWPathTexGenSettings[unitIdx].fNumComponents = components; GL_CALL(PathTexGen(GR_GL_TEXTURE0 + unitIdx, GR_GL_OBJECT_LINEAR, components, coefficients)); memcpy(fHWPathTexGenSettings[unitIdx].fCoefficients, coefficients, 3 * components * sizeof(GrGLfloat)); } void GrGpuGL::enablePathTexGen(int unitIdx, PathTexGenComponents components, const SkMatrix& matrix) { GrGLfloat coefficients[3 * 3]; SkASSERT(this->glCaps().pathRenderingSupport()); SkASSERT(components >= kS_PathTexGenComponents && components <= kSTR_PathTexGenComponents); coefficients[0] = SkScalarToFloat(matrix[SkMatrix::kMScaleX]); coefficients[1] = SkScalarToFloat(matrix[SkMatrix::kMSkewX]); coefficients[2] = SkScalarToFloat(matrix[SkMatrix::kMTransX]); if (components >= kST_PathTexGenComponents) { coefficients[3] = SkScalarToFloat(matrix[SkMatrix::kMSkewY]); coefficients[4] = SkScalarToFloat(matrix[SkMatrix::kMScaleY]); coefficients[5] = SkScalarToFloat(matrix[SkMatrix::kMTransY]); } if (components >= kSTR_PathTexGenComponents) { coefficients[6] = SkScalarToFloat(matrix[SkMatrix::kMPersp0]); coefficients[7] = SkScalarToFloat(matrix[SkMatrix::kMPersp1]); coefficients[8] = SkScalarToFloat(matrix[SkMatrix::kMPersp2]); } enablePathTexGen(unitIdx, components, coefficients); } void GrGpuGL::flushPathTexGenSettings(int numUsedTexCoordSets) { SkASSERT(this->glCaps().pathRenderingSupport()); SkASSERT(this->glCaps().maxFixedFunctionTextureCoords() >= numUsedTexCoordSets); // Only write the inactive path tex gens, since active path tex gens were // written when they were enabled. SkDEBUGCODE( for (int i = 0; i < numUsedTexCoordSets; i++) { SkASSERT(0 != fHWPathTexGenSettings[i].fNumComponents); } ); for (int i = numUsedTexCoordSets; i < fHWActivePathTexGenSets; i++) { SkASSERT(0 != fHWPathTexGenSettings[i].fNumComponents); this->setTextureUnit(i); GL_CALL(PathTexGen(GR_GL_TEXTURE0 + i, GR_GL_NONE, 0, NULL)); fHWPathTexGenSettings[i].fNumComponents = 0; } fHWActivePathTexGenSets = numUsedTexCoordSets; } void GrGpuGL::flushMiscFixedFunctionState() { const GrDrawState& drawState = this->getDrawState(); if (drawState.isDitherState()) { if (kYes_TriState != fHWDitherEnabled) { GL_CALL(Enable(GR_GL_DITHER)); fHWDitherEnabled = kYes_TriState; } } else { if (kNo_TriState != fHWDitherEnabled) { GL_CALL(Disable(GR_GL_DITHER)); fHWDitherEnabled = kNo_TriState; } } if (drawState.isColorWriteDisabled()) { if (kNo_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE)); fHWWriteToColor = kNo_TriState; } } else { if (kYes_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; } } if (fHWDrawFace != drawState.getDrawFace()) { switch (this->getDrawState().getDrawFace()) { case GrDrawState::kCCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_BACK)); break; case GrDrawState::kCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_FRONT)); break; case GrDrawState::kBoth_DrawFace: GL_CALL(Disable(GR_GL_CULL_FACE)); break; default: SkFAIL("Unknown draw face."); } fHWDrawFace = drawState.getDrawFace(); } } void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) { SkASSERT(NULL != renderTarget); if (fHWBoundRenderTarget == renderTarget) { fHWBoundRenderTarget = NULL; } } void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) { for (int s = 0; s < fHWBoundTextures.count(); ++s) { if (fHWBoundTextures[s] == texture) { // deleting bound texture does implied bind to 0 fHWBoundTextures[s] = NULL; } } } GrGLuint GrGpuGL::createGLPathObject() { if (NULL == fPathNameAllocator.get()) { static const int range = 65536; GrGLuint firstName; GL_CALL_RET(firstName, GenPaths(range)); fPathNameAllocator.reset(SkNEW_ARGS(GrGLNameAllocator, (firstName, firstName + range))); } GrGLuint name = fPathNameAllocator->allocateName(); if (0 == name) { // Our reserved path names are all in use. Fall back on GenPaths. GL_CALL_RET(name, GenPaths(1)); } return name; } void GrGpuGL::deleteGLPathObject(GrGLuint name) { if (NULL == fPathNameAllocator.get() || name < fPathNameAllocator->firstName() || name >= fPathNameAllocator->endName()) { // If we aren't inside fPathNameAllocator's range then this name was // generated by the GenPaths fallback (or else the name is unallocated). GL_CALL(DeletePaths(name, 1)); return; } // Make the path empty to save memory, but don't free the name in the driver. GL_CALL(PathCommands(name, 0, NULL, 0, GR_GL_FLOAT, NULL)); fPathNameAllocator->free(name); } bool GrGpuGL::configToGLFormats(GrPixelConfig config, bool getSizedInternalFormat, GrGLenum* internalFormat, GrGLenum* externalFormat, GrGLenum* externalType) { GrGLenum dontCare; if (NULL == internalFormat) { internalFormat = &dontCare; } if (NULL == externalFormat) { externalFormat = &dontCare; } if (NULL == externalType) { externalType = &dontCare; } if(!this->glCaps().isConfigTexturable(config)) { return false; } switch (config) { case kRGBA_8888_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_BYTE; break; case kBGRA_8888_GrPixelConfig: if (this->glCaps().bgraIsInternalFormat()) { if (getSizedInternalFormat) { *internalFormat = GR_GL_BGRA8; } else { *internalFormat = GR_GL_BGRA; } } else { if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } } *externalFormat = GR_GL_BGRA; *externalType = GR_GL_UNSIGNED_BYTE; break; case kRGB_565_GrPixelConfig: *internalFormat = GR_GL_RGB; *externalFormat = GR_GL_RGB; if (getSizedInternalFormat) { if (this->glStandard() == kGL_GrGLStandard) { return false; } else { *internalFormat = GR_GL_RGB565; } } else { *internalFormat = GR_GL_RGB; } *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; break; case kRGBA_4444_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA4; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; break; case kIndex_8_GrPixelConfig: // glCompressedTexImage doesn't take external params *externalFormat = GR_GL_PALETTE8_RGBA8; // no sized/unsized internal format distinction here *internalFormat = GR_GL_PALETTE8_RGBA8; // unused with CompressedTexImage *externalType = GR_GL_UNSIGNED_BYTE; break; case kAlpha_8_GrPixelConfig: if (this->glCaps().textureRedSupport()) { *internalFormat = GR_GL_RED; *externalFormat = GR_GL_RED; if (getSizedInternalFormat) { *internalFormat = GR_GL_R8; } else { *internalFormat = GR_GL_RED; } *externalType = GR_GL_UNSIGNED_BYTE; } else { *internalFormat = GR_GL_ALPHA; *externalFormat = GR_GL_ALPHA; if (getSizedInternalFormat) { *internalFormat = GR_GL_ALPHA8; } else { *internalFormat = GR_GL_ALPHA; } *externalType = GR_GL_UNSIGNED_BYTE; } break; case kETC1_GrPixelConfig: *internalFormat = GR_GL_COMPRESSED_RGB8_ETC1; break; case kLATC_GrPixelConfig: switch(this->glCaps().latcAlias()) { case GrGLCaps::kLATC_LATCAlias: *internalFormat = GR_GL_COMPRESSED_LUMINANCE_LATC1; break; case GrGLCaps::kRGTC_LATCAlias: *internalFormat = GR_GL_COMPRESSED_RED_RGTC1; break; case GrGLCaps::k3DC_LATCAlias: *internalFormat = GR_GL_COMPRESSED_3DC_X; break; } break; default: return false; } return true; } void GrGpuGL::setTextureUnit(int unit) { SkASSERT(unit >= 0 && unit < fHWBoundTextures.count()); if (unit != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); fHWActiveTextureUnitIdx = unit; } } void GrGpuGL::setScratchTextureUnit() { // Bind the last texture unit since it is the least likely to be used by GrGLProgram. int lastUnitIdx = fHWBoundTextures.count() - 1; if (lastUnitIdx != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); fHWActiveTextureUnitIdx = lastUnitIdx; } // clear out the this field so that if a program does use this unit it will rebind the correct // texture. fHWBoundTextures[lastUnitIdx] = NULL; } namespace { // Determines whether glBlitFramebuffer could be used between src and dst. inline bool can_blit_framebuffer(const GrSurface* dst, const GrSurface* src, const GrGpuGL* gpu, bool* wouldNeedTempFBO = NULL) { if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) && gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && gpu->glCaps().usesMSAARenderBuffers()) { // ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match // or the rects are not the same (not just the same size but have the same edges). if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() && (src->desc().fSampleCnt > 0 || src->config() != dst->config())) { return false; } if (NULL != wouldNeedTempFBO) { *wouldNeedTempFBO = NULL == dst->asRenderTarget() || NULL == src->asRenderTarget(); } return true; } else { return false; } } inline bool can_copy_texsubimage(const GrSurface* dst, const GrSurface* src, const GrGpuGL* gpu, bool* wouldNeedTempFBO = NULL) { // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps // many drivers would allow it to work, but ANGLE does not. if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() && (kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) { return false; } const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget()); // If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer) // then we don't want to copy to the texture but to the MSAA buffer. if (NULL != dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) { return false; } const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); // If the src is multisampled (and uses an extension where there is a separate MSAA // renderbuffer) then it is an invalid operation to call CopyTexSubImage if (NULL != srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { return false; } if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && NULL != dst->asTexture() && dst->origin() == src->origin() && kIndex_8_GrPixelConfig != src->config() && !GrPixelConfigIsCompressed(src->config())) { if (NULL != wouldNeedTempFBO) { *wouldNeedTempFBO = NULL == src->asRenderTarget(); } return true; } else { return false; } } // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is // relative to is output. inline GrGLuint bind_surface_as_fbo(const GrGLInterface* gl, GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport) { GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); GrGLuint tempFBOID; if (NULL == rt) { SkASSERT(NULL != surface->asTexture()); GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID(); GR_GL_CALL(gl, GenFramebuffers(1, &tempFBOID)); GR_GL_CALL(gl, BindFramebuffer(fboTarget, tempFBOID)); GR_GL_CALL(gl, FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0)); viewport->fLeft = 0; viewport->fBottom = 0; viewport->fWidth = surface->width(); viewport->fHeight = surface->height(); } else { tempFBOID = 0; GR_GL_CALL(gl, BindFramebuffer(fboTarget, rt->renderFBOID())); *viewport = rt->getViewport(); } return tempFBOID; } } void GrGpuGL::initCopySurfaceDstDesc(const GrSurface* src, GrTextureDesc* desc) { // Check for format issues with glCopyTexSubImage2D if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() && kBGRA_8888_GrPixelConfig == src->config()) { // glCopyTexSubImage2D doesn't work with this config. We'll want to make it a render target // in order to call glBlitFramebuffer or to copy to it by rendering. INHERITED::initCopySurfaceDstDesc(src, desc); return; } else if (NULL == src->asRenderTarget()) { // We don't want to have to create an FBO just to use glCopyTexSubImage2D. Let the base // class handle it by rendering. INHERITED::initCopySurfaceDstDesc(src, desc); return; } const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); if (NULL != srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. INHERITED::initCopySurfaceDstDesc(src, desc); } else { desc->fConfig = src->config(); desc->fOrigin = src->origin(); desc->fFlags = kNone_GrTextureFlags; } } bool GrGpuGL::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { bool inheritedCouldCopy = INHERITED::onCanCopySurface(dst, src, srcRect, dstPoint); bool copied = false; bool wouldNeedTempFBO = false; if (can_copy_texsubimage(dst, src, this, &wouldNeedTempFBO) && (!wouldNeedTempFBO || !inheritedCouldCopy)) { GrGLuint srcFBO; GrGLIRect srcVP; srcFBO = bind_surface_as_fbo(this->glInterface(), src, GR_GL_FRAMEBUFFER, &srcVP); GrGLTexture* dstTex = static_cast<GrGLTexture*>(dst->asTexture()); SkASSERT(NULL != dstTex); // We modified the bound FBO fHWBoundRenderTarget = NULL; GrGLIRect srcGLRect; srcGLRect.setRelativeTo(srcVP, srcRect.fLeft, srcRect.fTop, srcRect.width(), srcRect.height(), src->origin()); this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, dstTex->textureID())); GrGLint dstY; if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); } else { dstY = dstPoint.fY; } GL_CALL(CopyTexSubImage2D(GR_GL_TEXTURE_2D, 0, dstPoint.fX, dstY, srcGLRect.fLeft, srcGLRect.fBottom, srcGLRect.fWidth, srcGLRect.fHeight)); copied = true; if (srcFBO) { GL_CALL(DeleteFramebuffers(1, &srcFBO)); } } else if (can_blit_framebuffer(dst, src, this, &wouldNeedTempFBO) && (!wouldNeedTempFBO || !inheritedCouldCopy)) { SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); bool selfOverlap = false; if (dst->isSameAs(src)) { selfOverlap = SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect); } if (!selfOverlap) { GrGLuint dstFBO; GrGLuint srcFBO; GrGLIRect dstVP; GrGLIRect srcVP; dstFBO = bind_surface_as_fbo(this->glInterface(), dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP); srcFBO = bind_surface_as_fbo(this->glInterface(), src, GR_GL_READ_FRAMEBUFFER, &srcVP); // We modified the bound FBO fHWBoundRenderTarget = NULL; GrGLIRect srcGLRect; GrGLIRect dstGLRect; srcGLRect.setRelativeTo(srcVP, srcRect.fLeft, srcRect.fTop, srcRect.width(), srcRect.height(), src->origin()); dstGLRect.setRelativeTo(dstVP, dstRect.fLeft, dstRect.fTop, dstRect.width(), dstRect.height(), dst->origin()); GrAutoTRestore<ScissorState> asr; if (GrGLCaps::kDesktop_EXT_MSFBOType == this->glCaps().msFBOType()) { // The EXT version applies the scissor during the blit, so disable it. asr.reset(&fScissorState); fScissorState.fEnabled = false; this->flushScissor(); } GrGLint srcY0; GrGLint srcY1; // Does the blit need to y-mirror or not? if (src->origin() == dst->origin()) { srcY0 = srcGLRect.fBottom; srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; } else { srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; srcY1 = srcGLRect.fBottom; } GL_CALL(BlitFramebuffer(srcGLRect.fLeft, srcY0, srcGLRect.fLeft + srcGLRect.fWidth, srcY1, dstGLRect.fLeft, dstGLRect.fBottom, dstGLRect.fLeft + dstGLRect.fWidth, dstGLRect.fBottom + dstGLRect.fHeight, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); if (dstFBO) { GL_CALL(DeleteFramebuffers(1, &dstFBO)); } if (srcFBO) { GL_CALL(DeleteFramebuffers(1, &srcFBO)); } copied = true; } } if (!copied && inheritedCouldCopy) { copied = INHERITED::onCopySurface(dst, src, srcRect, dstPoint); SkASSERT(copied); } return copied; } bool GrGpuGL::onCanCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { // This mirrors the logic in onCopySurface. if (can_copy_texsubimage(dst, src, this)) { return true; } if (can_blit_framebuffer(dst, src, this)) { if (dst->isSameAs(src)) { SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); if(!SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { return true; } } else { return true; } } return INHERITED::onCanCopySurface(dst, src, srcRect, dstPoint); } void GrGpuGL::didAddGpuTraceMarker() { if (this->caps()->gpuTracingSupport()) { const GrTraceMarkerSet& markerArray = this->getActiveTraceMarkers(); SkString markerString = markerArray.toString(); GL_CALL(PushGroupMarker(0, markerString.c_str())); } } void GrGpuGL::didRemoveGpuTraceMarker() { if (this->caps()->gpuTracingSupport()) { GL_CALL(PopGroupMarker()); } } /////////////////////////////////////////////////////////////////////////////// GrGLAttribArrayState* GrGpuGL::HWGeometryState::bindArrayAndBuffersToDraw( GrGpuGL* gpu, const GrGLVertexBuffer* vbuffer, const GrGLIndexBuffer* ibuffer) { SkASSERT(NULL != vbuffer); GrGLAttribArrayState* attribState; // We use a vertex array if we're on a core profile and the verts are in a VBO. if (gpu->glCaps().isCoreProfile() && !vbuffer->isCPUBacked()) { if (NULL == fVBOVertexArray || fVBOVertexArray->wasDestroyed()) { SkSafeUnref(fVBOVertexArray); GrGLuint arrayID; GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); int attrCount = gpu->glCaps().maxVertexAttributes(); fVBOVertexArray = SkNEW_ARGS(GrGLVertexArray, (gpu, arrayID, attrCount)); } attribState = fVBOVertexArray->bindWithIndexBuffer(ibuffer); } else { if (NULL != ibuffer) { this->setIndexBufferIDOnDefaultVertexArray(gpu, ibuffer->bufferID()); } else { this->setVertexArrayID(gpu, 0); } int attrCount = gpu->glCaps().maxVertexAttributes(); if (fDefaultVertexArrayAttribState.count() != attrCount) { fDefaultVertexArrayAttribState.resize(attrCount); } attribState = &fDefaultVertexArrayAttribState; } return attribState; }