/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrRedBlackTree_DEFINED #define GrRedBlackTree_DEFINED #include "GrConfig.h" #include "SkTypes.h" template <typename T> class GrLess { public: bool operator()(const T& a, const T& b) const { return a < b; } }; template <typename T> class GrLess<T*> { public: bool operator()(const T* a, const T* b) const { return *a < *b; } }; class GrStrLess { public: bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; } }; /** * In debug build this will cause full traversals of the tree when the validate * is called on insert and remove. Useful for debugging but very slow. */ #define DEEP_VALIDATE 0 /** * A sorted tree that uses the red-black tree algorithm. Allows duplicate * entries. Data is of type T and is compared using functor C. A single C object * will be created and used for all comparisons. */ template <typename T, typename C = GrLess<T> > class GrRedBlackTree : SkNoncopyable { public: /** * Creates an empty tree. */ GrRedBlackTree(); virtual ~GrRedBlackTree(); /** * Class used to iterater through the tree. The valid range of the tree * is given by [begin(), end()). It is legal to dereference begin() but not * end(). The iterator has preincrement and predecrement operators, it is * legal to decerement end() if the tree is not empty to get the last * element. However, a last() helper is provided. */ class Iter; /** * Add an element to the tree. Duplicates are allowed. * @param t the item to add. * @return an iterator to the item. */ Iter insert(const T& t); /** * Removes all items in the tree. */ void reset(); /** * @return true if there are no items in the tree, false otherwise. */ bool empty() const {return 0 == fCount;} /** * @return the number of items in the tree. */ int count() const {return fCount;} /** * @return an iterator to the first item in sorted order, or end() if empty */ Iter begin(); /** * Gets the last valid iterator. This is always valid, even on an empty. * However, it can never be dereferenced. Useful as a loop terminator. * @return an iterator that is just beyond the last item in sorted order. */ Iter end(); /** * @return an iterator that to the last item in sorted order, or end() if * empty. */ Iter last(); /** * Finds an occurrence of an item. * @param t the item to find. * @return an iterator to a tree element equal to t or end() if none exists. */ Iter find(const T& t); /** * Finds the first of an item in iterator order. * @param t the item to find. * @return an iterator to the first element equal to t or end() if * none exists. */ Iter findFirst(const T& t); /** * Finds the last of an item in iterator order. * @param t the item to find. * @return an iterator to the last element equal to t or end() if * none exists. */ Iter findLast(const T& t); /** * Gets the number of items in the tree equal to t. * @param t the item to count. * @return number of items equal to t in the tree */ int countOf(const T& t) const; /** * Removes the item indicated by an iterator. The iterator will not be valid * afterwards. * * @param iter iterator of item to remove. Must be valid (not end()). */ void remove(const Iter& iter) { deleteAtNode(iter.fN); } private: enum Color { kRed_Color, kBlack_Color }; enum Child { kLeft_Child = 0, kRight_Child = 1 }; struct Node { T fItem; Color fColor; Node* fParent; Node* fChildren[2]; }; void rotateRight(Node* n); void rotateLeft(Node* n); static Node* SuccessorNode(Node* x); static Node* PredecessorNode(Node* x); void deleteAtNode(Node* x); static void RecursiveDelete(Node* x); int onCountOf(const Node* n, const T& t) const; #ifdef SK_DEBUG void validate() const; int checkNode(Node* n, int* blackHeight) const; // checks relationship between a node and its children. allowRedRed means // node may be in an intermediate state where a red parent has a red child. bool validateChildRelations(const Node* n, bool allowRedRed) const; // place to stick break point if validateChildRelations is failing. bool validateChildRelationsFailed() const { return false; } #else void validate() const {} #endif int fCount; Node* fRoot; Node* fFirst; Node* fLast; const C fComp; }; template <typename T, typename C> class GrRedBlackTree<T,C>::Iter { public: Iter() {}; Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;} Iter& operator =(const Iter& i) { fN = i.fN; fTree = i.fTree; return *this; } // altering the sort value of the item using this method will cause // errors. T& operator *() const { return fN->fItem; } bool operator ==(const Iter& i) const { return fN == i.fN && fTree == i.fTree; } bool operator !=(const Iter& i) const { return !(*this == i); } Iter& operator ++() { SkASSERT(*this != fTree->end()); fN = SuccessorNode(fN); return *this; } Iter& operator --() { SkASSERT(*this != fTree->begin()); if (NULL != fN) { fN = PredecessorNode(fN); } else { *this = fTree->last(); } return *this; } private: friend class GrRedBlackTree; explicit Iter(Node* n, GrRedBlackTree* tree) { fN = n; fTree = tree; } Node* fN; GrRedBlackTree* fTree; }; template <typename T, typename C> GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() { fRoot = NULL; fFirst = NULL; fLast = NULL; fCount = 0; validate(); } template <typename T, typename C> GrRedBlackTree<T,C>::~GrRedBlackTree() { RecursiveDelete(fRoot); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() { return Iter(fFirst, this); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() { return Iter(NULL, this); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() { return Iter(fLast, this); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) { Node* n = fRoot; while (NULL != n) { if (fComp(t, n->fItem)) { n = n->fChildren[kLeft_Child]; } else { if (!fComp(n->fItem, t)) { return Iter(n, this); } n = n->fChildren[kRight_Child]; } } return end(); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) { Node* n = fRoot; Node* leftMost = NULL; while (NULL != n) { if (fComp(t, n->fItem)) { n = n->fChildren[kLeft_Child]; } else { if (!fComp(n->fItem, t)) { // found one. check if another in left subtree. leftMost = n; n = n->fChildren[kLeft_Child]; } else { n = n->fChildren[kRight_Child]; } } } return Iter(leftMost, this); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) { Node* n = fRoot; Node* rightMost = NULL; while (NULL != n) { if (fComp(t, n->fItem)) { n = n->fChildren[kLeft_Child]; } else { if (!fComp(n->fItem, t)) { // found one. check if another in right subtree. rightMost = n; } n = n->fChildren[kRight_Child]; } } return Iter(rightMost, this); } template <typename T, typename C> int GrRedBlackTree<T,C>::countOf(const T& t) const { return onCountOf(fRoot, t); } template <typename T, typename C> int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const { // this is count*log(n) :( while (NULL != n) { if (fComp(t, n->fItem)) { n = n->fChildren[kLeft_Child]; } else { if (!fComp(n->fItem, t)) { int count = 1; count += onCountOf(n->fChildren[kLeft_Child], t); count += onCountOf(n->fChildren[kRight_Child], t); return count; } n = n->fChildren[kRight_Child]; } } return 0; } template <typename T, typename C> void GrRedBlackTree<T,C>::reset() { RecursiveDelete(fRoot); fRoot = NULL; fFirst = NULL; fLast = NULL; fCount = 0; } template <typename T, typename C> typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { validate(); ++fCount; Node* x = SkNEW(Node); x->fChildren[kLeft_Child] = NULL; x->fChildren[kRight_Child] = NULL; x->fItem = t; Node* returnNode = x; Node* gp = NULL; Node* p = NULL; Node* n = fRoot; Child pc = kLeft_Child; // suppress uninit warning Child gpc = kLeft_Child; bool first = true; bool last = true; while (NULL != n) { gpc = pc; pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; first = first && kLeft_Child == pc; last = last && kRight_Child == pc; gp = p; p = n; n = p->fChildren[pc]; } if (last) { fLast = x; } if (first) { fFirst = x; } if (NULL == p) { fRoot = x; x->fColor = kBlack_Color; x->fParent = NULL; SkASSERT(1 == fCount); return Iter(returnNode, this); } p->fChildren[pc] = x; x->fColor = kRed_Color; x->fParent = p; do { // assumptions at loop start. SkASSERT(NULL != x); SkASSERT(kRed_Color == x->fColor); // can't have a grandparent but no parent. SkASSERT(!(NULL != gp && NULL == p)); // make sure pc and gpc are correct SkASSERT(NULL == p || p->fChildren[pc] == x); SkASSERT(NULL == gp || gp->fChildren[gpc] == p); // if x's parent is black then we didn't violate any of the // red/black properties when we added x as red. if (kBlack_Color == p->fColor) { return Iter(returnNode, this); } // gp must be valid because if p was the root then it is black SkASSERT(NULL != gp); // gp must be black since it's child, p, is red. SkASSERT(kBlack_Color == gp->fColor); // x and its parent are red, violating red-black property. Node* u = gp->fChildren[1-gpc]; // if x's uncle (p's sibling) is also red then we can flip // p and u to black and make gp red. But then we have to recurse // up to gp since it's parent may also be red. if (NULL != u && kRed_Color == u->fColor) { p->fColor = kBlack_Color; u->fColor = kBlack_Color; gp->fColor = kRed_Color; x = gp; p = x->fParent; if (NULL == p) { // x (prev gp) is the root, color it black and be done. SkASSERT(fRoot == x); x->fColor = kBlack_Color; validate(); return Iter(returnNode, this); } gp = p->fParent; pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : kRight_Child; if (NULL != gp) { gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : kRight_Child; } continue; } break; } while (true); // Here p is red but u is black and we still have to resolve the fact // that x and p are both red. SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); SkASSERT(kRed_Color == x->fColor); SkASSERT(kRed_Color == p->fColor); SkASSERT(kBlack_Color == gp->fColor); // make x be on the same side of p as p is of gp. If it isn't already // the case then rotate x up to p and swap their labels. if (pc != gpc) { if (kRight_Child == pc) { rotateLeft(p); Node* temp = p; p = x; x = temp; pc = kLeft_Child; } else { rotateRight(p); Node* temp = p; p = x; x = temp; pc = kRight_Child; } } // we now rotate gp down, pulling up p to be it's new parent. // gp's child, u, that is not affected we know to be black. gp's new // child is p's previous child (x's pre-rotation sibling) which must be // black since p is red. SkASSERT(NULL == p->fChildren[1-pc] || kBlack_Color == p->fChildren[1-pc]->fColor); // Since gp's two children are black it can become red if p is made // black. This leaves the black-height of both of p's new subtrees // preserved and removes the red/red parent child relationship. p->fColor = kBlack_Color; gp->fColor = kRed_Color; if (kLeft_Child == pc) { rotateRight(gp); } else { rotateLeft(gp); } validate(); return Iter(returnNode, this); } template <typename T, typename C> void GrRedBlackTree<T,C>::rotateRight(Node* n) { /* d? d? * / / * n s * / \ ---> / \ * s a? c? n * / \ / \ * c? b? b? a? */ Node* d = n->fParent; Node* s = n->fChildren[kLeft_Child]; SkASSERT(NULL != s); Node* b = s->fChildren[kRight_Child]; if (NULL != d) { Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : kRight_Child; d->fChildren[c] = s; } else { SkASSERT(fRoot == n); fRoot = s; } s->fParent = d; s->fChildren[kRight_Child] = n; n->fParent = s; n->fChildren[kLeft_Child] = b; if (NULL != b) { b->fParent = n; } GR_DEBUGASSERT(validateChildRelations(d, true)); GR_DEBUGASSERT(validateChildRelations(s, true)); GR_DEBUGASSERT(validateChildRelations(n, false)); GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); GR_DEBUGASSERT(validateChildRelations(b, true)); GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); } template <typename T, typename C> void GrRedBlackTree<T,C>::rotateLeft(Node* n) { Node* d = n->fParent; Node* s = n->fChildren[kRight_Child]; SkASSERT(NULL != s); Node* b = s->fChildren[kLeft_Child]; if (NULL != d) { Child c = d->fChildren[kRight_Child] == n ? kRight_Child : kLeft_Child; d->fChildren[c] = s; } else { SkASSERT(fRoot == n); fRoot = s; } s->fParent = d; s->fChildren[kLeft_Child] = n; n->fParent = s; n->fChildren[kRight_Child] = b; if (NULL != b) { b->fParent = n; } GR_DEBUGASSERT(validateChildRelations(d, true)); GR_DEBUGASSERT(validateChildRelations(s, true)); GR_DEBUGASSERT(validateChildRelations(n, true)); GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); GR_DEBUGASSERT(validateChildRelations(b, true)); GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); } template <typename T, typename C> typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) { SkASSERT(NULL != x); if (NULL != x->fChildren[kRight_Child]) { x = x->fChildren[kRight_Child]; while (NULL != x->fChildren[kLeft_Child]) { x = x->fChildren[kLeft_Child]; } return x; } while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) { x = x->fParent; } return x->fParent; } template <typename T, typename C> typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) { SkASSERT(NULL != x); if (NULL != x->fChildren[kLeft_Child]) { x = x->fChildren[kLeft_Child]; while (NULL != x->fChildren[kRight_Child]) { x = x->fChildren[kRight_Child]; } return x; } while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) { x = x->fParent; } return x->fParent; } template <typename T, typename C> void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { SkASSERT(NULL != x); validate(); --fCount; bool hasLeft = NULL != x->fChildren[kLeft_Child]; bool hasRight = NULL != x->fChildren[kRight_Child]; Child c = hasLeft ? kLeft_Child : kRight_Child; if (hasLeft && hasRight) { // first and last can't have two children. SkASSERT(fFirst != x); SkASSERT(fLast != x); // if x is an interior node then we find it's successor // and swap them. Node* s = x->fChildren[kRight_Child]; while (NULL != s->fChildren[kLeft_Child]) { s = s->fChildren[kLeft_Child]; } SkASSERT(NULL != s); // this might be expensive relative to swapping node ptrs around. // depends on T. x->fItem = s->fItem; x = s; c = kRight_Child; } else if (NULL == x->fParent) { // if x was the root we just replace it with its child and make // the new root (if the tree is not empty) black. SkASSERT(fRoot == x); fRoot = x->fChildren[c]; if (NULL != fRoot) { fRoot->fParent = NULL; fRoot->fColor = kBlack_Color; if (x == fLast) { SkASSERT(c == kLeft_Child); fLast = fRoot; } else if (x == fFirst) { SkASSERT(c == kRight_Child); fFirst = fRoot; } } else { SkASSERT(fFirst == fLast && x == fFirst); fFirst = NULL; fLast = NULL; SkASSERT(0 == fCount); } delete x; validate(); return; } Child pc; Node* p = x->fParent; pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child; if (NULL == x->fChildren[c]) { if (fLast == x) { fLast = p; SkASSERT(p == PredecessorNode(x)); } else if (fFirst == x) { fFirst = p; SkASSERT(p == SuccessorNode(x)); } // x has two implicit black children. Color xcolor = x->fColor; p->fChildren[pc] = NULL; delete x; x = NULL; // when x is red it can be with an implicit black leaf without // violating any of the red-black tree properties. if (kRed_Color == xcolor) { validate(); return; } // s is p's other child (x's sibling) Node* s = p->fChildren[1-pc]; //s cannot be an implicit black node because the original // black-height at x was >= 2 and s's black-height must equal the // initial black height of x. SkASSERT(NULL != s); SkASSERT(p == s->fParent); // assigned in loop Node* sl; Node* sr; bool slRed; bool srRed; do { // When we start this loop x may already be deleted it is/was // p's child on its pc side. x's children are/were black. The // first time through the loop they are implict children. // On later passes we will be walking up the tree and they will // be real nodes. // The x side of p has a black-height that is one less than the // s side. It must be rebalanced. SkASSERT(NULL != s); SkASSERT(p == s->fParent); SkASSERT(NULL == x || x->fParent == p); //sl and sr are s's children, which may be implicit. sl = s->fChildren[kLeft_Child]; sr = s->fChildren[kRight_Child]; // if the s is red we will rotate s and p, swap their colors so // that x's new sibling is black if (kRed_Color == s->fColor) { // if s is red then it's parent must be black. SkASSERT(kBlack_Color == p->fColor); // s's children must also be black since s is red. They can't // be implicit since s is red and it's black-height is >= 2. SkASSERT(NULL != sl && kBlack_Color == sl->fColor); SkASSERT(NULL != sr && kBlack_Color == sr->fColor); p->fColor = kRed_Color; s->fColor = kBlack_Color; if (kLeft_Child == pc) { rotateLeft(p); s = sl; } else { rotateRight(p); s = sr; } sl = s->fChildren[kLeft_Child]; sr = s->fChildren[kRight_Child]; } // x and s are now both black. SkASSERT(kBlack_Color == s->fColor); SkASSERT(NULL == x || kBlack_Color == x->fColor); SkASSERT(p == s->fParent); SkASSERT(NULL == x || p == x->fParent); // when x is deleted its subtree will have reduced black-height. slRed = (NULL != sl && kRed_Color == sl->fColor); srRed = (NULL != sr && kRed_Color == sr->fColor); if (!slRed && !srRed) { // if s can be made red that will balance out x's removal // to make both subtrees of p have the same black-height. if (kBlack_Color == p->fColor) { s->fColor = kRed_Color; // now subtree at p has black-height of one less than // p's parent's other child's subtree. We move x up to // p and go through the loop again. At the top of loop // we assumed x and x's children are black, which holds // by above ifs. // if p is the root there is no other subtree to balance // against. x = p; p = x->fParent; if (NULL == p) { SkASSERT(fRoot == x); validate(); return; } else { pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child; } s = p->fChildren[1-pc]; SkASSERT(NULL != s); SkASSERT(p == s->fParent); continue; } else if (kRed_Color == p->fColor) { // we can make p black and s red. This balance out p's // two subtrees and keep the same black-height as it was // before the delete. s->fColor = kRed_Color; p->fColor = kBlack_Color; validate(); return; } } break; } while (true); // if we made it here one or both of sl and sr is red. // s and x are black. We make sure that a red child is on // the same side of s as s is of p. SkASSERT(slRed || srRed); if (kLeft_Child == pc && !srRed) { s->fColor = kRed_Color; sl->fColor = kBlack_Color; rotateRight(s); sr = s; s = sl; //sl = s->fChildren[kLeft_Child]; don't need this } else if (kRight_Child == pc && !slRed) { s->fColor = kRed_Color; sr->fColor = kBlack_Color; rotateLeft(s); sl = s; s = sr; //sr = s->fChildren[kRight_Child]; don't need this } // now p is either red or black, x and s are red and s's 1-pc // child is red. // We rotate p towards x, pulling s up to replace p. We make // p be black and s takes p's old color. // Whether p was red or black, we've increased its pc subtree // rooted at x by 1 (balancing the imbalance at the start) and // we've also its subtree rooted at s's black-height by 1. This // can be balanced by making s's red child be black. s->fColor = p->fColor; p->fColor = kBlack_Color; if (kLeft_Child == pc) { SkASSERT(NULL != sr && kRed_Color == sr->fColor); sr->fColor = kBlack_Color; rotateLeft(p); } else { SkASSERT(NULL != sl && kRed_Color == sl->fColor); sl->fColor = kBlack_Color; rotateRight(p); } } else { // x has exactly one implicit black child. x cannot be red. // Proof by contradiction: Assume X is red. Let c0 be x's implicit // child and c1 be its non-implicit child. c1 must be black because // red nodes always have two black children. Then the two subtrees // of x rooted at c0 and c1 will have different black-heights. SkASSERT(kBlack_Color == x->fColor); // So we know x is black and has one implicit black child, c0. c1 // must be red, otherwise the subtree at c1 will have a different // black-height than the subtree rooted at c0. SkASSERT(kRed_Color == x->fChildren[c]->fColor); // replace x with c1, making c1 black, preserves all red-black tree // props. Node* c1 = x->fChildren[c]; if (x == fFirst) { SkASSERT(c == kRight_Child); fFirst = c1; while (NULL != fFirst->fChildren[kLeft_Child]) { fFirst = fFirst->fChildren[kLeft_Child]; } SkASSERT(fFirst == SuccessorNode(x)); } else if (x == fLast) { SkASSERT(c == kLeft_Child); fLast = c1; while (NULL != fLast->fChildren[kRight_Child]) { fLast = fLast->fChildren[kRight_Child]; } SkASSERT(fLast == PredecessorNode(x)); } c1->fParent = p; p->fChildren[pc] = c1; c1->fColor = kBlack_Color; delete x; validate(); } validate(); } template <typename T, typename C> void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { if (NULL != x) { RecursiveDelete(x->fChildren[kLeft_Child]); RecursiveDelete(x->fChildren[kRight_Child]); delete x; } } #ifdef SK_DEBUG template <typename T, typename C> void GrRedBlackTree<T,C>::validate() const { if (fCount) { SkASSERT(NULL == fRoot->fParent); SkASSERT(NULL != fFirst); SkASSERT(NULL != fLast); SkASSERT(kBlack_Color == fRoot->fColor); if (1 == fCount) { SkASSERT(fFirst == fRoot); SkASSERT(fLast == fRoot); SkASSERT(0 == fRoot->fChildren[kLeft_Child]); SkASSERT(0 == fRoot->fChildren[kRight_Child]); } } else { SkASSERT(NULL == fRoot); SkASSERT(NULL == fFirst); SkASSERT(NULL == fLast); } #if DEEP_VALIDATE int bh; int count = checkNode(fRoot, &bh); SkASSERT(count == fCount); #endif } template <typename T, typename C> int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { if (NULL != n) { SkASSERT(validateChildRelations(n, false)); if (kBlack_Color == n->fColor) { *bh += 1; } SkASSERT(!fComp(n->fItem, fFirst->fItem)); SkASSERT(!fComp(fLast->fItem, n->fItem)); int leftBh = *bh; int rightBh = *bh; int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); int cr = checkNode(n->fChildren[kRight_Child], &rightBh); SkASSERT(leftBh == rightBh); *bh = leftBh; return 1 + cl + cr; } return 0; } template <typename T, typename C> bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n, bool allowRedRed) const { if (NULL != n) { if (NULL != n->fChildren[kLeft_Child] || NULL != n->fChildren[kRight_Child]) { if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { return validateChildRelationsFailed(); } if (n->fChildren[kLeft_Child] == n->fParent && NULL != n->fParent) { return validateChildRelationsFailed(); } if (n->fChildren[kRight_Child] == n->fParent && NULL != n->fParent) { return validateChildRelationsFailed(); } if (NULL != n->fChildren[kLeft_Child]) { if (!allowRedRed && kRed_Color == n->fChildren[kLeft_Child]->fColor && kRed_Color == n->fColor) { return validateChildRelationsFailed(); } if (n->fChildren[kLeft_Child]->fParent != n) { return validateChildRelationsFailed(); } if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { return validateChildRelationsFailed(); } } if (NULL != n->fChildren[kRight_Child]) { if (!allowRedRed && kRed_Color == n->fChildren[kRight_Child]->fColor && kRed_Color == n->fColor) { return validateChildRelationsFailed(); } if (n->fChildren[kRight_Child]->fParent != n) { return validateChildRelationsFailed(); } if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { return validateChildRelationsFailed(); } } } } return true; } #endif #endif