/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DataTypes.h" #include "EdgeWalker_Test.h" #include "Intersection_Tests.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkMatrix.h" #include "SkPaint.h" #include "SkStream.h" #include <algorithm> #include <errno.h> #include <pthread.h> #include <unistd.h> #include <sys/types.h> #include <sys/sysctl.h> #undef SkASSERT #define SkASSERT(cond) while (!(cond)) { sk_throw(); } static const char marker[] = "</div>\n" "\n" "<script type=\"text/javascript\">\n" "\n" "var testDivs = [\n"; static const char* opStrs[] = { "kDifference_Op", "kIntersect_Op", "kUnion_Op", "kXor_Op", }; static const char* opSuffixes[] = { "d", "i", "u", "x", }; static const char preferredFilename[] = "/flash/debug/XX.txt"; static const char backupFilename[] = "../../experimental/Intersection/debugXX.txt"; static bool gShowPath = false; static bool gComparePaths = true; static bool gShowOutputProgress = false; static bool gComparePathsAssert = true; static bool gPathStrAssert = true; static bool gUsePhysicalFiles = false; static void showPathContour(SkPath::Iter& iter) { uint8_t verb; SkPoint pts[4]; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: SkDebugf("path.moveTo(%1.9g,%1.9g);\n", pts[0].fX, pts[0].fY); continue; case SkPath::kLine_Verb: SkDebugf("path.lineTo(%1.9g,%1.9g);\n", pts[1].fX, pts[1].fY); break; case SkPath::kQuad_Verb: SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); break; case SkPath::kCubic_Verb: SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY); break; case SkPath::kClose_Verb: SkDebugf("path.close();\n"); break; default: SkDEBUGFAIL("bad verb"); return; } } } void showPath(const SkPath& path, const char* str) { SkDebugf("%s\n", !str ? "original:" : str); showPath(path); } void showPath(const SkPath& path) { SkPath::Iter iter(path, true); int rectCount = path.isRectContours() ? path.rectContours(NULL, NULL) : 0; if (rectCount > 0) { SkTDArray<SkRect> rects; SkTDArray<SkPath::Direction> directions; rects.setCount(rectCount); directions.setCount(rectCount); path.rectContours(rects.begin(), directions.begin()); for (int contour = 0; contour < rectCount; ++contour) { const SkRect& rect = rects[contour]; SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction ? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction"); } return; } iter.setPath(path, true); showPathContour(iter); } void showPathData(const SkPath& path) { SkPath::Iter iter(path, true); uint8_t verb; SkPoint pts[4]; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: continue; case SkPath::kLine_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY); break; case SkPath::kQuad_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); break; case SkPath::kCubic_Verb: SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY); break; case SkPath::kClose_Verb: break; default: SkDEBUGFAIL("bad verb"); return; } } } void showOp(const ShapeOp op) { switch (op) { case kDifference_Op: SkDebugf("op difference\n"); break; case kIntersect_Op: SkDebugf("op intersect\n"); break; case kUnion_Op: SkDebugf("op union\n"); break; case kXor_Op: SkDebugf("op xor\n"); break; default: SkASSERT(0); } } static void showPath(const SkPath& path, const char* str, const SkMatrix& scale) { SkPath scaled; SkMatrix inverse; bool success = scale.invert(&inverse); if (!success) SkASSERT(0); path.transform(inverse, &scaled); showPath(scaled, str); } const int bitWidth = 64; const int bitHeight = 64; static void scaleMatrix(const SkPath& one, const SkPath& two, SkMatrix& scale) { SkRect larger = one.getBounds(); larger.join(two.getBounds()); SkScalar largerWidth = larger.width(); if (largerWidth < 4) { largerWidth = 4; } SkScalar largerHeight = larger.height(); if (largerHeight < 4) { largerHeight = 4; } SkScalar hScale = (bitWidth - 2) / largerWidth; SkScalar vScale = (bitHeight - 2) / largerHeight; scale.reset(); scale.preScale(hScale, vScale); } static int pathsDrawTheSame(SkBitmap& bits, const SkPath& scaledOne, const SkPath& scaledTwo, int& error2x2) { if (bits.width() == 0) { bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight); bits.allocPixels(); } SkCanvas canvas(bits); canvas.drawColor(SK_ColorWHITE); SkPaint paint; canvas.save(); const SkRect& bounds1 = scaledOne.getBounds(); canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1); canvas.drawPath(scaledOne, paint); canvas.restore(); canvas.save(); canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1); canvas.drawPath(scaledTwo, paint); canvas.restore(); int errors2 = 0; int errors = 0; for (int y = 0; y < bitHeight - 1; ++y) { uint32_t* addr1 = bits.getAddr32(0, y); uint32_t* addr2 = bits.getAddr32(0, y + 1); uint32_t* addr3 = bits.getAddr32(bitWidth, y); uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1); for (int x = 0; x < bitWidth - 1; ++x) { // count 2x2 blocks bool err = addr1[x] != addr3[x]; if (err) { errors2 += addr1[x + 1] != addr3[x + 1] && addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1]; errors++; } } } if (errors2 >= 6 || errors > 160) { SkDebugf("%s errors2=%d errors=%d\n", __FUNCTION__, errors2, errors); } error2x2 = errors2; return errors; } static int pathsDrawTheSame(const SkPath& one, const SkPath& two, SkBitmap& bits, SkPath& scaledOne, SkPath& scaledTwo, int& error2x2) { SkMatrix scale; scaleMatrix(one, two, scale); one.transform(scale, &scaledOne); two.transform(scale, &scaledTwo); return pathsDrawTheSame(bits, scaledOne, scaledTwo, error2x2); } bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) { if (!drawPaths) { return true; } const SkRect& bounds1 = one.getBounds(); const SkRect& bounds2 = two.getBounds(); SkRect larger = bounds1; larger.join(bounds2); SkBitmap bits; char out[256]; int bitWidth = SkScalarCeil(larger.width()) + 2; if (bitWidth * 2 + 1 >= (int) sizeof(out)) { return false; } int bitHeight = SkScalarCeil(larger.height()) + 2; if (bitHeight >= (int) sizeof(out)) { return false; } bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight); bits.allocPixels(); SkCanvas canvas(bits); canvas.drawColor(SK_ColorWHITE); SkPaint paint; canvas.save(); canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1); canvas.drawPath(one, paint); canvas.restore(); canvas.save(); canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1); canvas.drawPath(two, paint); canvas.restore(); for (int y = 0; y < bitHeight; ++y) { uint32_t* addr1 = bits.getAddr32(0, y); int x; char* outPtr = out; for (x = 0; x < bitWidth; ++x) { *outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x'; } *outPtr++ = '|'; for (x = bitWidth; x < bitWidth * 2; ++x) { *outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x'; } *outPtr++ = '\0'; SkDebugf("%s\n", out); } return true; } static void showSimplifiedPath(const SkPath& one, const SkPath& two, const SkPath& scaledOne, const SkPath& scaledTwo) { showPath(one, "original:"); showPath(two, "simplified:"); drawAsciiPaths(scaledOne, scaledTwo, true); } int comparePaths(const SkPath& one, const SkPath& two, SkBitmap& bitmap) { int errors2x2; SkPath scaledOne, scaledTwo; int errors = pathsDrawTheSame(one, two, bitmap, scaledOne, scaledTwo, errors2x2); if (errors2x2 == 0) { return 0; } const int MAX_ERRORS = 9; if (errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) { showSimplifiedPath(one, two, scaledOne, scaledTwo); } if (errors2x2 > MAX_ERRORS && gComparePathsAssert) { SkDebugf("%s errors=%d\n", __FUNCTION__, errors); showSimplifiedPath(one, two, scaledOne, scaledTwo); SkASSERT(0); } return errors2x2 > MAX_ERRORS ? errors2x2 : 0; } static void showShapeOpPath(const SkPath& one, const SkPath& two, const SkPath& a, const SkPath& b, const SkPath& scaledOne, const SkPath& scaledTwo, const ShapeOp shapeOp, const SkMatrix& scale) { SkASSERT((unsigned) shapeOp < sizeof(opStrs) / sizeof(opStrs[0])); showPath(a, "minuend:"); SkDebugf("op: %s\n", opStrs[shapeOp]); showPath(b, "subtrahend:"); // the region often isn't very helpful since it approximates curves with a lot of line-tos if (0) showPath(scaledOne, "region:", scale); showPath(two, "op result:"); drawAsciiPaths(scaledOne, scaledTwo, true); } static int comparePaths(const SkPath& one, const SkPath& scaledOne, const SkPath& two, const SkPath& scaledTwo, SkBitmap& bitmap, const SkPath& a, const SkPath& b, const ShapeOp shapeOp, const SkMatrix& scale) { int errors2x2; int errors = pathsDrawTheSame(bitmap, scaledOne, scaledTwo, errors2x2); if (errors2x2 == 0) { return 0; } const int MAX_ERRORS = 8; if (errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) { showShapeOpPath(one, two, a, b, scaledOne, scaledTwo, shapeOp, scale); } if (errors2x2 > MAX_ERRORS && gComparePathsAssert) { SkDebugf("%s errors=%d\n", __FUNCTION__, errors); showShapeOpPath(one, two, a, b, scaledOne, scaledTwo, shapeOp, scale); SkASSERT(0); } return errors2x2 > MAX_ERRORS ? errors2x2 : 0; } // doesn't work yet void comparePathsTiny(const SkPath& one, const SkPath& two) { const SkRect& bounds1 = one.getBounds(); const SkRect& bounds2 = two.getBounds(); SkRect larger = bounds1; larger.join(bounds2); SkBitmap bits; int bitWidth = SkScalarCeil(larger.width()) + 2; int bitHeight = SkScalarCeil(larger.height()) + 2; bits.setConfig(SkBitmap::kA1_Config, bitWidth * 2, bitHeight); bits.allocPixels(); SkCanvas canvas(bits); canvas.drawColor(SK_ColorWHITE); SkPaint paint; canvas.save(); canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1); canvas.drawPath(one, paint); canvas.restore(); canvas.save(); canvas.translate(-bounds2.fLeft + 1, -bounds2.fTop + 1); canvas.drawPath(two, paint); canvas.restore(); for (int y = 0; y < bitHeight; ++y) { uint8_t* addr1 = bits.getAddr1(0, y); uint8_t* addr2 = bits.getAddr1(bitWidth, y); for (unsigned x = 0; x < bits.rowBytes(); ++x) { SkASSERT(addr1[x] == addr2[x]); } } } bool testSimplify(const SkPath& path, bool fill, SkPath& out, SkBitmap& bitmap) { if (gShowPath) { showPath(path); } simplify(path, fill, out); if (!gComparePaths) { return true; } return comparePaths(path, out, bitmap) == 0; } bool testSimplifyx(SkPath& path, bool useXor, SkPath& out, State4& state, const char* pathStr) { SkPath::FillType fillType = useXor ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType; path.setFillType(fillType); if (gShowPath) { showPath(path); } simplifyx(path, out); if (!gComparePaths) { return true; } int result = comparePaths(path, out, state.bitmap); if (result && gPathStrAssert) { SkDebugf("addTest %s\n", state.filename); char temp[8192]; bzero(temp, sizeof(temp)); SkMemoryWStream stream(temp, sizeof(temp)); const char* pathPrefix = NULL; const char* nameSuffix = NULL; if (fillType == SkPath::kEvenOdd_FillType) { pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n"; nameSuffix = "x"; } const char testFunction[] = "testSimplifyx(path);"; outputToStream(state, pathStr, pathPrefix, nameSuffix, testFunction, stream); SkDebugf(temp); SkASSERT(0); } return result == 0; } bool testSimplifyx(const SkPath& path) { SkPath out; simplifyx(path, out); SkBitmap bitmap; int result = comparePaths(path, out, bitmap); if (result && gPathStrAssert) { SkASSERT(0); } return result == 0; } bool testShapeOp(const SkPath& a, const SkPath& b, const ShapeOp shapeOp) { #if FORCE_RELEASE == 0 showPathData(a); showOp(shapeOp); showPathData(b); #endif SkPath out; operate(a, b, shapeOp, out); SkPath pathOut, scaledPathOut; SkRegion rgnA, rgnB, openClip, rgnOut; openClip.setRect(-16000, -16000, 16000, 16000); rgnA.setPath(a, openClip); rgnB.setPath(b, openClip); rgnOut.op(rgnA, rgnB, (SkRegion::Op) shapeOp); rgnOut.getBoundaryPath(&pathOut); SkMatrix scale; scaleMatrix(a, b, scale); SkRegion scaledRgnA, scaledRgnB, scaledRgnOut; SkPath scaledA, scaledB; scaledA.addPath(a, scale); scaledA.setFillType(a.getFillType()); scaledB.addPath(b, scale); scaledB.setFillType(b.getFillType()); scaledRgnA.setPath(scaledA, openClip); scaledRgnB.setPath(scaledB, openClip); scaledRgnOut.op(scaledRgnA, scaledRgnB, (SkRegion::Op) shapeOp); scaledRgnOut.getBoundaryPath(&scaledPathOut); SkBitmap bitmap; SkPath scaledOut; scaledOut.addPath(out, scale); scaledOut.setFillType(out.getFillType()); int result = comparePaths(pathOut, scaledPathOut, out, scaledOut, bitmap, a, b, shapeOp, scale); if (result && gPathStrAssert) { SkASSERT(0); } return result == 0; } const int maxThreadsAllocated = 64; static int maxThreads = 1; static int threadIndex; State4 threadState[maxThreadsAllocated]; static int testNumber; static const char* testName; static bool debugThreads = false; State4* State4::queue = NULL; pthread_mutex_t State4::addQueue = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t State4::checkQueue = PTHREAD_COND_INITIALIZER; State4::State4() { bitmap.setConfig(SkBitmap::kARGB_8888_Config, 150 * 2, 100); bitmap.allocPixels(); } void createThread(State4* statePtr, void* (*testFun)(void* )) { int threadError = pthread_create(&statePtr->threadID, NULL, testFun, (void*) statePtr); SkASSERT(!threadError); } int dispatchTest4(void* (*testFun)(void* ), int a, int b, int c, int d) { int testsRun = 0; State4* statePtr; if (!gRunTestsInOneThread) { pthread_mutex_lock(&State4::addQueue); if (threadIndex < maxThreads) { statePtr = &threadState[threadIndex]; statePtr->testsRun = 0; statePtr->a = a; statePtr->b = b; statePtr->c = c; statePtr->d = d; statePtr->done = false; statePtr->index = threadIndex; statePtr->last = false; if (debugThreads) SkDebugf("%s %d create done=%d last=%d\n", __FUNCTION__, statePtr->index, statePtr->done, statePtr->last); pthread_cond_init(&statePtr->initialized, NULL); ++threadIndex; createThread(statePtr, testFun); } else { while (!State4::queue) { if (debugThreads) SkDebugf("%s checkQueue\n", __FUNCTION__); pthread_cond_wait(&State4::checkQueue, &State4::addQueue); } statePtr = State4::queue; testsRun += statePtr->testsRun; statePtr->testsRun = 0; statePtr->a = a; statePtr->b = b; statePtr->c = c; statePtr->d = d; statePtr->done = false; State4::queue = NULL; for (int index = 0; index < maxThreads; ++index) { if (threadState[index].done) { State4::queue = &threadState[index]; } } if (debugThreads) SkDebugf("%s %d init done=%d last=%d queued=%d\n", __FUNCTION__, statePtr->index, statePtr->done, statePtr->last, State4::queue ? State4::queue->index : -1); pthread_cond_signal(&statePtr->initialized); } pthread_mutex_unlock(&State4::addQueue); } else { statePtr = &threadState[0]; testsRun += statePtr->testsRun; statePtr->testsRun = 0; statePtr->a = a; statePtr->b = b; statePtr->c = c; statePtr->d = d; statePtr->done = false; statePtr->index = threadIndex; statePtr->last = false; (*testFun)(statePtr); } return testsRun; } void initializeTests(const char* test, size_t testNameSize) { testName = test; if (!gRunTestsInOneThread) { int threads = -1; size_t size = sizeof(threads); sysctlbyname("hw.logicalcpu_max", &threads, &size, NULL, 0); if (threads > 0) { maxThreads = threads; } else { maxThreads = 8; } } SkFILEStream inFile("../../experimental/Intersection/op.htm"); if (inFile.isValid()) { SkTDArray<char> inData; inData.setCount(inFile.getLength()); size_t inLen = inData.count(); inFile.read(inData.begin(), inLen); inFile.setPath(NULL); char* insert = strstr(inData.begin(), marker); if (insert) { insert += sizeof(marker) - 1; const char* numLoc = insert + 4 /* indent spaces */ + testNameSize - 1; testNumber = atoi(numLoc) + 1; } } const char* filename = preferredFilename; SkFILEWStream preferredTest(filename); if (!preferredTest.isValid()) { filename = backupFilename; SkFILEWStream backupTest(filename); SkASSERT(backupTest.isValid()); } for (int index = 0; index < maxThreads; ++index) { State4* statePtr = &threadState[index]; strcpy(statePtr->filename, filename); size_t len = strlen(filename); SkASSERT(statePtr->filename[len - 6] == 'X'); SkASSERT(statePtr->filename[len - 5] == 'X'); statePtr->filename[len - 6] = '0' + index / 10; statePtr->filename[len - 5] = '0' + index % 10; } threadIndex = 0; } void outputProgress(const State4& state, const char* pathStr, SkPath::FillType pathFillType) { if (gRunTestsInOneThread && gShowOutputProgress) { if (pathFillType == SkPath::kEvenOdd_FillType) { SkDebugf(" path.setFillType(SkPath::kEvenOdd_FillType);\n", pathStr); } SkDebugf("%s\n", pathStr); } const char testFunction[] = "testSimplifyx(path);"; const char* pathPrefix = NULL; const char* nameSuffix = NULL; if (pathFillType == SkPath::kEvenOdd_FillType) { pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n"; nameSuffix = "x"; } if (gUsePhysicalFiles) { SkFILEWStream outFile(state.filename); if (!outFile.isValid()) { SkASSERT(0); return; } outputToStream(state, pathStr, pathPrefix, nameSuffix, testFunction, outFile); return; } SkFILEWStream outRam(state.filename); outputToStream(state, pathStr, pathPrefix, nameSuffix, testFunction, outRam); } void outputProgress(const State4& state, const char* pathStr, ShapeOp op) { SkString testFunc("testShapeOp(path, pathB, "); testFunc += opStrs[op]; testFunc += ");"; const char* testFunction = testFunc.c_str(); if (gRunTestsInOneThread && gShowOutputProgress) { SkDebugf("%s\n", pathStr); SkDebugf(" %s\n", testFunction); } const char* nameSuffix = opSuffixes[op]; if (gUsePhysicalFiles) { SkFILEWStream outFile(state.filename); if (!outFile.isValid()) { SkASSERT(0); return; } outputToStream(state, pathStr, NULL, nameSuffix, testFunction, outFile); return; } SkFILEWStream outRam(state.filename); outputToStream(state, pathStr, NULL, nameSuffix, testFunction, outRam); } static void writeTestName(const char* nameSuffix, SkWStream& outFile) { outFile.writeText(testName); outFile.writeDecAsText(testNumber); if (nameSuffix) { outFile.writeText(nameSuffix); } } void outputToStream(const State4& state, const char* pathStr, const char* pathPrefix, const char* nameSuffix, const char* testFunction, SkWStream& outFile) { outFile.writeText("<div id=\""); writeTestName(nameSuffix, outFile); outFile.writeText("\">\n"); if (pathPrefix) { outFile.writeText(pathPrefix); } outFile.writeText(pathStr); outFile.writeText("</div>\n\n"); outFile.writeText(marker); outFile.writeText(" "); writeTestName(nameSuffix, outFile); outFile.writeText(",\n\n\n"); outFile.writeText("static void "); writeTestName(nameSuffix, outFile); outFile.writeText("() {\n SkPath path"); if (!pathPrefix) { outFile.writeText(", pathB"); } outFile.writeText(";\n"); if (pathPrefix) { outFile.writeText(pathPrefix); } outFile.writeText(pathStr); outFile.writeText(" "); outFile.writeText(testFunction); outFile.writeText("\n}\n\n"); outFile.writeText("static void (*firstTest)() = "); writeTestName(nameSuffix, outFile); outFile.writeText(";\n\n"); outFile.writeText("static struct {\n"); outFile.writeText(" void (*fun)();\n"); outFile.writeText(" const char* str;\n"); outFile.writeText("} tests[] = {\n"); outFile.writeText(" TEST("); writeTestName(nameSuffix, outFile); outFile.writeText("),\n"); outFile.flush(); } bool runNextTestSet(State4& state) { if (gRunTestsInOneThread) { return false; } pthread_mutex_lock(&State4::addQueue); state.done = true; State4::queue = &state; if (debugThreads) SkDebugf("%s %d checkQueue done=%d last=%d\n", __FUNCTION__, state.index, state.done, state.last); pthread_cond_signal(&State4::checkQueue); while (state.done && !state.last) { if (debugThreads) SkDebugf("%s %d done=%d last=%d\n", __FUNCTION__, state.index, state.done, state.last); pthread_cond_wait(&state.initialized, &State4::addQueue); } pthread_mutex_unlock(&State4::addQueue); return !state.last; } int waitForCompletion() { int testsRun = 0; if (!gRunTestsInOneThread) { pthread_mutex_lock(&State4::addQueue); int runningThreads = maxThreads; int index; while (runningThreads > 0) { while (!State4::queue) { if (debugThreads) SkDebugf("%s checkQueue\n", __FUNCTION__); pthread_cond_wait(&State4::checkQueue, &State4::addQueue); } while (State4::queue) { --runningThreads; SkDebugf("•"); State4::queue->last = true; State4* next = NULL; for (index = 0; index < maxThreads; ++index) { State4& test = threadState[index]; if (test.done && !test.last) { next = &test; } } if (debugThreads) SkDebugf("%s %d next=%d deQueue\n", __FUNCTION__, State4::queue->index, next ? next->index : -1); pthread_cond_signal(&State4::queue->initialized); State4::queue = next; } } pthread_mutex_unlock(&State4::addQueue); for (index = 0; index < maxThreads; ++index) { pthread_join(threadState[index].threadID, NULL); testsRun += threadState[index].testsRun; } SkDebugf("\n"); } #ifdef SK_DEBUG gDebugMaxWindSum = SK_MaxS32; gDebugMaxWindValue = SK_MaxS32; #endif return testsRun; }