/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Filling CvMat/IplImage instances with random numbers // // */ #include "_cxcore.h" ///////////////////////////// Functions Declaration ////////////////////////////////////// /* Multiply-with-carry generator is used here: temp = ( A*X(n) + carry ) X(n+1) = temp mod (2^32) carry = temp / (2^32) */ #define ICV_RNG_NEXT(x) ((uint64)(unsigned)(x)*1554115554 + ((x) >> 32)) #define ICV_CVT_FLT(x) (((unsigned)(x) >> 9)|CV_1F) #define ICV_1D CV_BIG_INT(0x3FF0000000000000) #define ICV_CVT_DBL(x) (((uint64)(unsigned)(x) << 20)|((x) >> 44)|ICV_1D) /***************************************************************************************\ * Pseudo-Random Number Generators (PRNGs) * \***************************************************************************************/ #define ICV_IMPL_RAND_BITS( flavor, arrtype, cast_macro ) \ static CvStatus CV_STDCALL \ icvRandBits_##flavor##_C1R( arrtype* arr, int step, CvSize size, \ uint64* state, const int* param ) \ { \ uint64 temp = *state; \ int small_flag = (param[12]|param[13]|param[14]|param[15]) <= 255; \ step /= sizeof(arr[0]); \ \ for( ; size.height--; arr += step ) \ { \ int i, k = 3; \ const int* p = param; \ \ if( !small_flag ) \ { \ for( i = 0; i <= size.width - 4; i += 4 ) \ { \ unsigned t0, t1; \ \ temp = ICV_RNG_NEXT(temp); \ t0 = ((unsigned)temp & p[i + 12]) + p[i]; \ temp = ICV_RNG_NEXT(temp); \ t1 = ((unsigned)temp & p[i + 13]) + p[i+1]; \ arr[i] = cast_macro((int)t0); \ arr[i+1] = cast_macro((int)t1); \ \ temp = ICV_RNG_NEXT(temp); \ t0 = ((unsigned)temp & p[i + 14]) + p[i+2]; \ temp = ICV_RNG_NEXT(temp); \ t1 = ((unsigned)temp & p[i + 15]) + p[i+3]; \ arr[i+2] = cast_macro((int)t0); \ arr[i+3] = cast_macro((int)t1); \ \ if( !--k ) \ { \ k = 3; \ p -= 12; \ } \ } \ } \ else \ { \ for( i = 0; i <= size.width - 4; i += 4 ) \ { \ unsigned t0, t1, t; \ \ temp = ICV_RNG_NEXT(temp); \ t = (unsigned)temp; \ t0 = (t & p[i + 12]) + p[i]; \ t1 = ((t >> 8) & p[i + 13]) + p[i+1]; \ arr[i] = cast_macro((int)t0); \ arr[i+1] = cast_macro((int)t1); \ \ t0 = ((t >> 16) & p[i + 14]) + p[i + 2]; \ t1 = ((t >> 24) & p[i + 15]) + p[i + 3]; \ arr[i+2] = cast_macro((int)t0); \ arr[i+3] = cast_macro((int)t1); \ \ if( !--k ) \ { \ k = 3; \ p -= 12; \ } \ } \ } \ \ for( ; i < size.width; i++ ) \ { \ unsigned t0; \ temp = ICV_RNG_NEXT(temp); \ \ t0 = ((unsigned)temp & p[i + 12]) + p[i]; \ arr[i] = cast_macro((int)t0); \ } \ } \ \ *state = temp; \ return CV_OK; \ } #define ICV_IMPL_RAND( flavor, arrtype, worktype, cast_macro1, cast_macro2 )\ static CvStatus CV_STDCALL \ icvRand_##flavor##_C1R( arrtype* arr, int step, CvSize size, \ uint64* state, const double* param ) \ { \ uint64 temp = *state; \ step /= sizeof(arr[0]); \ \ for( ; size.height--; arr += step ) \ { \ int i, k = 3; \ const double* p = param; \ \ for( i = 0; i <= size.width - 4; i += 4 ) \ { \ worktype f0, f1; \ Cv32suf t0, t1; \ \ temp = ICV_RNG_NEXT(temp); \ t0.u = ICV_CVT_FLT(temp); \ temp = ICV_RNG_NEXT(temp); \ t1.u = ICV_CVT_FLT(temp); \ f0 = cast_macro1( t0.f * p[i + 12] + p[i] ); \ f1 = cast_macro1( t1.f * p[i + 13] + p[i + 1] ); \ arr[i] = cast_macro2(f0); \ arr[i+1] = cast_macro2(f1); \ \ temp = ICV_RNG_NEXT(temp); \ t0.u = ICV_CVT_FLT(temp); \ temp = ICV_RNG_NEXT(temp); \ t1.u = ICV_CVT_FLT(temp); \ f0 = cast_macro1( t0.f * p[i + 14] + p[i + 2] ); \ f1 = cast_macro1( t1.f * p[i + 15] + p[i + 3] ); \ arr[i+2] = cast_macro2(f0); \ arr[i+3] = cast_macro2(f1); \ \ if( !--k ) \ { \ k = 3; \ p -= 12; \ } \ } \ \ for( ; i < size.width; i++ ) \ { \ worktype f0; \ Cv32suf t0; \ \ temp = ICV_RNG_NEXT(temp); \ t0.u = ICV_CVT_FLT(temp); \ f0 = cast_macro1( t0.f * p[i + 12] + p[i] ); \ arr[i] = cast_macro2(f0); \ } \ } \ \ *state = temp; \ return CV_OK; \ } static CvStatus CV_STDCALL icvRand_64f_C1R( double* arr, int step, CvSize size, uint64* state, const double* param ) { uint64 temp = *state; step /= sizeof(arr[0]); for( ; size.height--; arr += step ) { int i, k = 3; const double* p = param; for( i = 0; i <= size.width - 4; i += 4 ) { double f0, f1; Cv64suf t0, t1; temp = ICV_RNG_NEXT(temp); t0.u = ICV_CVT_DBL(temp); temp = ICV_RNG_NEXT(temp); t1.u = ICV_CVT_DBL(temp); f0 = t0.f * p[i + 12] + p[i]; f1 = t1.f * p[i + 13] + p[i + 1]; arr[i] = f0; arr[i+1] = f1; temp = ICV_RNG_NEXT(temp); t0.u = ICV_CVT_DBL(temp); temp = ICV_RNG_NEXT(temp); t1.u = ICV_CVT_DBL(temp); f0 = t0.f * p[i + 14] + p[i + 2]; f1 = t1.f * p[i + 15] + p[i + 3]; arr[i+2] = f0; arr[i+3] = f1; if( !--k ) { k = 3; p -= 12; } } for( ; i < size.width; i++ ) { double f0; Cv64suf t0; temp = ICV_RNG_NEXT(temp); t0.u = ICV_CVT_DBL(temp); f0 = t0.f * p[i + 12] + p[i]; arr[i] = f0; } } *state = temp; return CV_OK; } /***************************************************************************************\ The code below implements algorithm from the paper: G. Marsaglia and W.W. Tsang, The Monty Python method for generating random variables, ACM Transactions on Mathematical Software, Vol. 24, No. 3, Pages 341-350, September, 1998. \***************************************************************************************/ static CvStatus CV_STDCALL icvRandn_0_1_32f_C1R( float* arr, int len, uint64* state ) { uint64 temp = *state; int i; temp = ICV_RNG_NEXT(temp); for( i = 0; i < len; i++ ) { double x, y, v, ax, bx; for(;;) { x = ((int)temp)*1.167239e-9; temp = ICV_RNG_NEXT(temp); ax = fabs(x); v = 2.8658 - ax*(2.0213 - 0.3605*ax); y = ((unsigned)temp)*2.328306e-10; temp = ICV_RNG_NEXT(temp); if( y < v || ax < 1.17741 ) break; bx = x; x = bx > 0 ? 0.8857913*(2.506628 - ax) : -0.8857913*(2.506628 - ax); if( y > v + 0.0506 ) break; if( log(y) < .6931472 - .5*bx*bx ) { x = bx; break; } if( log(1.8857913 - y) < .5718733-.5*x*x ) break; do { v = ((int)temp)*4.656613e-10; x = -log(fabs(v))*.3989423; temp = ICV_RNG_NEXT(temp); y = -log(((unsigned)temp)*2.328306e-10); temp = ICV_RNG_NEXT(temp); } while( y+y < x*x ); x = v > 0 ? 2.506628 + x : -2.506628 - x; break; } arr[i] = (float)x; } *state = temp; return CV_OK; } #define RAND_BUF_SIZE 96 #define ICV_IMPL_RANDN( flavor, arrtype, worktype, cast_macro1, cast_macro2 ) \ static CvStatus CV_STDCALL \ icvRandn_##flavor##_C1R( arrtype* arr, int step, CvSize size, \ uint64* state, const double* param ) \ { \ float buffer[RAND_BUF_SIZE]; \ step /= sizeof(arr[0]); \ \ for( ; size.height--; arr += step ) \ { \ int i, j, len = RAND_BUF_SIZE; \ \ for( i = 0; i < size.width; i += RAND_BUF_SIZE ) \ { \ int k = 3; \ const double* p = param; \ \ if( i + len > size.width ) \ len = size.width - i; \ \ icvRandn_0_1_32f_C1R( buffer, len, state ); \ \ for( j = 0; j <= len - 4; j += 4 ) \ { \ worktype f0, f1; \ \ f0 = cast_macro1( buffer[j]*p[j+12] + p[j] ); \ f1 = cast_macro1( buffer[j+1]*p[j+13] + p[j+1] ); \ arr[i+j] = cast_macro2(f0); \ arr[i+j+1] = cast_macro2(f1); \ \ f0 = cast_macro1( buffer[j+2]*p[j+14] + p[j+2] ); \ f1 = cast_macro1( buffer[j+3]*p[j+15] + p[j+3] ); \ arr[i+j+2] = cast_macro2(f0); \ arr[i+j+3] = cast_macro2(f1); \ \ if( --k == 0 ) \ { \ k = 3; \ p -= 12; \ } \ } \ \ for( ; j < len; j++ ) \ { \ worktype f0 = cast_macro1( buffer[j]*p[j+12] + p[j] ); \ arr[i+j] = cast_macro2(f0); \ } \ } \ } \ \ return CV_OK; \ } ICV_IMPL_RAND_BITS( 8u, uchar, CV_CAST_8U ) ICV_IMPL_RAND_BITS( 16u, ushort, CV_CAST_16U ) ICV_IMPL_RAND_BITS( 16s, short, CV_CAST_16S ) ICV_IMPL_RAND_BITS( 32s, int, CV_CAST_32S ) ICV_IMPL_RAND( 8u, uchar, int, cvFloor, CV_CAST_8U ) ICV_IMPL_RAND( 16u, ushort, int, cvFloor, CV_CAST_16U ) ICV_IMPL_RAND( 16s, short, int, cvFloor, CV_CAST_16S ) ICV_IMPL_RAND( 32s, int, int, cvFloor, CV_CAST_32S ) ICV_IMPL_RAND( 32f, float, float, CV_CAST_32F, CV_NOP ) ICV_IMPL_RANDN( 8u, uchar, int, cvRound, CV_CAST_8U ) ICV_IMPL_RANDN( 16u, ushort, int, cvRound, CV_CAST_16U ) ICV_IMPL_RANDN( 16s, short, int, cvRound, CV_CAST_16S ) ICV_IMPL_RANDN( 32s, int, int, cvRound, CV_CAST_32S ) ICV_IMPL_RANDN( 32f, float, float, CV_CAST_32F, CV_NOP ) ICV_IMPL_RANDN( 64f, double, double, CV_CAST_64F, CV_NOP ) static void icvInitRandTable( CvFuncTable* fastrng_tab, CvFuncTable* rng_tab, CvFuncTable* normal_tab ) { fastrng_tab->fn_2d[CV_8U] = (void*)icvRandBits_8u_C1R; fastrng_tab->fn_2d[CV_8S] = 0; fastrng_tab->fn_2d[CV_16U] = (void*)icvRandBits_16u_C1R; fastrng_tab->fn_2d[CV_16S] = (void*)icvRandBits_16s_C1R; fastrng_tab->fn_2d[CV_32S] = (void*)icvRandBits_32s_C1R; rng_tab->fn_2d[CV_8U] = (void*)icvRand_8u_C1R; rng_tab->fn_2d[CV_8S] = 0; rng_tab->fn_2d[CV_16U] = (void*)icvRand_16u_C1R; rng_tab->fn_2d[CV_16S] = (void*)icvRand_16s_C1R; rng_tab->fn_2d[CV_32S] = (void*)icvRand_32s_C1R; rng_tab->fn_2d[CV_32F] = (void*)icvRand_32f_C1R; rng_tab->fn_2d[CV_64F] = (void*)icvRand_64f_C1R; normal_tab->fn_2d[CV_8U] = (void*)icvRandn_8u_C1R; normal_tab->fn_2d[CV_8S] = 0; normal_tab->fn_2d[CV_16U] = (void*)icvRandn_16u_C1R; normal_tab->fn_2d[CV_16S] = (void*)icvRandn_16s_C1R; normal_tab->fn_2d[CV_32S] = (void*)icvRandn_32s_C1R; normal_tab->fn_2d[CV_32F] = (void*)icvRandn_32f_C1R; normal_tab->fn_2d[CV_64F] = (void*)icvRandn_64f_C1R; } CV_IMPL void cvRandArr( CvRNG* rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 ) { static CvFuncTable rng_tab[2], fastrng_tab; static int inittab = 0; CV_FUNCNAME( "cvRandArr" ); __BEGIN__; int is_nd = 0; CvMat stub, *mat = (CvMat*)arr; int type, depth, channels; double dparam[2][12]; int iparam[2][12]; void* param = dparam; int i, fast_int_mode = 0; int mat_step = 0; CvSize size; CvFunc2D_1A2P func = 0; CvMatND stub_nd; CvNArrayIterator iterator_state, *iterator = 0; if( !inittab ) { icvInitRandTable( &fastrng_tab, &rng_tab[CV_RAND_UNI], &rng_tab[CV_RAND_NORMAL] ); inittab = 1; } if( !rng ) CV_ERROR( CV_StsNullPtr, "Null pointer to RNG state" ); if( CV_IS_MATND(mat) ) { iterator = &iterator_state; CV_CALL( cvInitNArrayIterator( 1, &arr, 0, &stub_nd, iterator )); type = CV_MAT_TYPE(iterator->hdr[0]->type); size = iterator->size; is_nd = 1; } else { if( !CV_IS_MAT(mat)) { int coi = 0; CV_CALL( mat = cvGetMat( mat, &stub, &coi )); if( coi != 0 ) CV_ERROR( CV_BadCOI, "COI is not supported" ); } type = CV_MAT_TYPE( mat->type ); size = cvGetMatSize( mat ); mat_step = mat->step; if( mat->height > 1 && CV_IS_MAT_CONT( mat->type )) { size.width *= size.height; mat_step = CV_STUB_STEP; size.height = 1; } } depth = CV_MAT_DEPTH( type ); channels = CV_MAT_CN( type ); size.width *= channels; if( disttype == CV_RAND_UNI ) { if( depth <= CV_32S ) { for( i = 0, fast_int_mode = 1; i < channels; i++ ) { int t0 = iparam[0][i] = cvCeil( param1.val[i] ); int t1 = iparam[1][i] = cvFloor( param2.val[i] ) - t0; double diff = param1.val[i] - param2.val[i]; fast_int_mode &= INT_MIN <= diff && diff <= INT_MAX && (t1 & (t1 - 1)) == 0; } } if( fast_int_mode ) { for( i = 0; i < channels; i++ ) iparam[1][i]--; for( ; i < 12; i++ ) { int t0 = iparam[0][i - channels]; int t1 = iparam[1][i - channels]; iparam[0][i] = t0; iparam[1][i] = t1; } CV_GET_FUNC_PTR( func, (CvFunc2D_1A2P)(fastrng_tab.fn_2d[depth])); param = iparam; } else { for( i = 0; i < channels; i++ ) { double t0 = param1.val[i]; double t1 = param2.val[i]; dparam[0][i] = t0 - (t1 - t0); dparam[1][i] = t1 - t0; } CV_GET_FUNC_PTR( func, (CvFunc2D_1A2P)(rng_tab[0].fn_2d[depth])); } } else if( disttype == CV_RAND_NORMAL ) { for( i = 0; i < channels; i++ ) { double t0 = param1.val[i]; double t1 = param2.val[i]; dparam[0][i] = t0; dparam[1][i] = t1; } CV_GET_FUNC_PTR( func, (CvFunc2D_1A2P)(rng_tab[1].fn_2d[depth])); } else { CV_ERROR( CV_StsBadArg, "Unknown distribution type" ); } if( !fast_int_mode ) { for( i = channels; i < 12; i++ ) { double t0 = dparam[0][i - channels]; double t1 = dparam[1][i - channels]; dparam[0][i] = t0; dparam[1][i] = t1; } } if( !is_nd ) { IPPI_CALL( func( mat->data.ptr, mat_step, size, rng, param )); } else { do { IPPI_CALL( func( iterator->ptr[0], CV_STUB_STEP, size, rng, param )); } while( cvNextNArraySlice( iterator )); } __END__; } /* End of file. */