/************************************************************************** * * Copyright © 2010 Luca Barbieri * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <stdio.h> #include "translate/translate.h" #include "util/u_memory.h" #include "util/u_format.h" #include "util/u_half.h" #include "util/u_cpu_detect.h" #include "rtasm/rtasm_cpu.h" /* don't use this for serious use */ static double rand_double() { const double rm = (double)RAND_MAX + 1; double div = 1; double v = 0; unsigned i; for(i = 0; i < 4; ++i) { div *= rm; v += (double)rand() / div; } return v; } int main(int argc, char** argv) { struct translate *(*create_fn)(const struct translate_key *key) = 0; struct translate_key key; unsigned output_format; unsigned input_format; unsigned buffer_size = 4096; unsigned char* buffer[5]; unsigned char* byte_buffer; float* float_buffer; double* double_buffer; uint16_t *half_buffer; unsigned * elts; unsigned count = 4; unsigned i, j, k; unsigned passed = 0; unsigned total = 0; const float error = 0.03125; create_fn = 0; util_cpu_detect(); if(argc <= 1) {} else if (!strcmp(argv[1], "generic")) create_fn = translate_generic_create; else if (!strcmp(argv[1], "x86")) create_fn = translate_sse2_create; else if (!strcmp(argv[1], "nosse")) { util_cpu_caps.has_sse = 0; util_cpu_caps.has_sse2 = 0; util_cpu_caps.has_sse3 = 0; util_cpu_caps.has_sse4_1 = 0; create_fn = translate_sse2_create; } else if (!strcmp(argv[1], "sse")) { if(!util_cpu_caps.has_sse || !rtasm_cpu_has_sse()) { printf("Error: CPU doesn't support SSE (test with qemu)\n"); return 2; } util_cpu_caps.has_sse2 = 0; util_cpu_caps.has_sse3 = 0; util_cpu_caps.has_sse4_1 = 0; create_fn = translate_sse2_create; } else if (!strcmp(argv[1], "sse2")) { if(!util_cpu_caps.has_sse2 || !rtasm_cpu_has_sse()) { printf("Error: CPU doesn't support SSE2 (test with qemu)\n"); return 2; } util_cpu_caps.has_sse3 = 0; util_cpu_caps.has_sse4_1 = 0; create_fn = translate_sse2_create; } else if (!strcmp(argv[1], "sse3")) { if(!util_cpu_caps.has_sse3 || !rtasm_cpu_has_sse()) { printf("Error: CPU doesn't support SSE3 (test with qemu)\n"); return 2; } util_cpu_caps.has_sse4_1 = 0; create_fn = translate_sse2_create; } else if (!strcmp(argv[1], "sse4.1")) { if(!util_cpu_caps.has_sse4_1 || !rtasm_cpu_has_sse()) { printf("Error: CPU doesn't support SSE4.1 (test with qemu)\n"); return 2; } create_fn = translate_sse2_create; } if (!create_fn) { printf("Usage: ./translate_test [generic|x86|nosse|sse|sse2|sse3|sse4.1]\n"); return 2; } for (i = 1; i < Elements(buffer); ++i) buffer[i] = align_malloc(buffer_size, 4096); byte_buffer = align_malloc(buffer_size, 4096); float_buffer = align_malloc(buffer_size, 4096); double_buffer = align_malloc(buffer_size, 4096); half_buffer = align_malloc(buffer_size, 4096); elts = align_malloc(count * sizeof *elts, 4096); key.nr_elements = 1; key.element[0].input_buffer = 0; key.element[0].input_offset = 0; key.element[0].output_offset = 0; key.element[0].type = TRANSLATE_ELEMENT_NORMAL; key.element[0].instance_divisor = 0; srand(4359025); /* avoid negative values that work badly when converted to unsigned format*/ for (i = 0; i < buffer_size; ++i) byte_buffer[i] = rand() & 0x7f7f7f7f; for (i = 0; i < buffer_size / sizeof(float); ++i) float_buffer[i] = (float)rand_double(); for (i = 0; i < buffer_size / sizeof(double); ++i) double_buffer[i] = rand_double(); for (i = 0; i < buffer_size / sizeof(double); ++i) half_buffer[i] = util_float_to_half((float) rand_double()); for (i = 0; i < count; ++i) elts[i] = i; for (output_format = 1; output_format < PIPE_FORMAT_COUNT; ++output_format) { const struct util_format_description* output_format_desc = util_format_description(output_format); unsigned output_format_size; unsigned output_normalized = 0; if (!output_format_desc || !output_format_desc->fetch_rgba_float || !output_format_desc->pack_rgba_float || output_format_desc->colorspace != UTIL_FORMAT_COLORSPACE_RGB || output_format_desc->layout != UTIL_FORMAT_LAYOUT_PLAIN || !translate_is_output_format_supported(output_format)) continue; for(i = 0; i < output_format_desc->nr_channels; ++i) { if(output_format_desc->channel[i].type != UTIL_FORMAT_TYPE_FLOAT) output_normalized |= (1 << output_format_desc->channel[i].normalized); } output_format_size = util_format_get_stride(output_format, 1); for (input_format = 1; input_format < PIPE_FORMAT_COUNT; ++input_format) { const struct util_format_description* input_format_desc = util_format_description(input_format); unsigned input_format_size; struct translate* translate[2]; unsigned fail = 0; unsigned used_generic = 0; unsigned input_normalized = 0; boolean input_is_float = FALSE; if (!input_format_desc || !input_format_desc->fetch_rgba_float || !input_format_desc->pack_rgba_float || input_format_desc->colorspace != UTIL_FORMAT_COLORSPACE_RGB || input_format_desc->layout != UTIL_FORMAT_LAYOUT_PLAIN || !translate_is_output_format_supported(input_format)) continue; input_format_size = util_format_get_stride(input_format, 1); for(i = 0; i < input_format_desc->nr_channels; ++i) { if(input_format_desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT) { input_is_float = 1; input_normalized |= 1 << 1; } else input_normalized |= (1 << input_format_desc->channel[i].normalized); } if(((input_normalized | output_normalized) == 3) || ((input_normalized & 1) && (output_normalized & 1) && input_format_size * output_format_desc->nr_channels > output_format_size * input_format_desc->nr_channels)) continue; key.element[0].input_format = input_format; key.element[0].output_format = output_format; key.output_stride = output_format_size; translate[0] = create_fn(&key); if (!translate[0]) continue; key.element[0].input_format = output_format; key.element[0].output_format = input_format; key.output_stride = input_format_size; translate[1] = create_fn(&key); if(!translate[1]) { used_generic = 1; translate[1] = translate_generic_create(&key); if(!translate[1]) continue; } for(i = 1; i < 5; ++i) memset(buffer[i], 0xcd - (0x22 * i), 4096); if(input_is_float && input_format_desc->channel[0].size == 32) buffer[0] = (unsigned char*)float_buffer; else if(input_is_float && input_format_desc->channel[0].size == 64) buffer[0] = (unsigned char*)double_buffer; else if(input_is_float && input_format_desc->channel[0].size == 16) buffer[0] = (unsigned char*)half_buffer; else if(input_is_float) abort(); else buffer[0] = byte_buffer; translate[0]->set_buffer(translate[0], 0, buffer[0], input_format_size, count - 1); translate[0]->run_elts(translate[0], elts, count, 0, buffer[1]); translate[1]->set_buffer(translate[1], 0, buffer[1], output_format_size, count - 1); translate[1]->run_elts(translate[1], elts, count, 0, buffer[2]); translate[0]->set_buffer(translate[0], 0, buffer[2], input_format_size, count - 1); translate[0]->run_elts(translate[0], elts, count, 0, buffer[3]); translate[1]->set_buffer(translate[1], 0, buffer[3], output_format_size, count - 1); translate[1]->run_elts(translate[1], elts, count, 0, buffer[4]); for (i = 0; i < count; ++i) { float a[4]; float b[4]; input_format_desc->fetch_rgba_float(a, buffer[2] + i * input_format_size, 0, 0); input_format_desc->fetch_rgba_float(b, buffer[4] + i * input_format_size, 0, 0); for (j = 0; j < count; ++j) { float d = a[j] - b[j]; if (d > error || d < -error) { fail = 1; break; } } } printf("%s%s: %s -> %s -> %s -> %s -> %s\n", fail ? "FAIL" : "PASS", used_generic ? "[GENERIC]" : "", input_format_desc->name, output_format_desc->name, input_format_desc->name, output_format_desc->name, input_format_desc->name); if (1) { for (i = 0; i < Elements(buffer); ++i) { unsigned format_size = (i & 1) ? output_format_size : input_format_size; printf("%c ", (i == 2 || i == 4) ? '*' : ' '); for (j = 0; j < count; ++j) { for (k = 0; k < format_size; ++k) { printf("%02x", buffer[i][j * format_size + k]); } printf(" "); } printf("\n"); } } if (!fail) ++passed; ++total; if(translate[1]) translate[1]->release(translate[1]); translate[0]->release(translate[0]); } } printf("%u/%u tests passed for translate_%s\n", passed, total, argv[1]); return passed != total; }