/* * This file is part of ltrace. * Copyright (C) 2006,2010,2011,2012,2013 Petr Machata, Red Hat Inc. * Copyright (C) 2010 Zachary T Welch, CodeSourcery * Copyright (C) 2010 Joe Damato * Copyright (C) 1997,1998,2001,2004,2007,2008,2009 Juan Cespedes * Copyright (C) 2006 Olaf Hering, SUSE Linux GmbH * Copyright (C) 2006 Eric Vaitl, Cisco Systems, Inc. * Copyright (C) 2006 Paul Gilliam, IBM Corporation * Copyright (C) 2006 Ian Wienand * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include "config.h" #include <assert.h> #ifdef __linux__ #include <endian.h> #endif #include <errno.h> #include <fcntl.h> #include <gelf.h> #include <inttypes.h> #include <search.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <strings.h> #include <unistd.h> #include "backend.h" #include "filter.h" #include "library.h" #include "ltrace-elf.h" #include "proc.h" #include "debug.h" #include "options.h" #ifndef ARCH_HAVE_LTELF_DATA int arch_elf_init(struct ltelf *lte, struct library *lib) { return 0; } void arch_elf_destroy(struct ltelf *lte) { } #endif #ifndef OS_HAVE_ADD_PLT_ENTRY enum plt_status os_elf_add_plt_entry(struct process *proc, struct ltelf *lte, const char *a_name, GElf_Rela *rela, size_t ndx, struct library_symbol **ret) { return PLT_DEFAULT; } #endif #ifndef ARCH_HAVE_ADD_PLT_ENTRY enum plt_status arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte, const char *a_name, GElf_Rela *rela, size_t ndx, struct library_symbol **ret) { return PLT_DEFAULT; } #endif #ifndef OS_HAVE_ADD_FUNC_ENTRY enum plt_status os_elf_add_func_entry(struct process *proc, struct ltelf *lte, const GElf_Sym *sym, arch_addr_t addr, const char *name, struct library_symbol **ret) { if (GELF_ST_TYPE(sym->st_info) != STT_FUNC) { *ret = NULL; return PLT_OK; } else { return PLT_DEFAULT; } } #endif #ifndef ARCH_HAVE_ADD_FUNC_ENTRY enum plt_status arch_elf_add_func_entry(struct process *proc, struct ltelf *lte, const GElf_Sym *sym, arch_addr_t addr, const char *name, struct library_symbol **ret) { return PLT_DEFAULT; } #endif Elf_Data * elf_loaddata(Elf_Scn *scn, GElf_Shdr *shdr) { Elf_Data *data = elf_getdata(scn, NULL); if (data == NULL || elf_getdata(scn, data) != NULL || data->d_off || data->d_size != shdr->sh_size) return NULL; return data; } static int elf_get_section_if(struct ltelf *lte, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr, int (*predicate)(Elf_Scn *, GElf_Shdr *, void *data), void *data) { int i; for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn; GElf_Shdr shdr; scn = elf_getscn(lte->elf, i); if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { debug(1, "Couldn't read section or header."); return -1; } if (predicate(scn, &shdr, data)) { *tgt_sec = scn; *tgt_shdr = shdr; return 0; } } *tgt_sec = NULL; return 0; } static int inside_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) { GElf_Addr addr = *(GElf_Addr *)data; return addr >= shdr->sh_addr && addr < shdr->sh_addr + shdr->sh_size; } int elf_get_section_covering(struct ltelf *lte, GElf_Addr addr, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) { return elf_get_section_if(lte, tgt_sec, tgt_shdr, &inside_p, &addr); } static int type_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) { GElf_Word type = *(GElf_Word *)data; return shdr->sh_type == type; } int elf_get_section_type(struct ltelf *lte, GElf_Word type, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) { return elf_get_section_if(lte, tgt_sec, tgt_shdr, &type_p, &type); } struct section_named_data { struct ltelf *lte; const char *name; }; static int name_p(Elf_Scn *scn, GElf_Shdr *shdr, void *d) { struct section_named_data *data = d; const char *name = elf_strptr(data->lte->elf, data->lte->ehdr.e_shstrndx, shdr->sh_name); return strcmp(name, data->name) == 0; } int elf_get_section_named(struct ltelf *lte, const char *name, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) { struct section_named_data data = { .lte = lte, .name = name, }; return elf_get_section_if(lte, tgt_sec, tgt_shdr, &name_p, &data); } static struct elf_each_symbol_t each_symbol_in(Elf_Data *symtab, const char *strtab, size_t count, unsigned i, enum callback_status (*cb)(GElf_Sym *symbol, const char *name, void *data), void *data) { for (; i < count; ++i) { GElf_Sym sym; if (gelf_getsym(symtab, i, &sym) == NULL) return (struct elf_each_symbol_t){ i, -2 }; switch (cb(&sym, strtab + sym.st_name, data)) { case CBS_FAIL: return (struct elf_each_symbol_t){ i, -1 }; case CBS_STOP: return (struct elf_each_symbol_t){ i + 1, 0 }; case CBS_CONT: break; } } return (struct elf_each_symbol_t){ 0, 0 }; } /* N.B.: gelf_getsym takes integer argument. Since negative values * are invalid as indices, we can use the extra bit to encode which * symbol table we are looking into. ltrace currently doesn't handle * more than two symbol tables anyway, nor does it handle the xindex * stuff. */ struct elf_each_symbol_t elf_each_symbol(struct ltelf *lte, unsigned start_after, enum callback_status (*cb)(GElf_Sym *symbol, const char *name, void *data), void *data) { unsigned index = start_after == 0 ? 0 : start_after >> 1; /* Go through static symbol table first. */ if ((start_after & 0x1) == 0) { struct elf_each_symbol_t st = each_symbol_in(lte->symtab, lte->strtab, lte->symtab_count, index, cb, data); /* If the iteration stopped prematurely, bail out. */ if (st.restart != 0) return ((struct elf_each_symbol_t) { st.restart << 1, st.status }); } struct elf_each_symbol_t st = each_symbol_in(lte->dynsym, lte->dynstr, lte->dynsym_count, index, cb, data); if (st.restart != 0) return ((struct elf_each_symbol_t) { st.restart << 1 | 0x1, st.status }); return (struct elf_each_symbol_t){ 0, 0 }; } int elf_can_read_next(Elf_Data *data, GElf_Xword offset, GElf_Xword size) { assert(data != NULL); if (data->d_size < size || offset > data->d_size - size) { debug(1, "Not enough data to read %"PRId64"-byte value" " at offset %"PRId64".", size, offset); return 0; } return 1; } #define DEF_READER(NAME, SIZE) \ int \ NAME(Elf_Data *data, GElf_Xword offset, uint##SIZE##_t *retp) \ { \ if (!elf_can_read_next(data, offset, SIZE / 8)) \ return -1; \ \ if (data->d_buf == NULL) /* NODATA section */ { \ *retp = 0; \ return 0; \ } \ \ union { \ uint##SIZE##_t dst; \ char buf[0]; \ } u; \ memcpy(u.buf, data->d_buf + offset, sizeof(u.dst)); \ *retp = u.dst; \ return 0; \ } DEF_READER(elf_read_u8, 8) DEF_READER(elf_read_u16, 16) DEF_READER(elf_read_u32, 32) DEF_READER(elf_read_u64, 64) #undef DEF_READER #define DEF_READER(NAME, SIZE) \ int \ NAME(Elf_Data *data, GElf_Xword *offset, uint##SIZE##_t *retp) \ { \ int rc = elf_read_u##SIZE(data, *offset, retp); \ if (rc < 0) \ return rc; \ *offset += SIZE / 8; \ return 0; \ } DEF_READER(elf_read_next_u8, 8) DEF_READER(elf_read_next_u16, 16) DEF_READER(elf_read_next_u32, 32) DEF_READER(elf_read_next_u64, 64) #undef DEF_READER int elf_read_next_uleb128(Elf_Data *data, GElf_Xword *offset, uint64_t *retp) { uint64_t result = 0; int shift = 0; int size = 8 * sizeof result; while (1) { uint8_t byte; if (elf_read_next_u8(data, offset, &byte) < 0) return -1; uint8_t payload = byte & 0x7f; result |= (uint64_t)payload << shift; shift += 7; if (shift > size && byte != 0x1) return -1; if ((byte & 0x80) == 0) break; } if (retp != NULL) *retp = result; return 0; } int elf_read_uleb128(Elf_Data *data, GElf_Xword offset, uint64_t *retp) { return elf_read_next_uleb128(data, &offset, retp); } int ltelf_init(struct ltelf *lte, const char *filename) { memset(lte, 0, sizeof *lte); lte->fd = open(filename, O_RDONLY); if (lte->fd == -1) { fprintf(stderr, "Can't open %s: %s\n", filename, strerror(errno)); return 1; } elf_version(EV_CURRENT); #ifdef HAVE_ELF_C_READ_MMAP lte->elf = elf_begin(lte->fd, ELF_C_READ_MMAP, NULL); #else lte->elf = elf_begin(lte->fd, ELF_C_READ, NULL); #endif if (lte->elf == NULL || elf_kind(lte->elf) != ELF_K_ELF) { fprintf(stderr, "\"%s\" is not an ELF file\n", filename); exit(EXIT_FAILURE); } if (gelf_getehdr(lte->elf, <e->ehdr) == NULL) { fprintf(stderr, "can't read ELF header of \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } if (lte->ehdr.e_type != ET_EXEC && lte->ehdr.e_type != ET_DYN) { fprintf(stderr, "\"%s\" is neither an ELF executable" " nor a shared library\n", filename); exit(EXIT_FAILURE); } if (1 #ifdef LT_ELF_MACHINE && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS || lte->ehdr.e_machine != LT_ELF_MACHINE) #endif #ifdef LT_ELF_MACHINE2 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS2 || lte->ehdr.e_machine != LT_ELF_MACHINE2) #endif #ifdef LT_ELF_MACHINE3 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS3 || lte->ehdr.e_machine != LT_ELF_MACHINE3) #endif ) { fprintf(stderr, "\"%s\" is ELF from incompatible architecture\n", filename); exit(EXIT_FAILURE); } VECT_INIT(<e->plt_relocs, GElf_Rela); return 0; } void ltelf_destroy(struct ltelf *lte) { debug(DEBUG_FUNCTION, "close_elf()"); elf_end(lte->elf); close(lte->fd); VECT_DESTROY(<e->plt_relocs, GElf_Rela, NULL, NULL); } static void read_symbol_table(struct ltelf *lte, const char *filename, Elf_Scn *scn, GElf_Shdr *shdr, const char *name, Elf_Data **datap, size_t *countp, const char **strsp) { *datap = elf_getdata(scn, NULL); *countp = shdr->sh_size / shdr->sh_entsize; if ((*datap == NULL || elf_getdata(scn, *datap) != NULL) && options.static_filter != NULL) { fprintf(stderr, "Couldn't get data of section" " %s from \"%s\": %s\n", name, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } scn = elf_getscn(lte->elf, shdr->sh_link); GElf_Shdr shdr2; if (scn == NULL || gelf_getshdr(scn, &shdr2) == NULL) { fprintf(stderr, "Couldn't get header of section" " #%d from \"%s\": %s\n", shdr->sh_link, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } Elf_Data *data = elf_getdata(scn, NULL); if (data == NULL || elf_getdata(scn, data) != NULL || shdr2.sh_size != data->d_size || data->d_off) { fprintf(stderr, "Couldn't get data of section" " #%d from \"%s\": %s\n", shdr2.sh_link, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } *strsp = data->d_buf; } static int rel_to_rela(struct ltelf *lte, const GElf_Rel *rel, GElf_Rela *rela) { rela->r_offset = rel->r_offset; rela->r_info = rel->r_info; Elf_Scn *sec; GElf_Shdr shdr; if (elf_get_section_covering(lte, rel->r_offset, &sec, &shdr) < 0 || sec == NULL) return -1; Elf_Data *data = elf_loaddata(sec, &shdr); if (data == NULL) return -1; GElf_Xword offset = rel->r_offset - shdr.sh_addr - data->d_off; uint64_t value; if (lte->ehdr.e_ident[EI_CLASS] == ELFCLASS32) { uint32_t tmp; if (elf_read_u32(data, offset, &tmp) < 0) return -1; value = tmp; } else if (elf_read_u64(data, offset, &value) < 0) { return -1; } rela->r_addend = value; return 0; } int elf_read_relocs(struct ltelf *lte, Elf_Scn *scn, GElf_Shdr *shdr, struct vect *rela_vec) { if (vect_reserve_additional(rela_vec, lte->ehdr.e_shnum) < 0) return -1; Elf_Data *relplt = elf_loaddata(scn, shdr); if (relplt == NULL) { fprintf(stderr, "Couldn't load .rel*.plt data.\n"); return -1; } if ((shdr->sh_size % shdr->sh_entsize) != 0) { fprintf(stderr, ".rel*.plt size (%" PRIx64 "d) not a multiple " "of its sh_entsize (%" PRIx64 "d).\n", shdr->sh_size, shdr->sh_entsize); return -1; } GElf_Xword relplt_count = shdr->sh_size / shdr->sh_entsize; GElf_Xword i; for (i = 0; i < relplt_count; ++i) { GElf_Rela rela; if (relplt->d_type == ELF_T_REL) { GElf_Rel rel; if (gelf_getrel(relplt, i, &rel) == NULL || rel_to_rela(lte, &rel, &rela) < 0) return -1; } else if (gelf_getrela(relplt, i, &rela) == NULL) { return -1; } if (VECT_PUSHBACK(rela_vec, &rela) < 0) return -1; } return 0; } int elf_load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep) { Elf_Scn *scn; GElf_Shdr shdr; if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0 || scn == NULL) { fail: fprintf(stderr, "Couldn't get SHT_DYNAMIC: %s\n", elf_errmsg(-1)); return -1; } Elf_Data *data = elf_loaddata(scn, &shdr); if (data == NULL) goto fail; size_t j; for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { GElf_Dyn dyn; if (gelf_getdyn(data, j, &dyn) == NULL) goto fail; if(dyn.d_tag == tag) { *valuep = dyn.d_un.d_ptr; return 0; } } return -1; } static int ltelf_read_elf(struct ltelf *lte, const char *filename) { int i; GElf_Addr relplt_addr = 0; GElf_Addr soname_offset = 0; GElf_Xword relplt_size = 0; debug(DEBUG_FUNCTION, "ltelf_read_elf(filename=%s)", filename); debug(1, "Reading ELF from %s...", filename); for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn; GElf_Shdr shdr; const char *name; scn = elf_getscn(lte->elf, i); if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { fprintf(stderr, "Couldn't get section #%d from" " \"%s\": %s\n", i, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } name = elf_strptr(lte->elf, lte->ehdr.e_shstrndx, shdr.sh_name); if (name == NULL) { fprintf(stderr, "Couldn't get name of section #%d from" " \"%s\": %s\n", i, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } if (shdr.sh_type == SHT_SYMTAB) { read_symbol_table(lte, filename, scn, &shdr, name, <e->symtab, <e->symtab_count, <e->strtab); } else if (shdr.sh_type == SHT_DYNSYM) { read_symbol_table(lte, filename, scn, &shdr, name, <e->dynsym, <e->dynsym_count, <e->dynstr); } else if (shdr.sh_type == SHT_DYNAMIC) { Elf_Data *data; size_t j; lte->dyn_addr = shdr.sh_addr + lte->bias; lte->dyn_sz = shdr.sh_size; data = elf_getdata(scn, NULL); if (data == NULL || elf_getdata(scn, data) != NULL) { fprintf(stderr, "Couldn't get .dynamic data" " from \"%s\": %s\n", filename, strerror(errno)); exit(EXIT_FAILURE); } for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { GElf_Dyn dyn; if (gelf_getdyn(data, j, &dyn) == NULL) { fprintf(stderr, "Couldn't get .dynamic" " data from \"%s\": %s\n", filename, strerror(errno)); exit(EXIT_FAILURE); } if (dyn.d_tag == DT_JMPREL) relplt_addr = dyn.d_un.d_ptr; else if (dyn.d_tag == DT_PLTRELSZ) relplt_size = dyn.d_un.d_val; else if (dyn.d_tag == DT_SONAME) soname_offset = dyn.d_un.d_val; } } else if (shdr.sh_type == SHT_PROGBITS || shdr.sh_type == SHT_NOBITS) { if (strcmp(name, ".plt") == 0) { lte->plt_addr = shdr.sh_addr; lte->plt_size = shdr.sh_size; lte->plt_data = elf_loaddata(scn, &shdr); if (lte->plt_data == NULL) fprintf(stderr, "Can't load .plt data\n"); lte->plt_flags = shdr.sh_flags; } #ifdef ARCH_SUPPORTS_OPD else if (strcmp(name, ".opd") == 0) { lte->opd_addr = (GElf_Addr *) (long) shdr.sh_addr; lte->opd_size = shdr.sh_size; lte->opd = elf_rawdata(scn, NULL); } #endif } } if (lte->dynsym == NULL || lte->dynstr == NULL) { fprintf(stderr, "Couldn't find .dynsym or .dynstr in \"%s\"\n", filename); exit(EXIT_FAILURE); } if (!relplt_addr || !lte->plt_addr) { debug(1, "%s has no PLT relocations", filename); } else if (relplt_size == 0) { debug(1, "%s has unknown PLT size", filename); } else { for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn; GElf_Shdr shdr; scn = elf_getscn(lte->elf, i); if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { fprintf(stderr, "Couldn't get section header" " from \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } if (shdr.sh_addr == relplt_addr && shdr.sh_size == relplt_size) { if (elf_read_relocs(lte, scn, &shdr, <e->plt_relocs) < 0) { fprintf(stderr, "Couldn't get .rel*.plt" " data from \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } break; } } if (i == lte->ehdr.e_shnum) { fprintf(stderr, "Couldn't find .rel*.plt section in \"%s\"\n", filename); exit(EXIT_FAILURE); } } debug(1, "%s %zd PLT relocations", filename, vect_size(<e->plt_relocs)); if (soname_offset != 0) lte->soname = lte->dynstr + soname_offset; return 0; } #ifndef ARCH_HAVE_GET_SYMINFO int arch_get_sym_info(struct ltelf *lte, const char *filename, size_t sym_index, GElf_Rela *rela, GElf_Sym *sym) { return gelf_getsym(lte->dynsym, ELF64_R_SYM(rela->r_info), sym) != NULL ? 0 : -1; } #endif int default_elf_add_plt_entry(struct process *proc, struct ltelf *lte, const char *a_name, GElf_Rela *rela, size_t ndx, struct library_symbol **ret) { char *name = strdup(a_name); if (name == NULL) { fail_message: fprintf(stderr, "Couldn't create symbol for PLT entry: %s\n", strerror(errno)); fail: free(name); return -1; } GElf_Addr addr = arch_plt_sym_val(lte, ndx, rela); struct library_symbol *libsym = malloc(sizeof(*libsym)); if (libsym == NULL) goto fail_message; /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ arch_addr_t taddr = (arch_addr_t) (uintptr_t)(addr + lte->bias); if (library_symbol_init(libsym, taddr, name, 1, LS_TOPLT_EXEC) < 0) { free(libsym); goto fail; } libsym->next = *ret; *ret = libsym; return 0; } int elf_add_plt_entry(struct process *proc, struct ltelf *lte, const char *name, GElf_Rela *rela, size_t idx, struct library_symbol **ret) { enum plt_status plts = arch_elf_add_plt_entry(proc, lte, name, rela, idx, ret); if (plts == PLT_DEFAULT) plts = os_elf_add_plt_entry(proc, lte, name, rela, idx, ret); switch (plts) { case PLT_DEFAULT: return default_elf_add_plt_entry(proc, lte, name, rela, idx, ret); case PLT_FAIL: return -1; case PLT_OK: return 0; } assert(! "Invalid return from X_elf_add_plt_entry!"); abort(); } static void mark_chain_latent(struct library_symbol *libsym) { for (; libsym != NULL; libsym = libsym->next) { debug(DEBUG_FUNCTION, "marking %s latent", libsym->name); libsym->latent = 1; } } static void filter_symbol_chain(struct filter *filter, struct library_symbol **libsymp, struct library *lib) { assert(libsymp != NULL); struct library_symbol **ptr = libsymp; while (*ptr != NULL) { if (filter_matches_symbol(filter, (*ptr)->name, lib)) { ptr = &(*ptr)->next; } else { struct library_symbol *sym = *ptr; *ptr = (*ptr)->next; library_symbol_destroy(sym); free(sym); } } } static int populate_plt(struct process *proc, const char *filename, struct ltelf *lte, struct library *lib) { const bool latent_plts = options.export_filter != NULL; const size_t count = vect_size(<e->plt_relocs); size_t i; for (i = 0; i < count; ++i) { GElf_Rela *rela = VECT_ELEMENT(<e->plt_relocs, GElf_Rela, i); GElf_Sym sym; switch (arch_get_sym_info(lte, filename, i, rela, &sym)) { default: fprintf(stderr, "Couldn't get relocation for symbol #%zd" " from \"%s\": %s\n", i, filename, elf_errmsg(-1)); /* Fall through. */ case 1: continue; /* Skip this entry. */ case 0: break; } char const *name = lte->dynstr + sym.st_name; int matched = filter_matches_symbol(options.plt_filter, name, lib); struct library_symbol *libsym = NULL; if (elf_add_plt_entry(proc, lte, name, rela, i, &libsym) < 0) return -1; /* If we didn't match the PLT entry, filter the chain * to only include the matching symbols (but include * all if we are adding latent symbols) to allow * backends to override the PLT symbol's name. */ if (! matched && ! latent_plts) filter_symbol_chain(options.plt_filter, &libsym, lib); if (libsym != NULL) { /* If we are adding those symbols just for * tracing exports, mark them all latent. */ if (! matched && latent_plts) mark_chain_latent(libsym); library_add_symbol(lib, libsym); } } return 0; } static void delete_symbol_chain(struct library_symbol *libsym) { while (libsym != NULL) { struct library_symbol *tmp = libsym->next; library_symbol_destroy(libsym); free(libsym); libsym = tmp; } } /* When -x rules result in request to trace several aliases, we only * want to add such symbol once. The only way that those symbols * differ in is their name, e.g. in glibc you have __GI___libc_free, * __cfree, __free, __libc_free, cfree and free all defined on the * same address. So instead we keep this unique symbol struct for * each address, and replace name in libsym with a shorter variant if * we find it. */ struct unique_symbol { arch_addr_t addr; struct library_symbol *libsym; }; static int unique_symbol_cmp(const void *key, const void *val) { const struct unique_symbol *sym_key = key; const struct unique_symbol *sym_val = val; return sym_key->addr != sym_val->addr; } static enum callback_status symbol_with_address(struct library_symbol *sym, void *addrptr) { return sym->enter_addr == *(arch_addr_t *)addrptr ? CBS_STOP : CBS_CONT; } static int populate_this_symtab(struct process *proc, const char *filename, struct ltelf *lte, struct library *lib, Elf_Data *symtab, const char *strtab, size_t count, struct library_exported_name **names) { /* If a valid NAMES is passed, we pass in *NAMES a list of * symbol names that this library exports. */ if (names != NULL) *names = NULL; /* Using sorted array would be arguably better, but this * should be well enough for the number of symbols that we * typically deal with. */ size_t num_symbols = 0; struct unique_symbol *symbols = malloc(sizeof(*symbols) * count); if (symbols == NULL) { fprintf(stderr, "couldn't insert symbols for -x: %s\n", strerror(errno)); return -1; } GElf_Word secflags[lte->ehdr.e_shnum]; size_t i; for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn = elf_getscn(lte->elf, i); GElf_Shdr shdr; if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) secflags[i] = 0; else secflags[i] = shdr.sh_flags; } for (i = 0; i < count; ++i) { GElf_Sym sym; if (gelf_getsym(symtab, i, &sym) == NULL) { fprintf(stderr, "couldn't get symbol #%zd from %s: %s\n", i, filename, elf_errmsg(-1)); continue; } if (sym.st_value == 0 || sym.st_shndx == STN_UNDEF /* Also ignore any special values besides direct * section references. */ || sym.st_shndx >= lte->ehdr.e_shnum) continue; /* Find symbol name and snip version. */ const char *orig_name = strtab + sym.st_name; const char *version = strchr(orig_name, '@'); size_t len = version != NULL ? (assert(version > orig_name), (size_t)(version - orig_name)) : strlen(orig_name); char name[len + 1]; memcpy(name, orig_name, len); name[len] = 0; /* If we are interested in exports, store this name. */ if (names != NULL) { struct library_exported_name *export = malloc(sizeof *export); char *name_copy = strdup(name); if (name_copy == NULL || export == NULL) { free(name_copy); free(export); fprintf(stderr, "Couldn't store symbol %s. " "Tracing may be incomplete.\n", name); } else { export->name = name_copy; export->own_name = 1; export->next = *names; *names = export; } } /* If the symbol is not matched, skip it. We already * stored it to export list above. */ if (!filter_matches_symbol(options.static_filter, name, lib)) continue; arch_addr_t addr = (arch_addr_t) (uintptr_t)(sym.st_value + lte->bias); arch_addr_t naddr; /* On arches that support OPD, the value of typical * function symbol will be a pointer to .opd, but some * will point directly to .text. We don't want to * translate those. */ if (secflags[sym.st_shndx] & SHF_EXECINSTR) { naddr = addr; } else if (arch_translate_address(lte, addr, &naddr) < 0) { fprintf(stderr, "couldn't translate address of %s@%s: %s\n", name, lib->soname, strerror(errno)); continue; } char *full_name = strdup(name); if (full_name == NULL) { fprintf(stderr, "couldn't copy name of %s@%s: %s\n", name, lib->soname, strerror(errno)); continue; } struct library_symbol *libsym = NULL; enum plt_status plts = arch_elf_add_func_entry(proc, lte, &sym, naddr, full_name, &libsym); if (plts == PLT_DEFAULT) plts = os_elf_add_func_entry(proc, lte, &sym, naddr, full_name, &libsym); switch (plts) { case PLT_DEFAULT:; /* Put the default symbol to the chain. */ struct library_symbol *tmp = malloc(sizeof *tmp); if (tmp == NULL || library_symbol_init(tmp, naddr, full_name, 1, LS_TOPLT_NONE) < 0) { free(tmp); /* Either add the whole bunch, or none * of it. Note that for PLT_FAIL we * don't do this--it's the callee's * job to clean up after itself before * it bails out. */ delete_symbol_chain(libsym); libsym = NULL; case PLT_FAIL: fprintf(stderr, "Couldn't add symbol %s@%s " "for tracing.\n", name, lib->soname); break; } full_name = NULL; tmp->next = libsym; libsym = tmp; break; case PLT_OK: break; } free(full_name); struct library_symbol *tmp; for (tmp = libsym; tmp != NULL; ) { /* Look whether we already have a symbol for * this address. If not, add this one. If * yes, look if we should pick the new symbol * name. */ struct unique_symbol key = { tmp->enter_addr, NULL }; struct unique_symbol *unique = lsearch(&key, symbols, &num_symbols, sizeof *symbols, &unique_symbol_cmp); if (unique->libsym == NULL) { unique->libsym = tmp; unique->addr = tmp->enter_addr; tmp = tmp->next; unique->libsym->next = NULL; } else { if (strlen(tmp->name) < strlen(unique->libsym->name)) { library_symbol_set_name (unique->libsym, tmp->name, 1); tmp->name = NULL; } struct library_symbol *next = tmp->next; library_symbol_destroy(tmp); free(tmp); tmp = next; } } } /* Now we do the union of this set of unique symbols with * what's already in the library. */ for (i = 0; i < num_symbols; ++i) { struct library_symbol *this_sym = symbols[i].libsym; assert(this_sym != NULL); struct library_symbol *other = library_each_symbol(lib, NULL, symbol_with_address, &this_sym->enter_addr); if (other != NULL) { library_symbol_destroy(this_sym); free(this_sym); symbols[i].libsym = NULL; } } for (i = 0; i < num_symbols; ++i) if (symbols[i].libsym != NULL) library_add_symbol(lib, symbols[i].libsym); free(symbols); return 0; } static int populate_symtab(struct process *proc, const char *filename, struct ltelf *lte, struct library *lib, int symtabs, int exports) { int status; if (symtabs && lte->symtab != NULL && lte->strtab != NULL && (status = populate_this_symtab(proc, filename, lte, lib, lte->symtab, lte->strtab, lte->symtab_count, NULL)) < 0) return status; /* Check whether we want to trace symbols implemented by this * library (-l). */ struct library_exported_name **names = NULL; if (exports) { debug(DEBUG_FUNCTION, "-l matches %s", lib->soname); names = &lib->exported_names; } return populate_this_symtab(proc, filename, lte, lib, lte->dynsym, lte->dynstr, lte->dynsym_count, names); } static int read_module(struct library *lib, struct process *proc, const char *filename, GElf_Addr bias, int main) { struct ltelf lte; if (ltelf_init(<e, filename) < 0) return -1; /* XXX When we abstract ABI into a module, this should instead * become something like * * proc->abi = arch_get_abi(lte.ehdr); * * The code in ltelf_init needs to be replaced by this logic. * Be warned that libltrace.c calls ltelf_init as well to * determine whether ABI is supported. This is to get * reasonable error messages when trying to run 64-bit binary * with 32-bit ltrace. It is desirable to preserve this. */ proc->e_machine = lte.ehdr.e_machine; proc->e_class = lte.ehdr.e_ident[EI_CLASS]; get_arch_dep(proc); /* Find out the base address. For PIE main binaries we look * into auxv, otherwise we scan phdrs. */ if (main && lte.ehdr.e_type == ET_DYN) { arch_addr_t entry; if (process_get_entry(proc, &entry, NULL) < 0) { fprintf(stderr, "Couldn't find entry of PIE %s\n", filename); fail: ltelf_destroy(<e); return -1; } /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ lte.entry_addr = (GElf_Addr)(uintptr_t)entry; lte.bias = (GElf_Addr)(uintptr_t)entry - lte.ehdr.e_entry; } else { GElf_Phdr phdr; size_t i; for (i = 0; gelf_getphdr (lte.elf, i, &phdr) != NULL; ++i) { if (phdr.p_type == PT_LOAD) { lte.base_addr = phdr.p_vaddr + bias; break; } } lte.bias = bias; lte.entry_addr = lte.ehdr.e_entry + lte.bias; if (lte.base_addr == 0) { fprintf(stderr, "Couldn't determine base address of %s\n", filename); goto fail; } } if (ltelf_read_elf(<e, filename) < 0) goto fail; if (arch_elf_init(<e, lib) < 0) { fprintf(stderr, "Backend initialization failed.\n"); goto fail; } if (lib == NULL) goto fail; /* Note that we set soname and pathname as soon as they are * allocated, so in case of further errors, this get released * when LIB is released, which should happen in the caller * when we return error. */ if (lib->pathname == NULL) { char *pathname = strdup(filename); if (pathname == NULL) goto fail; library_set_pathname(lib, pathname, 1); } if (lte.soname != NULL) { char *soname = strdup(lte.soname); if (soname == NULL) goto fail; library_set_soname(lib, soname, 1); } else { const char *soname = rindex(lib->pathname, '/'); if (soname != NULL) soname += 1; else soname = lib->pathname; library_set_soname(lib, soname, 0); } /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ arch_addr_t entry = (arch_addr_t)(uintptr_t)lte.entry_addr; if (arch_translate_address(<e, entry, &entry) < 0) goto fail; /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ lib->base = (arch_addr_t)(uintptr_t)lte.base_addr; lib->entry = entry; /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ lib->dyn_addr = (arch_addr_t)(uintptr_t)lte.dyn_addr; /* There are two reasons that we need to inspect symbol tables * or populate PLT entries. Either the user requested * corresponding tracing features (respectively -x and -e), or * they requested tracing exported symbols (-l). * * In the latter case we need to keep even those PLT slots * that are not requested by -e (but we keep them latent). We * also need to inspect .dynsym to find what exports this * library provide, to turn on existing latent PLT * entries. */ int plts = filter_matches_library(options.plt_filter, lib); if ((plts || options.export_filter != NULL) && populate_plt(proc, filename, <e, lib) < 0) goto fail; int exports = filter_matches_library(options.export_filter, lib); int symtabs = filter_matches_library(options.static_filter, lib); if ((symtabs || exports) && populate_symtab(proc, filename, <e, lib, symtabs, exports) < 0) goto fail; arch_elf_destroy(<e); ltelf_destroy(<e); return 0; } int ltelf_read_library(struct library *lib, struct process *proc, const char *filename, GElf_Addr bias) { return read_module(lib, proc, filename, bias, 0); } struct library * ltelf_read_main_binary(struct process *proc, const char *path) { struct library *lib = malloc(sizeof(*lib)); if (lib == NULL || library_init(lib, LT_LIBTYPE_MAIN) < 0) { free(lib); return NULL; } library_set_pathname(lib, path, 0); /* There is a race between running the process and reading its * binary for internal consumption. So open the binary from * the /proc filesystem. XXX Note that there is similar race * for libraries, but there we don't have a nice answer like * that. Presumably we could read the DSOs from the process * memory image, but that's not currently done. */ char *fname = pid2name(proc->pid); if (fname == NULL || read_module(lib, proc, fname, 0, 1) < 0) { library_destroy(lib); free(lib); lib = NULL; } free(fname); return lib; }