//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a utility pass used for testing the InstructionSimplify analysis. // The analysis is applied to every instruction, and if it simplifies then the // instruction is replaced by the simplification. If you are looking for a pass // that performs serious instruction folding, use the instcombine pass instead. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/SimplifyLibCalls.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" using namespace llvm; static cl::opt<bool> ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, cl::desc("Treat error-reporting calls as cold")); /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. namespace { class LibCallOptimization { protected: Function *Caller; const DataLayout *DL; const TargetLibraryInfo *TLI; const LibCallSimplifier *LCS; LLVMContext* Context; public: LibCallOptimization() { } virtual ~LibCallOptimization() {} /// callOptimizer - This pure virtual method is implemented by base classes to /// do various optimizations. If this returns null then no transformation was /// performed. If it returns CI, then it transformed the call and CI is to be /// deleted. If it returns something else, replace CI with the new value and /// delete CI. virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) =0; /// ignoreCallingConv - Returns false if this transformation could possibly /// change the calling convention. virtual bool ignoreCallingConv() { return false; } Value *optimizeCall(CallInst *CI, const DataLayout *DL, const TargetLibraryInfo *TLI, const LibCallSimplifier *LCS, IRBuilder<> &B) { Caller = CI->getParent()->getParent(); this->DL = DL; this->TLI = TLI; this->LCS = LCS; if (CI->getCalledFunction()) Context = &CI->getCalledFunction()->getContext(); // We never change the calling convention. if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C) return nullptr; return callOptimizer(CI->getCalledFunction(), CI, B); } }; //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the /// value is equal or not-equal to zero. static bool isOnlyUsedInZeroEqualityComparison(Value *V) { for (User *U : V->users()) { if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) if (IC->isEquality()) if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) if (C->isNullValue()) continue; // Unknown instruction. return false; } return true; } /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality /// comparisons with With. static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { for (User *U : V->users()) { if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) if (IC->isEquality() && IC->getOperand(1) == With) continue; // Unknown instruction. return false; } return true; } static bool callHasFloatingPointArgument(const CallInst *CI) { for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); it != e; ++it) { if ((*it)->getType()->isFloatingPointTy()) return true; } return false; } /// \brief Check whether the overloaded unary floating point function /// corresponing to \a Ty is available. static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, LibFunc::Func DoubleFn, LibFunc::Func FloatFn, LibFunc::Func LongDoubleFn) { switch (Ty->getTypeID()) { case Type::FloatTyID: return TLI->has(FloatFn); case Type::DoubleTyID: return TLI->has(DoubleFn); default: return TLI->has(LongDoubleFn); } } //===----------------------------------------------------------------------===// // Fortified Library Call Optimizations //===----------------------------------------------------------------------===// struct FortifiedLibCallOptimization : public LibCallOptimization { protected: virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const = 0; }; struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { CallInst *CI; bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const override { if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) return true; if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { if (SizeCI->isAllOnesValue()) return true; if (isString) { uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); // If the length is 0 we don't know how long it is and so we can't // remove the check. if (Len == 0) return false; return SizeCI->getZExtValue() >= Len; } if (ConstantInt *Arg = dyn_cast<ConstantInt>( CI->getArgOperand(SizeArgOp))) return SizeCI->getZExtValue() >= Arg->getZExtValue(); } return false; } }; struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { this->CI = CI; FunctionType *FT = Callee->getFunctionType(); LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != DL->getIntPtrType(Context) || FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; if (isFoldable(3, 2, false)) { B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } return nullptr; } }; struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { this->CI = CI; FunctionType *FT = Callee->getFunctionType(); LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != DL->getIntPtrType(Context) || FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; if (isFoldable(3, 2, false)) { B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } return nullptr; } }; struct MemSetChkOpt : public InstFortifiedLibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { this->CI = CI; FunctionType *FT = Callee->getFunctionType(); LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != DL->getIntPtrType(Context) || FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; if (isFoldable(3, 2, false)) { Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); return CI->getArgOperand(0); } return nullptr; } }; struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { this->CI = CI; StringRef Name = Callee->getName(); FunctionType *FT = Callee->getFunctionType(); LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || FT->getParamType(2) != DL->getIntPtrType(Context)) return nullptr; Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) // __strcpy_chk(x,x) -> x return Src; // If a) we don't have any length information, or b) we know this will // fit then just lower to a plain strcpy. Otherwise we'll keep our // strcpy_chk call which may fail at runtime if the size is too long. // TODO: It might be nice to get a maximum length out of the possible // string lengths for varying. if (isFoldable(2, 1, true)) { Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); return Ret; } else { // Maybe we can stil fold __strcpy_chk to __memcpy_chk. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; // This optimization require DataLayout. if (!DL) return nullptr; Value *Ret = EmitMemCpyChk(Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len), CI->getArgOperand(2), B, DL, TLI); return Ret; } return nullptr; } }; struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { this->CI = CI; StringRef Name = Callee->getName(); FunctionType *FT = Callee->getFunctionType(); LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) return nullptr; Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) Value *StrLen = EmitStrLen(Src, B, DL, TLI); return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; } // If a) we don't have any length information, or b) we know this will // fit then just lower to a plain stpcpy. Otherwise we'll keep our // stpcpy_chk call which may fail at runtime if the size is too long. // TODO: It might be nice to get a maximum length out of the possible // string lengths for varying. if (isFoldable(2, 1, true)) { Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); return Ret; } else { // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; // This optimization require DataLayout. if (!DL) return nullptr; Type *PT = FT->getParamType(0); Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); Value *DstEnd = B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI)) return nullptr; return DstEnd; } return nullptr; } }; struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { this->CI = CI; StringRef Name = Callee->getName(); FunctionType *FT = Callee->getFunctionType(); LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || !FT->getParamType(2)->isIntegerTy() || FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; if (isFoldable(3, 2, false)) { Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7)); return Ret; } return nullptr; } }; //===----------------------------------------------------------------------===// // String and Memory Library Call Optimizations //===----------------------------------------------------------------------===// struct StrCatOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strcat" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || FT->getParamType(1) != FT->getReturnType()) return nullptr; // Extract some information from the instruction Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; --Len; // Unbias length. // Handle the simple, do-nothing case: strcat(x, "") -> x if (Len == 0) return Dst; // These optimizations require DataLayout. if (!DL) return nullptr; return emitStrLenMemCpy(Src, Dst, Len, B); } Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) { // We need to find the end of the destination string. That's where the // memory is to be moved to. We just generate a call to strlen. Value *DstLen = EmitStrLen(Dst, B, DL, TLI); if (!DstLen) return nullptr; // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(CpyDst, Src, ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1); return Dst; } }; struct StrNCatOpt : public StrCatOpt { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strncat" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || FT->getParamType(1) != FT->getReturnType() || !FT->getParamType(2)->isIntegerTy()) return nullptr; // Extract some information from the instruction Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); uint64_t Len; // We don't do anything if length is not constant if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) Len = LengthArg->getZExtValue(); else return nullptr; // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return nullptr; --SrcLen; // Unbias length. // Handle the simple, do-nothing cases: // strncat(x, "", c) -> x // strncat(x, c, 0) -> x if (SrcLen == 0 || Len == 0) return Dst; // These optimizations require DataLayout. if (!DL) return nullptr; // We don't optimize this case if (Len < SrcLen) return nullptr; // strncat(x, s, c) -> strcat(x, s) // s is constant so the strcat can be optimized further return emitStrLenMemCpy(Src, Dst, SrcLen, B); } }; struct StrChrOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strchr" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || !FT->getParamType(1)->isIntegerTy(32)) return nullptr; Value *SrcStr = CI->getArgOperand(0); // If the second operand is non-constant, see if we can compute the length // of the input string and turn this into memchr. ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); if (!CharC) { // These optimizations require DataLayout. if (!DL) return nullptr; uint64_t Len = GetStringLength(SrcStr); if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. return nullptr; return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. ConstantInt::get(DL->getIntPtrType(*Context), Len), B, DL, TLI); } // Otherwise, the character is a constant, see if the first argument is // a string literal. If so, we can constant fold. StringRef Str; if (!getConstantStringInfo(SrcStr, Str)) { if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); return nullptr; } // Compute the offset, make sure to handle the case when we're searching for // zero (a weird way to spell strlen). size_t I = (0xFF & CharC->getSExtValue()) == 0 ? Str.size() : Str.find(CharC->getSExtValue()); if (I == StringRef::npos) // Didn't find the char. strchr returns null. return Constant::getNullValue(CI->getType()); // strchr(s+n,c) -> gep(s+n+i,c) return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); } }; struct StrRChrOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strrchr" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || !FT->getParamType(1)->isIntegerTy(32)) return nullptr; Value *SrcStr = CI->getArgOperand(0); ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); // Cannot fold anything if we're not looking for a constant. if (!CharC) return nullptr; StringRef Str; if (!getConstantStringInfo(SrcStr, Str)) { // strrchr(s, 0) -> strchr(s, 0) if (DL && CharC->isZero()) return EmitStrChr(SrcStr, '\0', B, DL, TLI); return nullptr; } // Compute the offset. size_t I = (0xFF & CharC->getSExtValue()) == 0 ? Str.size() : Str.rfind(CharC->getSExtValue()); if (I == StringRef::npos) // Didn't find the char. Return null. return Constant::getNullValue(CI->getType()); // strrchr(s+n,c) -> gep(s+n+i,c) return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); } }; struct StrCmpOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strcmp" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy()) return nullptr; Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); if (Str1P == Str2P) // strcmp(x,x) -> 0 return ConstantInt::get(CI->getType(), 0); StringRef Str1, Str2; bool HasStr1 = getConstantStringInfo(Str1P, Str1); bool HasStr2 = getConstantStringInfo(Str2P, Str2); // strcmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) return ConstantInt::get(CI->getType(), Str1.compare(Str2)); if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); // strcmp(P, "x") -> memcmp(P, "x", 2) uint64_t Len1 = GetStringLength(Str1P); uint64_t Len2 = GetStringLength(Str2P); if (Len1 && Len2) { // These optimizations require DataLayout. if (!DL) return nullptr; return EmitMemCmp(Str1P, Str2P, ConstantInt::get(DL->getIntPtrType(*Context), std::min(Len1, Len2)), B, DL, TLI); } return nullptr; } }; struct StrNCmpOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strncmp" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy() || !FT->getParamType(2)->isIntegerTy()) return nullptr; Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); if (Str1P == Str2P) // strncmp(x,x,n) -> 0 return ConstantInt::get(CI->getType(), 0); // Get the length argument if it is constant. uint64_t Length; if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) Length = LengthArg->getZExtValue(); else return nullptr; if (Length == 0) // strncmp(x,y,0) -> 0 return ConstantInt::get(CI->getType(), 0); if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); StringRef Str1, Str2; bool HasStr1 = getConstantStringInfo(Str1P, Str1); bool HasStr2 = getConstantStringInfo(Str2P, Str2); // strncmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) { StringRef SubStr1 = Str1.substr(0, Length); StringRef SubStr2 = Str2.substr(0, Length); return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); } if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); return nullptr; } }; struct StrCpyOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "strcpy" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy()) return nullptr; Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) // strcpy(x,x) -> x return Src; // These optimizations require DataLayout. if (!DL) return nullptr; // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; // We have enough information to now generate the memcpy call to do the // copy for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(*Context), Len), 1); return Dst; } }; struct StpCpyOpt: public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Verify the "stpcpy" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy()) return nullptr; // These optimizations require DataLayout. if (!DL) return nullptr; Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) Value *StrLen = EmitStrLen(Src, B, DL, TLI); return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; } // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; Type *PT = FT->getParamType(0); Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); Value *DstEnd = B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); // We have enough information to now generate the memcpy call to do the // copy for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(Dst, Src, LenV, 1); return DstEnd; } }; struct StrNCpyOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy() || !FT->getParamType(2)->isIntegerTy()) return nullptr; Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); Value *LenOp = CI->getArgOperand(2); // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return nullptr; --SrcLen; if (SrcLen == 0) { // strncpy(x, "", y) -> memset(x, '\0', y, 1) B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); return Dst; } uint64_t Len; if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) Len = LengthArg->getZExtValue(); else return nullptr; if (Len == 0) return Dst; // strncpy(x, y, 0) -> x // These optimizations require DataLayout. if (!DL) return nullptr; // Let strncpy handle the zero padding if (Len > SrcLen+1) return nullptr; Type *PT = FT->getParamType(0); // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1); return Dst; } }; struct StrLenOpt : public LibCallOptimization { bool ignoreCallingConv() override { return true; } Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || !FT->getReturnType()->isIntegerTy()) return nullptr; Value *Src = CI->getArgOperand(0); // Constant folding: strlen("xyz") -> 3 if (uint64_t Len = GetStringLength(Src)) return ConstantInt::get(CI->getType(), Len-1); // strlen(x?"foo":"bars") --> x ? 3 : 4 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { uint64_t LenTrue = GetStringLength(SI->getTrueValue()); uint64_t LenFalse = GetStringLength(SI->getFalseValue()); if (LenTrue && LenFalse) { emitOptimizationRemark(*Context, "simplify-libcalls", *Caller, SI->getDebugLoc(), "folded strlen(select) to select of constants"); return B.CreateSelect(SI->getCondition(), ConstantInt::get(CI->getType(), LenTrue-1), ConstantInt::get(CI->getType(), LenFalse-1)); } } // strlen(x) != 0 --> *x != 0 // strlen(x) == 0 --> *x == 0 if (isOnlyUsedInZeroEqualityComparison(CI)) return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); return nullptr; } }; struct StrPBrkOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || FT->getParamType(1) != FT->getParamType(0) || FT->getReturnType() != FT->getParamType(0)) return nullptr; StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strpbrk(s, "") -> NULL // strpbrk("", s) -> NULL if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t I = S1.find_first_of(S2); if (I == StringRef::npos) // No match. return Constant::getNullValue(CI->getType()); return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); } // strpbrk(s, "a") -> strchr(s, 'a') if (DL && HasS2 && S2.size() == 1) return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); return nullptr; } }; struct StrToOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy()) return nullptr; Value *EndPtr = CI->getArgOperand(1); if (isa<ConstantPointerNull>(EndPtr)) { // With a null EndPtr, this function won't capture the main argument. // It would be readonly too, except that it still may write to errno. CI->addAttribute(1, Attribute::NoCapture); } return nullptr; } }; struct StrSpnOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || FT->getParamType(1) != FT->getParamType(0) || !FT->getReturnType()->isIntegerTy()) return nullptr; StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strspn(s, "") -> 0 // strspn("", s) -> 0 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t Pos = S1.find_first_not_of(S2); if (Pos == StringRef::npos) Pos = S1.size(); return ConstantInt::get(CI->getType(), Pos); } return nullptr; } }; struct StrCSpnOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || FT->getParamType(1) != FT->getParamType(0) || !FT->getReturnType()->isIntegerTy()) return nullptr; StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strcspn("", s) -> 0 if (HasS1 && S1.empty()) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t Pos = S1.find_first_of(S2); if (Pos == StringRef::npos) Pos = S1.size(); return ConstantInt::get(CI->getType(), Pos); } // strcspn(s, "") -> strlen(s) if (DL && HasS2 && S2.empty()) return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); return nullptr; } }; struct StrStrOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isPointerTy()) return nullptr; // fold strstr(x, x) -> x. if (CI->getArgOperand(0) == CI->getArgOperand(1)) return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); if (!StrLen) return nullptr; Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), StrLen, B, DL, TLI); if (!StrNCmp) return nullptr; for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { ICmpInst *Old = cast<ICmpInst>(*UI++); Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); LCS->replaceAllUsesWith(Old, Cmp); } return CI; } // See if either input string is a constant string. StringRef SearchStr, ToFindStr; bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); // fold strstr(x, "") -> x. if (HasStr2 && ToFindStr.empty()) return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); // If both strings are known, constant fold it. if (HasStr1 && HasStr2) { size_t Offset = SearchStr.find(ToFindStr); if (Offset == StringRef::npos) // strstr("foo", "bar") -> null return Constant::getNullValue(CI->getType()); // strstr("abcd", "bc") -> gep((char*)"abcd", 1) Value *Result = CastToCStr(CI->getArgOperand(0), B); Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); return B.CreateBitCast(Result, CI->getType()); } // fold strstr(x, "y") -> strchr(x, 'y'). if (HasStr2 && ToFindStr.size() == 1) { Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; } return nullptr; } }; struct MemCmpOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy(32)) return nullptr; Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); if (LHS == RHS) // memcmp(s,s,x) -> 0 return Constant::getNullValue(CI->getType()); // Make sure we have a constant length. ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); if (!LenC) return nullptr; uint64_t Len = LenC->getZExtValue(); if (Len == 0) // memcmp(s1,s2,0) -> 0 return Constant::getNullValue(CI->getType()); // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS if (Len == 1) { Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), CI->getType(), "lhsv"); Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), CI->getType(), "rhsv"); return B.CreateSub(LHSV, RHSV, "chardiff"); } // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) StringRef LHSStr, RHSStr; if (getConstantStringInfo(LHS, LHSStr) && getConstantStringInfo(RHS, RHSStr)) { // Make sure we're not reading out-of-bounds memory. if (Len > LHSStr.size() || Len > RHSStr.size()) return nullptr; // Fold the memcmp and normalize the result. This way we get consistent // results across multiple platforms. uint64_t Ret = 0; int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); if (Cmp < 0) Ret = -1; else if (Cmp > 0) Ret = 1; return ConstantInt::get(CI->getType(), Ret); } return nullptr; } }; struct MemCpyOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // These optimizations require DataLayout. if (!DL) return nullptr; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != DL->getIntPtrType(*Context)) return nullptr; // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } }; struct MemMoveOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // These optimizations require DataLayout. if (!DL) return nullptr; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != DL->getIntPtrType(*Context)) return nullptr; // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } }; struct MemSetOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // These optimizations require DataLayout. if (!DL) return nullptr; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) return nullptr; // memset(p, v, n) -> llvm.memset(p, v, n, 1) Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); return CI->getArgOperand(0); } }; //===----------------------------------------------------------------------===// // Math Library Optimizations //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' struct UnaryDoubleFPOpt : public LibCallOptimization { bool CheckRetType; UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || !FT->getParamType(0)->isDoubleTy()) return nullptr; if (CheckRetType) { // Check if all the uses for function like 'sin' are converted to float. for (User *U : CI->users()) { FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); if (!Cast || !Cast->getType()->isFloatTy()) return nullptr; } } // If this is something like 'floor((double)floatval)', convert to floorf. FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy()) return nullptr; // floor((double)floatval) -> (double)floorf(floatval) Value *V = Cast->getOperand(0); V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); return B.CreateFPExt(V, B.getDoubleTy()); } }; // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' struct BinaryDoubleFPOpt : public LibCallOptimization { bool CheckRetType; BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || !FT->getParamType(0)->isFloatingPointTy()) return nullptr; if (CheckRetType) { // Check if all the uses for function like 'fmin/fmax' are converted to // float. for (User *U : CI->users()) { FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); if (!Cast || !Cast->getType()->isFloatTy()) return nullptr; } } // If this is something like 'fmin((double)floatval1, (double)floatval2)', // we convert it to fminf. FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0)); FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1)); if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy()) return nullptr; // fmin((double)floatval1, (double)floatval2) // -> (double)fmin(floatval1, floatval2) Value *V = nullptr; Value *V1 = Cast1->getOperand(0); Value *V2 = Cast2->getOperand(0); V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, Callee->getAttributes()); return B.CreateFPExt(V, B.getDoubleTy()); } }; struct UnsafeFPLibCallOptimization : public LibCallOptimization { bool UnsafeFPShrink; UnsafeFPLibCallOptimization(bool UnsafeFPShrink) { this->UnsafeFPShrink = UnsafeFPShrink; } }; struct CosOpt : public UnsafeFPLibCallOptimization { CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { Value *Ret = nullptr; if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) { UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); } FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 1 argument of FP type, which matches the // result type. if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isFloatingPointTy()) return Ret; // cos(-x) -> cos(x) Value *Op1 = CI->getArgOperand(0); if (BinaryOperator::isFNeg(Op1)) { BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); } return Ret; } }; struct PowOpt : public UnsafeFPLibCallOptimization { PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { Value *Ret = nullptr; if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) { UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); } FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || !FT->getParamType(0)->isFloatingPointTy()) return Ret; Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { // pow(1.0, x) -> 1.0 if (Op1C->isExactlyValue(1.0)) return Op1C; // pow(2.0, x) -> exp2(x) if (Op1C->isExactlyValue(2.0) && hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, LibFunc::exp2l)) return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); // pow(10.0, x) -> exp10(x) if (Op1C->isExactlyValue(10.0) && hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, LibFunc::exp10l)) return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, Callee->getAttributes()); } ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); if (!Op2C) return Ret; if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 return ConstantFP::get(CI->getType(), 1.0); if (Op2C->isExactlyValue(0.5) && hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, LibFunc::sqrtl) && hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, LibFunc::fabsl)) { // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). // This is faster than calling pow, and still handles negative zero // and negative infinity correctly. // TODO: In fast-math mode, this could be just sqrt(x). // TODO: In finite-only mode, this could be just fabs(sqrt(x)). Value *Inf = ConstantFP::getInfinity(CI->getType()); Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); return Sel; } if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x return Op1; if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x return B.CreateFMul(Op1, Op1, "pow2"); if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); return nullptr; } }; struct Exp2Opt : public UnsafeFPLibCallOptimization { Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { Value *Ret = nullptr; if (UnsafeFPShrink && Callee->getName() == "exp2" && TLI->has(LibFunc::exp2f)) { UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); } FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 1 argument of FP type, which matches the // result type. if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isFloatingPointTy()) return Ret; Value *Op = CI->getArgOperand(0); // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 LibFunc::Func LdExp = LibFunc::ldexpl; if (Op->getType()->isFloatTy()) LdExp = LibFunc::ldexpf; else if (Op->getType()->isDoubleTy()) LdExp = LibFunc::ldexp; if (TLI->has(LdExp)) { Value *LdExpArg = nullptr; if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); } if (LdExpArg) { Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); if (!Op->getType()->isFloatTy()) One = ConstantExpr::getFPExtend(One, Op->getType()); Module *M = Caller->getParent(); Value *Callee = M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty(), NULL); CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } } return Ret; } }; struct SinCosPiOpt : public LibCallOptimization { SinCosPiOpt() {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Make sure the prototype is as expected, otherwise the rest of the // function is probably invalid and likely to abort. if (!isTrigLibCall(CI)) return nullptr; Value *Arg = CI->getArgOperand(0); SmallVector<CallInst *, 1> SinCalls; SmallVector<CallInst *, 1> CosCalls; SmallVector<CallInst *, 1> SinCosCalls; bool IsFloat = Arg->getType()->isFloatTy(); // Look for all compatible sinpi, cospi and sincospi calls with the same // argument. If there are enough (in some sense) we can make the // substitution. for (User *U : Arg->users()) classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, SinCosCalls); // It's only worthwhile if both sinpi and cospi are actually used. if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) return nullptr; Value *Sin, *Cos, *SinCos; insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); replaceTrigInsts(SinCalls, Sin); replaceTrigInsts(CosCalls, Cos); replaceTrigInsts(SinCosCalls, SinCos); return nullptr; } bool isTrigLibCall(CallInst *CI) { Function *Callee = CI->getCalledFunction(); FunctionType *FT = Callee->getFunctionType(); // We can only hope to do anything useful if we can ignore things like errno // and floating-point exceptions. bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); // Other than that we need float(float) or double(double) return AttributesSafe && FT->getNumParams() == 1 && FT->getReturnType() == FT->getParamType(0) && (FT->getParamType(0)->isFloatTy() || FT->getParamType(0)->isDoubleTy()); } void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, SmallVectorImpl<CallInst *> &SinCalls, SmallVectorImpl<CallInst *> &CosCalls, SmallVectorImpl<CallInst *> &SinCosCalls) { CallInst *CI = dyn_cast<CallInst>(Val); if (!CI) return; Function *Callee = CI->getCalledFunction(); StringRef FuncName = Callee->getName(); LibFunc::Func Func; if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) return; if (IsFloat) { if (Func == LibFunc::sinpif) SinCalls.push_back(CI); else if (Func == LibFunc::cospif) CosCalls.push_back(CI); else if (Func == LibFunc::sincospif_stret) SinCosCalls.push_back(CI); } else { if (Func == LibFunc::sinpi) SinCalls.push_back(CI); else if (Func == LibFunc::cospi) CosCalls.push_back(CI); else if (Func == LibFunc::sincospi_stret) SinCosCalls.push_back(CI); } } void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) { for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(), E = Calls.end(); I != E; ++I) { LCS->replaceAllUsesWith(*I, Res); } } void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { Type *ArgTy = Arg->getType(); Type *ResTy; StringRef Name; Triple T(OrigCallee->getParent()->getTargetTriple()); if (UseFloat) { Name = "__sincospif_stret"; assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); // x86_64 can't use {float, float} since that would be returned in both // xmm0 and xmm1, which isn't what a real struct would do. ResTy = T.getArch() == Triple::x86_64 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL)); } else { Name = "__sincospi_stret"; ResTy = StructType::get(ArgTy, ArgTy, NULL); } Module *M = OrigCallee->getParent(); Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy, NULL); if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { // If the argument is an instruction, it must dominate all uses so put our // sincos call there. BasicBlock::iterator Loc = ArgInst; B.SetInsertPoint(ArgInst->getParent(), ++Loc); } else { // Otherwise (e.g. for a constant) the beginning of the function is as // good a place as any. BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); B.SetInsertPoint(&EntryBB, EntryBB.begin()); } SinCos = B.CreateCall(Callee, Arg, "sincospi"); if (SinCos->getType()->isStructTy()) { Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); Cos = B.CreateExtractValue(SinCos, 1, "cospi"); } else { Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), "sinpi"); Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), "cospi"); } } }; //===----------------------------------------------------------------------===// // Integer Library Call Optimizations //===----------------------------------------------------------------------===// struct FFSOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || !FT->getParamType(0)->isIntegerTy()) return nullptr; Value *Op = CI->getArgOperand(0); // Constant fold. if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { if (CI->isZero()) // ffs(0) -> 0. return B.getInt32(0); // ffs(c) -> cttz(c)+1 return B.getInt32(CI->getValue().countTrailingZeros() + 1); } // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); V = B.CreateIntCast(V, B.getInt32Ty(), false); Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); return B.CreateSelect(Cond, V, B.getInt32(0)); } }; struct AbsOpt : public LibCallOptimization { bool ignoreCallingConv() override { return true; } Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); // We require integer(integer) where the types agree. if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || FT->getParamType(0) != FT->getReturnType()) return nullptr; // abs(x) -> x >s -1 ? x : -x Value *Op = CI->getArgOperand(0); Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); Value *Neg = B.CreateNeg(Op, "neg"); return B.CreateSelect(Pos, Op, Neg); } }; struct IsDigitOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || !FT->getParamType(0)->isIntegerTy(32)) return nullptr; // isdigit(c) -> (c-'0') <u 10 Value *Op = CI->getArgOperand(0); Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); return B.CreateZExt(Op, CI->getType()); } }; struct IsAsciiOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || !FT->getParamType(0)->isIntegerTy(32)) return nullptr; // isascii(c) -> c <u 128 Value *Op = CI->getArgOperand(0); Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); return B.CreateZExt(Op, CI->getType()); } }; struct ToAsciiOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { FunctionType *FT = Callee->getFunctionType(); // We require i32(i32) if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isIntegerTy(32)) return nullptr; // toascii(c) -> c & 0x7f return B.CreateAnd(CI->getArgOperand(0), ConstantInt::get(CI->getType(),0x7F)); } }; //===----------------------------------------------------------------------===// // Formatting and IO Library Call Optimizations //===----------------------------------------------------------------------===// struct ErrorReportingOpt : public LibCallOptimization { ErrorReportingOpt(int S = -1) : StreamArg(S) {} Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &) override { // Error reporting calls should be cold, mark them as such. // This applies even to non-builtin calls: it is only a hint and applies to // functions that the frontend might not understand as builtins. // This heuristic was suggested in: // Improving Static Branch Prediction in a Compiler // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu // Proceedings of PACT'98, Oct. 1998, IEEE if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) { CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); } return nullptr; } protected: bool isReportingError(Function *Callee, CallInst *CI) { if (!ColdErrorCalls) return false; if (!Callee || !Callee->isDeclaration()) return false; if (StreamArg < 0) return true; // These functions might be considered cold, but only if their stream // argument is stderr. if (StreamArg >= (int) CI->getNumArgOperands()) return false; LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); if (!LI) return false; GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); if (!GV || !GV->isDeclaration()) return false; return GV->getName() == "stderr"; } int StreamArg; }; struct PrintFOpt : public LibCallOptimization { Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) return nullptr; // Empty format string -> noop. if (FormatStr.empty()) // Tolerate printf's declared void. return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0); // Do not do any of the following transformations if the printf return value // is used, in general the printf return value is not compatible with either // putchar() or puts(). if (!CI->use_empty()) return nullptr; // printf("x") -> putchar('x'), even for '%'. if (FormatStr.size() == 1) { Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } // printf("foo\n") --> puts("foo") if (FormatStr[FormatStr.size()-1] == '\n' && FormatStr.find('%') == StringRef::npos) { // No format characters. // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. FormatStr = FormatStr.drop_back(); Value *GV = B.CreateGlobalString(FormatStr, "str"); Value *NewCI = EmitPutS(GV, B, DL, TLI); return (CI->use_empty() || !NewCI) ? NewCI : ConstantInt::get(CI->getType(), FormatStr.size()+1); } // Optimize specific format strings. // printf("%c", chr) --> putchar(chr) if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isIntegerTy()) { Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } // printf("%s\n", str) --> puts(str) if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isPointerTy()) { return EmitPutS(CI->getArgOperand(1), B, DL, TLI); } return nullptr; } Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Require one fixed pointer argument and an integer/void result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) return nullptr; if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { return V; } // printf(format, ...) -> iprintf(format, ...) if no floating point // arguments. if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *IPrintFFn = M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); CallInst *New = cast<CallInst>(CI->clone()); New->setCalledFunction(IPrintFFn); B.Insert(New); return New; } return nullptr; } }; struct SPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return nullptr; // If we just have a format string (nothing else crazy) transform it. if (CI->getNumArgOperands() == 2) { // Make sure there's no % in the constant array. We could try to handle // %% -> % in the future if we cared. for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return nullptr; // we found a format specifier, bail out. // These optimizations require DataLayout. if (!DL) return nullptr; // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), ConstantInt::get(DL->getIntPtrType(*Context), // Copy the FormatStr.size() + 1), 1); // nul byte. return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return nullptr; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); Value *Ptr = CastToCStr(CI->getArgOperand(0), B); B.CreateStore(V, Ptr); Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); B.CreateStore(B.getInt8(0), Ptr); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // These optimizations require DataLayout. if (!DL) return nullptr; // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr; Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); if (!Len) return nullptr; Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); // The sprintf result is the unincremented number of bytes in the string. return B.CreateIntCast(Len, CI->getType(), false); } return nullptr; } Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Require two fixed pointer arguments and an integer result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return nullptr; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating // point arguments. if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *SIPrintFFn = M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); CallInst *New = cast<CallInst>(CI->clone()); New->setCalledFunction(SIPrintFFn); B.Insert(New); return New; } return nullptr; } }; struct FPrintFOpt : public LibCallOptimization { Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { ErrorReportingOpt ER(/* StreamArg = */ 0); (void) ER.callOptimizer(Callee, CI, B); // All the optimizations depend on the format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return nullptr; // Do not do any of the following transformations if the fprintf return // value is used, in general the fprintf return value is not compatible // with fwrite(), fputc() or fputs(). if (!CI->use_empty()) return nullptr; // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) if (CI->getNumArgOperands() == 2) { for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') // Could handle %% -> % if we cared. return nullptr; // We found a format specifier. // These optimizations require DataLayout. if (!DL) return nullptr; return EmitFWrite(CI->getArgOperand(1), ConstantInt::get(DL->getIntPtrType(*Context), FormatStr.size()), CI->getArgOperand(0), B, DL, TLI); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return nullptr; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // fprintf(F, "%c", chr) --> fputc(chr, F) if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); } if (FormatStr[1] == 's') { // fprintf(F, "%s", str) --> fputs(str, F) if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr; return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); } return nullptr; } Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Require two fixed paramters as pointers and integer result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return nullptr; if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { return V; } // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no // floating point arguments. if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *FIPrintFFn = M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); CallInst *New = cast<CallInst>(CI->clone()); New->setCalledFunction(FIPrintFFn); B.Insert(New); return New; } return nullptr; } }; struct FWriteOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { ErrorReportingOpt ER(/* StreamArg = */ 3); (void) ER.callOptimizer(Callee, CI, B); // Require a pointer, an integer, an integer, a pointer, returning integer. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || !FT->getParamType(2)->isIntegerTy() || !FT->getParamType(3)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return nullptr; // Get the element size and count. ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); if (!SizeC || !CountC) return nullptr; uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); // If this is writing zero records, remove the call (it's a noop). if (Bytes == 0) return ConstantInt::get(CI->getType(), 0); // If this is writing one byte, turn it into fputc. // This optimisation is only valid, if the return value is unused. if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; } return nullptr; } }; struct FPutsOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { ErrorReportingOpt ER(/* StreamArg = */ 1); (void) ER.callOptimizer(Callee, CI, B); // These optimizations require DataLayout. if (!DL) return nullptr; // Require two pointers. Also, we can't optimize if return value is used. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) return nullptr; // fputs(s,F) --> fwrite(s,1,strlen(s),F) uint64_t Len = GetStringLength(CI->getArgOperand(0)); if (!Len) return nullptr; // Known to have no uses (see above). return EmitFWrite(CI->getArgOperand(0), ConstantInt::get(DL->getIntPtrType(*Context), Len-1), CI->getArgOperand(1), B, DL, TLI); } }; struct PutsOpt : public LibCallOptimization { Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) override { // Require one fixed pointer argument and an integer/void result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) return nullptr; // Check for a constant string. StringRef Str; if (!getConstantStringInfo(CI->getArgOperand(0), Str)) return nullptr; if (Str.empty() && CI->use_empty()) { // puts("") -> putchar('\n') Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } return nullptr; } }; } // End anonymous namespace. namespace llvm { class LibCallSimplifierImpl { const DataLayout *DL; const TargetLibraryInfo *TLI; const LibCallSimplifier *LCS; bool UnsafeFPShrink; // Math library call optimizations. CosOpt Cos; PowOpt Pow; Exp2Opt Exp2; public: LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI, const LibCallSimplifier *LCS, bool UnsafeFPShrink = false) : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) { this->DL = DL; this->TLI = TLI; this->LCS = LCS; this->UnsafeFPShrink = UnsafeFPShrink; } Value *optimizeCall(CallInst *CI); LibCallOptimization *lookupOptimization(CallInst *CI); bool hasFloatVersion(StringRef FuncName); }; bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) { LibFunc::Func Func; SmallString<20> FloatFuncName = FuncName; FloatFuncName += 'f'; if (TLI->getLibFunc(FloatFuncName, Func)) return TLI->has(Func); return false; } // Fortified library call optimizations. static MemCpyChkOpt MemCpyChk; static MemMoveChkOpt MemMoveChk; static MemSetChkOpt MemSetChk; static StrCpyChkOpt StrCpyChk; static StpCpyChkOpt StpCpyChk; static StrNCpyChkOpt StrNCpyChk; // String library call optimizations. static StrCatOpt StrCat; static StrNCatOpt StrNCat; static StrChrOpt StrChr; static StrRChrOpt StrRChr; static StrCmpOpt StrCmp; static StrNCmpOpt StrNCmp; static StrCpyOpt StrCpy; static StpCpyOpt StpCpy; static StrNCpyOpt StrNCpy; static StrLenOpt StrLen; static StrPBrkOpt StrPBrk; static StrToOpt StrTo; static StrSpnOpt StrSpn; static StrCSpnOpt StrCSpn; static StrStrOpt StrStr; // Memory library call optimizations. static MemCmpOpt MemCmp; static MemCpyOpt MemCpy; static MemMoveOpt MemMove; static MemSetOpt MemSet; // Math library call optimizations. static UnaryDoubleFPOpt UnaryDoubleFP(false); static BinaryDoubleFPOpt BinaryDoubleFP(false); static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); static SinCosPiOpt SinCosPi; // Integer library call optimizations. static FFSOpt FFS; static AbsOpt Abs; static IsDigitOpt IsDigit; static IsAsciiOpt IsAscii; static ToAsciiOpt ToAscii; // Formatting and IO library call optimizations. static ErrorReportingOpt ErrorReporting; static ErrorReportingOpt ErrorReporting0(0); static ErrorReportingOpt ErrorReporting1(1); static PrintFOpt PrintF; static SPrintFOpt SPrintF; static FPrintFOpt FPrintF; static FWriteOpt FWrite; static FPutsOpt FPuts; static PutsOpt Puts; LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) { LibFunc::Func Func; Function *Callee = CI->getCalledFunction(); StringRef FuncName = Callee->getName(); // Next check for intrinsics. if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { switch (II->getIntrinsicID()) { case Intrinsic::pow: return &Pow; case Intrinsic::exp2: return &Exp2; default: return nullptr; } } // Then check for known library functions. if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { switch (Func) { case LibFunc::strcat: return &StrCat; case LibFunc::strncat: return &StrNCat; case LibFunc::strchr: return &StrChr; case LibFunc::strrchr: return &StrRChr; case LibFunc::strcmp: return &StrCmp; case LibFunc::strncmp: return &StrNCmp; case LibFunc::strcpy: return &StrCpy; case LibFunc::stpcpy: return &StpCpy; case LibFunc::strncpy: return &StrNCpy; case LibFunc::strlen: return &StrLen; case LibFunc::strpbrk: return &StrPBrk; case LibFunc::strtol: case LibFunc::strtod: case LibFunc::strtof: case LibFunc::strtoul: case LibFunc::strtoll: case LibFunc::strtold: case LibFunc::strtoull: return &StrTo; case LibFunc::strspn: return &StrSpn; case LibFunc::strcspn: return &StrCSpn; case LibFunc::strstr: return &StrStr; case LibFunc::memcmp: return &MemCmp; case LibFunc::memcpy: return &MemCpy; case LibFunc::memmove: return &MemMove; case LibFunc::memset: return &MemSet; case LibFunc::cosf: case LibFunc::cos: case LibFunc::cosl: return &Cos; case LibFunc::sinpif: case LibFunc::sinpi: case LibFunc::cospif: case LibFunc::cospi: return &SinCosPi; case LibFunc::powf: case LibFunc::pow: case LibFunc::powl: return &Pow; case LibFunc::exp2l: case LibFunc::exp2: case LibFunc::exp2f: return &Exp2; case LibFunc::ffs: case LibFunc::ffsl: case LibFunc::ffsll: return &FFS; case LibFunc::abs: case LibFunc::labs: case LibFunc::llabs: return &Abs; case LibFunc::isdigit: return &IsDigit; case LibFunc::isascii: return &IsAscii; case LibFunc::toascii: return &ToAscii; case LibFunc::printf: return &PrintF; case LibFunc::sprintf: return &SPrintF; case LibFunc::fprintf: return &FPrintF; case LibFunc::fwrite: return &FWrite; case LibFunc::fputs: return &FPuts; case LibFunc::puts: return &Puts; case LibFunc::perror: return &ErrorReporting; case LibFunc::vfprintf: case LibFunc::fiprintf: return &ErrorReporting0; case LibFunc::fputc: return &ErrorReporting1; case LibFunc::ceil: case LibFunc::fabs: case LibFunc::floor: case LibFunc::rint: case LibFunc::round: case LibFunc::nearbyint: case LibFunc::trunc: if (hasFloatVersion(FuncName)) return &UnaryDoubleFP; return nullptr; case LibFunc::acos: case LibFunc::acosh: case LibFunc::asin: case LibFunc::asinh: case LibFunc::atan: case LibFunc::atanh: case LibFunc::cbrt: case LibFunc::cosh: case LibFunc::exp: case LibFunc::exp10: case LibFunc::expm1: case LibFunc::log: case LibFunc::log10: case LibFunc::log1p: case LibFunc::log2: case LibFunc::logb: case LibFunc::sin: case LibFunc::sinh: case LibFunc::sqrt: case LibFunc::tan: case LibFunc::tanh: if (UnsafeFPShrink && hasFloatVersion(FuncName)) return &UnsafeUnaryDoubleFP; return nullptr; case LibFunc::fmin: case LibFunc::fmax: if (hasFloatVersion(FuncName)) return &BinaryDoubleFP; return nullptr; case LibFunc::memcpy_chk: return &MemCpyChk; default: return nullptr; } } // Finally check for fortified library calls. if (FuncName.endswith("_chk")) { if (FuncName == "__memmove_chk") return &MemMoveChk; else if (FuncName == "__memset_chk") return &MemSetChk; else if (FuncName == "__strcpy_chk") return &StrCpyChk; else if (FuncName == "__stpcpy_chk") return &StpCpyChk; else if (FuncName == "__strncpy_chk") return &StrNCpyChk; else if (FuncName == "__stpncpy_chk") return &StrNCpyChk; } return nullptr; } Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { LibCallOptimization *LCO = lookupOptimization(CI); if (LCO) { IRBuilder<> Builder(CI); return LCO->optimizeCall(CI, DL, TLI, LCS, Builder); } return nullptr; } LibCallSimplifier::LibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI, bool UnsafeFPShrink) { Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink); } LibCallSimplifier::~LibCallSimplifier() { delete Impl; } Value *LibCallSimplifier::optimizeCall(CallInst *CI) { if (CI->isNoBuiltin()) return nullptr; return Impl->optimizeCall(CI); } void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { I->replaceAllUsesWith(With); I->eraseFromParent(); } } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // // exp, expf, expl: // * exp(log(x)) -> x // // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) // * log(exp(y)) -> y*log(e) // * log(exp2(y)) -> y*log(2) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // * log(pow(x,y)) -> y*log(x) // // lround, lroundf, lroundl: // * lround(cnst) -> cnst' // // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // round, roundf, roundl: // * round(cnst) -> cnst' // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // // tan, tanf, tanl: // * tan(atan(x)) -> x // // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // //