//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if (c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PredIteratorCache.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; #define DEBUG_TYPE "lcssa" STATISTIC(NumLCSSA, "Number of live out of a loop variables"); /// Return true if the specified block is in the list. static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &ExitBlocks) { for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) if (ExitBlocks[i] == BB) return true; return false; } /// Given an instruction in the loop, check to see if it has any uses that are /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the /// uses. static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, const SmallVectorImpl<BasicBlock *> &ExitBlocks, PredIteratorCache &PredCache) { SmallVector<Use *, 16> UsesToRewrite; BasicBlock *InstBB = Inst.getParent(); for (Use &U : Inst.uses()) { Instruction *User = cast<Instruction>(U.getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) UserBB = PN->getIncomingBlock(U); if (InstBB != UserBB && !L.contains(UserBB)) UsesToRewrite.push_back(&U); } // If there are no uses outside the loop, exit with no change. if (UsesToRewrite.empty()) return false; ++NumLCSSA; // We are applying the transformation // Invoke instructions are special in that their result value is not available // along their unwind edge. The code below tests to see whether DomBB // dominates // the value, so adjust DomBB to the normal destination block, which is // effectively where the value is first usable. BasicBlock *DomBB = Inst.getParent(); if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) DomBB = Inv->getNormalDest(); DomTreeNode *DomNode = DT.getNode(DomBB); SmallVector<PHINode *, 16> AddedPHIs; SSAUpdater SSAUpdate; SSAUpdate.Initialize(Inst.getType(), Inst.getName()); // Insert the LCSSA phi's into all of the exit blocks dominated by the // value, and add them to the Phi's map. for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(), BBE = ExitBlocks.end(); BBI != BBE; ++BBI) { BasicBlock *ExitBB = *BBI; if (!DT.dominates(DomNode, DT.getNode(ExitBB))) continue; // If we already inserted something for this BB, don't reprocess it. if (SSAUpdate.HasValueForBlock(ExitBB)) continue; PHINode *PN = PHINode::Create(Inst.getType(), PredCache.GetNumPreds(ExitBB), Inst.getName() + ".lcssa", ExitBB->begin()); // Add inputs from inside the loop for this PHI. for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) { PN->addIncoming(&Inst, *PI); // If the exit block has a predecessor not within the loop, arrange for // the incoming value use corresponding to that predecessor to be // rewritten in terms of a different LCSSA PHI. if (!L.contains(*PI)) UsesToRewrite.push_back( &PN->getOperandUse(PN->getOperandNumForIncomingValue( PN->getNumIncomingValues() - 1))); } AddedPHIs.push_back(PN); // Remember that this phi makes the value alive in this block. SSAUpdate.AddAvailableValue(ExitBB, PN); } // Rewrite all uses outside the loop in terms of the new PHIs we just // inserted. for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) { // If this use is in an exit block, rewrite to use the newly inserted PHI. // This is required for correctness because SSAUpdate doesn't handle uses in // the same block. It assumes the PHI we inserted is at the end of the // block. Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) UserBB = PN->getIncomingBlock(*UsesToRewrite[i]); if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { // Tell the VHs that the uses changed. This updates SCEV's caches. if (UsesToRewrite[i]->get()->hasValueHandle()) ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin()); UsesToRewrite[i]->set(UserBB->begin()); continue; } // Otherwise, do full PHI insertion. SSAUpdate.RewriteUse(*UsesToRewrite[i]); } // Remove PHI nodes that did not have any uses rewritten. for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) { if (AddedPHIs[i]->use_empty()) AddedPHIs[i]->eraseFromParent(); } return true; } /// Return true if the specified block dominates at least /// one of the blocks in the specified list. static bool blockDominatesAnExit(BasicBlock *BB, DominatorTree &DT, const SmallVectorImpl<BasicBlock *> &ExitBlocks) { DomTreeNode *DomNode = DT.getNode(BB); for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i]))) return true; return false; } bool llvm::formLCSSA(Loop &L, DominatorTree &DT, ScalarEvolution *SE) { bool Changed = false; // Get the set of exiting blocks. SmallVector<BasicBlock *, 8> ExitBlocks; L.getExitBlocks(ExitBlocks); if (ExitBlocks.empty()) return false; PredIteratorCache PredCache; // Look at all the instructions in the loop, checking to see if they have uses // outside the loop. If so, rewrite those uses. for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end(); BBI != BBE; ++BBI) { BasicBlock *BB = *BBI; // For large loops, avoid use-scanning by using dominance information: In // particular, if a block does not dominate any of the loop exits, then none // of the values defined in the block could be used outside the loop. if (!blockDominatesAnExit(BB, DT, ExitBlocks)) continue; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Reject two common cases fast: instructions with no uses (like stores) // and instructions with one use that is in the same block as this. if (I->use_empty() || (I->hasOneUse() && I->user_back()->getParent() == BB && !isa<PHINode>(I->user_back()))) continue; Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache); } } // If we modified the code, remove any caches about the loop from SCEV to // avoid dangling entries. // FIXME: This is a big hammer, can we clear the cache more selectively? if (SE && Changed) SE->forgetLoop(&L); assert(L.isLCSSAForm(DT)); return Changed; } /// Process a loop nest depth first. bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, ScalarEvolution *SE) { bool Changed = false; // Recurse depth-first through inner loops. for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) Changed |= formLCSSARecursively(**LI, DT, SE); Changed |= formLCSSA(L, DT, SE); return Changed; } namespace { struct LCSSA : public FunctionPass { static char ID; // Pass identification, replacement for typeid LCSSA() : FunctionPass(ID) { initializeLCSSAPass(*PassRegistry::getPassRegistry()); } // Cached analysis information for the current function. DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; bool runOnFunction(Function &F) override; /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<LoopInfo>(); AU.addPreservedID(LoopSimplifyID); AU.addPreserved<AliasAnalysis>(); AU.addPreserved<ScalarEvolution>(); } private: void verifyAnalysis() const override; }; } char LCSSA::ID = 0; INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) Pass *llvm::createLCSSAPass() { return new LCSSA(); } char &llvm::LCSSAID = LCSSA::ID; /// Process all loops in the function, inner-most out. bool LCSSA::runOnFunction(Function &F) { bool Changed = false; LI = &getAnalysis<LoopInfo>(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); SE = getAnalysisIfAvailable<ScalarEvolution>(); // Simplify each loop nest in the function. for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) Changed |= formLCSSARecursively(**I, *DT, SE); return Changed; } static void verifyLoop(Loop &L, DominatorTree &DT) { // Recurse depth-first through inner loops. for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) verifyLoop(**LI, DT); // Check the special guarantees that LCSSA makes. //assert(L.isLCSSAForm(DT) && "LCSSA form not preserved!"); } void LCSSA::verifyAnalysis() const { // Verify each loop nest in the function, assuming LI still points at that // function's loop info. for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) verifyLoop(**I, *DT); }