//===- ObjCARC.h - ObjC ARC Optimization --------------*- C++ -*-----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file defines common definitions/declarations used by the ObjC ARC /// Optimizer. ARC stands for Automatic Reference Counting and is a system for /// managing reference counts for objects in Objective C. /// /// WARNING: This file knows about certain library functions. It recognizes them /// by name, and hardwires knowledge of their semantics. /// /// WARNING: This file knows about how certain Objective-C library functions are /// used. Naive LLVM IR transformations which would otherwise be /// behavior-preserving may break these assumptions. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H #define LLVM_TRANSFORMS_SCALAR_OBJCARC_H #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Transforms/ObjCARC.h" #include "llvm/Transforms/Utils/Local.h" namespace llvm { class raw_ostream; } namespace llvm { namespace objcarc { /// \brief A handy option to enable/disable all ARC Optimizations. extern bool EnableARCOpts; /// \brief Test if the given module looks interesting to run ARC optimization /// on. static inline bool ModuleHasARC(const Module &M) { return M.getNamedValue("objc_retain") || M.getNamedValue("objc_release") || M.getNamedValue("objc_autorelease") || M.getNamedValue("objc_retainAutoreleasedReturnValue") || M.getNamedValue("objc_retainBlock") || M.getNamedValue("objc_autoreleaseReturnValue") || M.getNamedValue("objc_autoreleasePoolPush") || M.getNamedValue("objc_loadWeakRetained") || M.getNamedValue("objc_loadWeak") || M.getNamedValue("objc_destroyWeak") || M.getNamedValue("objc_storeWeak") || M.getNamedValue("objc_initWeak") || M.getNamedValue("objc_moveWeak") || M.getNamedValue("objc_copyWeak") || M.getNamedValue("objc_retainedObject") || M.getNamedValue("objc_unretainedObject") || M.getNamedValue("objc_unretainedPointer") || M.getNamedValue("clang.arc.use"); } /// \enum InstructionClass /// \brief A simple classification for instructions. enum InstructionClass { IC_Retain, ///< objc_retain IC_RetainRV, ///< objc_retainAutoreleasedReturnValue IC_RetainBlock, ///< objc_retainBlock IC_Release, ///< objc_release IC_Autorelease, ///< objc_autorelease IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop IC_NoopCast, ///< objc_retainedObject, etc. IC_FusedRetainAutorelease, ///< objc_retainAutorelease IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive) IC_StoreWeak, ///< objc_storeWeak (primitive) IC_InitWeak, ///< objc_initWeak (derived) IC_LoadWeak, ///< objc_loadWeak (derived) IC_MoveWeak, ///< objc_moveWeak (derived) IC_CopyWeak, ///< objc_copyWeak (derived) IC_DestroyWeak, ///< objc_destroyWeak (derived) IC_StoreStrong, ///< objc_storeStrong (derived) IC_IntrinsicUser, ///< clang.arc.use IC_CallOrUser, ///< could call objc_release and/or "use" pointers IC_Call, ///< could call objc_release IC_User, ///< could "use" a pointer IC_None ///< anything else }; raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class); /// \brief Test if the given class is a kind of user. inline static bool IsUser(InstructionClass Class) { return Class == IC_User || Class == IC_CallOrUser || Class == IC_IntrinsicUser; } /// \brief Test if the given class is objc_retain or equivalent. static inline bool IsRetain(InstructionClass Class) { return Class == IC_Retain || Class == IC_RetainRV; } /// \brief Test if the given class is objc_autorelease or equivalent. static inline bool IsAutorelease(InstructionClass Class) { return Class == IC_Autorelease || Class == IC_AutoreleaseRV; } /// \brief Test if the given class represents instructions which return their /// argument verbatim. static inline bool IsForwarding(InstructionClass Class) { return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Autorelease || Class == IC_AutoreleaseRV || Class == IC_NoopCast; } /// \brief Test if the given class represents instructions which do nothing if /// passed a null pointer. static inline bool IsNoopOnNull(InstructionClass Class) { return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Release || Class == IC_Autorelease || Class == IC_AutoreleaseRV || Class == IC_RetainBlock; } /// \brief Test if the given class represents instructions which are always safe /// to mark with the "tail" keyword. static inline bool IsAlwaysTail(InstructionClass Class) { // IC_RetainBlock may be given a stack argument. return Class == IC_Retain || Class == IC_RetainRV || Class == IC_AutoreleaseRV; } /// \brief Test if the given class represents instructions which are never safe /// to mark with the "tail" keyword. static inline bool IsNeverTail(InstructionClass Class) { /// It is never safe to tail call objc_autorelease since by tail calling /// objc_autorelease, we also tail call -[NSObject autorelease] which supports /// fast autoreleasing causing our object to be potentially reclaimed from the /// autorelease pool which violates the semantics of __autoreleasing types in /// ARC. return Class == IC_Autorelease; } /// \brief Test if the given class represents instructions which are always safe /// to mark with the nounwind attribute. static inline bool IsNoThrow(InstructionClass Class) { // objc_retainBlock is not nounwind because it calls user copy constructors // which could theoretically throw. return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Release || Class == IC_Autorelease || Class == IC_AutoreleaseRV || Class == IC_AutoreleasepoolPush || Class == IC_AutoreleasepoolPop; } /// Test whether the given instruction can autorelease any pointer or cause an /// autoreleasepool pop. static inline bool CanInterruptRV(InstructionClass Class) { switch (Class) { case IC_AutoreleasepoolPop: case IC_CallOrUser: case IC_Call: case IC_Autorelease: case IC_AutoreleaseRV: case IC_FusedRetainAutorelease: case IC_FusedRetainAutoreleaseRV: return true; default: return false; } } /// \brief Determine if F is one of the special known Functions. If it isn't, /// return IC_CallOrUser. InstructionClass GetFunctionClass(const Function *F); /// \brief Determine which objc runtime call instruction class V belongs to. /// /// This is similar to GetInstructionClass except that it only detects objc /// runtime calls. This allows it to be faster. /// static inline InstructionClass GetBasicInstructionClass(const Value *V) { if (const CallInst *CI = dyn_cast<CallInst>(V)) { if (const Function *F = CI->getCalledFunction()) return GetFunctionClass(F); // Otherwise, be conservative. return IC_CallOrUser; } // Otherwise, be conservative. return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User; } /// \brief Determine what kind of construct V is. InstructionClass GetInstructionClass(const Value *V); /// \brief This is a wrapper around getUnderlyingObject which also knows how to /// look through objc_retain and objc_autorelease calls, which we know to return /// their argument verbatim. static inline const Value *GetUnderlyingObjCPtr(const Value *V) { for (;;) { V = GetUnderlyingObject(V); if (!IsForwarding(GetBasicInstructionClass(V))) break; V = cast<CallInst>(V)->getArgOperand(0); } return V; } /// \brief This is a wrapper around Value::stripPointerCasts which also knows /// how to look through objc_retain and objc_autorelease calls, which we know to /// return their argument verbatim. static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) { for (;;) { V = V->stripPointerCasts(); if (!IsForwarding(GetBasicInstructionClass(V))) break; V = cast<CallInst>(V)->getArgOperand(0); } return V; } /// \brief This is a wrapper around Value::stripPointerCasts which also knows /// how to look through objc_retain and objc_autorelease calls, which we know to /// return their argument verbatim. static inline Value *StripPointerCastsAndObjCCalls(Value *V) { for (;;) { V = V->stripPointerCasts(); if (!IsForwarding(GetBasicInstructionClass(V))) break; V = cast<CallInst>(V)->getArgOperand(0); } return V; } /// \brief Assuming the given instruction is one of the special calls such as /// objc_retain or objc_release, return the argument value, stripped of no-op /// casts and forwarding calls. static inline Value *GetObjCArg(Value *Inst) { return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0)); } static inline bool IsNullOrUndef(const Value *V) { return isa<ConstantPointerNull>(V) || isa<UndefValue>(V); } static inline bool IsNoopInstruction(const Instruction *I) { return isa<BitCastInst>(I) || (isa<GetElementPtrInst>(I) && cast<GetElementPtrInst>(I)->hasAllZeroIndices()); } /// \brief Erase the given instruction. /// /// Many ObjC calls return their argument verbatim, /// so if it's such a call and the return value has users, replace them with the /// argument value. /// static inline void EraseInstruction(Instruction *CI) { Value *OldArg = cast<CallInst>(CI)->getArgOperand(0); bool Unused = CI->use_empty(); if (!Unused) { // Replace the return value with the argument. assert((IsForwarding(GetBasicInstructionClass(CI)) || (IsNoopOnNull(GetBasicInstructionClass(CI)) && isa<ConstantPointerNull>(OldArg))) && "Can't delete non-forwarding instruction with users!"); CI->replaceAllUsesWith(OldArg); } CI->eraseFromParent(); if (Unused) RecursivelyDeleteTriviallyDeadInstructions(OldArg); } /// \brief Test whether the given value is possible a retainable object pointer. static inline bool IsPotentialRetainableObjPtr(const Value *Op) { // Pointers to static or stack storage are not valid retainable object // pointers. if (isa<Constant>(Op) || isa<AllocaInst>(Op)) return false; // Special arguments can not be a valid retainable object pointer. if (const Argument *Arg = dyn_cast<Argument>(Op)) if (Arg->hasByValAttr() || Arg->hasInAllocaAttr() || Arg->hasNestAttr() || Arg->hasStructRetAttr()) return false; // Only consider values with pointer types. // // It seemes intuitive to exclude function pointer types as well, since // functions are never retainable object pointers, however clang occasionally // bitcasts retainable object pointers to function-pointer type temporarily. PointerType *Ty = dyn_cast<PointerType>(Op->getType()); if (!Ty) return false; // Conservatively assume anything else is a potential retainable object // pointer. return true; } static inline bool IsPotentialRetainableObjPtr(const Value *Op, AliasAnalysis &AA) { // First make the rudimentary check. if (!IsPotentialRetainableObjPtr(Op)) return false; // Objects in constant memory are not reference-counted. if (AA.pointsToConstantMemory(Op)) return false; // Pointers in constant memory are not pointing to reference-counted objects. if (const LoadInst *LI = dyn_cast<LoadInst>(Op)) if (AA.pointsToConstantMemory(LI->getPointerOperand())) return false; // Otherwise assume the worst. return true; } /// \brief Helper for GetInstructionClass. Determines what kind of construct CS /// is. static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) { for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (IsPotentialRetainableObjPtr(*I)) return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser; return CS.onlyReadsMemory() ? IC_None : IC_Call; } /// \brief Return true if this value refers to a distinct and identifiable /// object. /// /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses /// special knowledge of ObjC conventions. static inline bool IsObjCIdentifiedObject(const Value *V) { // Assume that call results and arguments have their own "provenance". // Constants (including GlobalVariables) and Allocas are never // reference-counted. if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || isa<Constant>(V) || isa<AllocaInst>(V)) return true; if (const LoadInst *LI = dyn_cast<LoadInst>(V)) { const Value *Pointer = StripPointerCastsAndObjCCalls(LI->getPointerOperand()); if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) { // A constant pointer can't be pointing to an object on the heap. It may // be reference-counted, but it won't be deleted. if (GV->isConstant()) return true; StringRef Name = GV->getName(); // These special variables are known to hold values which are not // reference-counted pointers. if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") || Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") || Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") || Name.startswith("\01L_OBJC_METH_VAR_NAME_") || Name.startswith("\01l_objc_msgSend_fixup_")) return true; } } return false; } } // end namespace objcarc } // end namespace llvm #endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H