//===- GCOVProfiling.cpp - Insert edge counters for gcov profiling --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements GCOV-style profiling. When this pass is run it emits // "gcno" files next to the existing source, and instruments the code that runs // to records the edges between blocks that run and emit a complementary "gcda" // file on exit. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include <algorithm> #include <memory> #include <string> #include <utility> using namespace llvm; #define DEBUG_TYPE "insert-gcov-profiling" static cl::opt<std::string> DefaultGCOVVersion("default-gcov-version", cl::init("402*"), cl::Hidden, cl::ValueRequired); GCOVOptions GCOVOptions::getDefault() { GCOVOptions Options; Options.EmitNotes = true; Options.EmitData = true; Options.UseCfgChecksum = false; Options.NoRedZone = false; Options.FunctionNamesInData = true; if (DefaultGCOVVersion.size() != 4) { llvm::report_fatal_error(std::string("Invalid -default-gcov-version: ") + DefaultGCOVVersion); } memcpy(Options.Version, DefaultGCOVVersion.c_str(), 4); return Options; } namespace { class GCOVFunction; class GCOVProfiler : public ModulePass { public: static char ID; GCOVProfiler() : ModulePass(ID), Options(GCOVOptions::getDefault()) { init(); } GCOVProfiler(const GCOVOptions &Options) : ModulePass(ID), Options(Options){ assert((Options.EmitNotes || Options.EmitData) && "GCOVProfiler asked to do nothing?"); init(); } const char *getPassName() const override { return "GCOV Profiler"; } private: void init() { ReversedVersion[0] = Options.Version[3]; ReversedVersion[1] = Options.Version[2]; ReversedVersion[2] = Options.Version[1]; ReversedVersion[3] = Options.Version[0]; ReversedVersion[4] = '\0'; initializeGCOVProfilerPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override; // Create the .gcno files for the Module based on DebugInfo. void emitProfileNotes(); // Modify the program to track transitions along edges and call into the // profiling runtime to emit .gcda files when run. bool emitProfileArcs(); // Get pointers to the functions in the runtime library. Constant *getStartFileFunc(); Constant *getIncrementIndirectCounterFunc(); Constant *getEmitFunctionFunc(); Constant *getEmitArcsFunc(); Constant *getSummaryInfoFunc(); Constant *getDeleteWriteoutFunctionListFunc(); Constant *getDeleteFlushFunctionListFunc(); Constant *getEndFileFunc(); // Create or retrieve an i32 state value that is used to represent the // pred block number for certain non-trivial edges. GlobalVariable *getEdgeStateValue(); // Produce a table of pointers to counters, by predecessor and successor // block number. GlobalVariable *buildEdgeLookupTable(Function *F, GlobalVariable *Counter, const UniqueVector<BasicBlock *>&Preds, const UniqueVector<BasicBlock*>&Succs); // Add the function to write out all our counters to the global destructor // list. Function *insertCounterWriteout(ArrayRef<std::pair<GlobalVariable*, MDNode*> >); Function *insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> >); void insertIndirectCounterIncrement(); std::string mangleName(DICompileUnit CU, const char *NewStem); GCOVOptions Options; // Reversed, NUL-terminated copy of Options.Version. char ReversedVersion[5]; // Checksum, produced by hash of EdgeDestinations SmallVector<uint32_t, 4> FileChecksums; Module *M; LLVMContext *Ctx; SmallVector<std::unique_ptr<GCOVFunction>, 16> Funcs; }; } char GCOVProfiler::ID = 0; INITIALIZE_PASS(GCOVProfiler, "insert-gcov-profiling", "Insert instrumentation for GCOV profiling", false, false) ModulePass *llvm::createGCOVProfilerPass(const GCOVOptions &Options) { return new GCOVProfiler(Options); } static StringRef getFunctionName(DISubprogram SP) { if (!SP.getLinkageName().empty()) return SP.getLinkageName(); return SP.getName(); } namespace { class GCOVRecord { protected: static const char *const LinesTag; static const char *const FunctionTag; static const char *const BlockTag; static const char *const EdgeTag; GCOVRecord() {} void writeBytes(const char *Bytes, int Size) { os->write(Bytes, Size); } void write(uint32_t i) { writeBytes(reinterpret_cast<char*>(&i), 4); } // Returns the length measured in 4-byte blocks that will be used to // represent this string in a GCOV file static unsigned lengthOfGCOVString(StringRef s) { // A GCOV string is a length, followed by a NUL, then between 0 and 3 NULs // padding out to the next 4-byte word. The length is measured in 4-byte // words including padding, not bytes of actual string. return (s.size() / 4) + 1; } void writeGCOVString(StringRef s) { uint32_t Len = lengthOfGCOVString(s); write(Len); writeBytes(s.data(), s.size()); // Write 1 to 4 bytes of NUL padding. assert((unsigned)(4 - (s.size() % 4)) > 0); assert((unsigned)(4 - (s.size() % 4)) <= 4); writeBytes("\0\0\0\0", 4 - (s.size() % 4)); } raw_ostream *os; }; const char *const GCOVRecord::LinesTag = "\0\0\x45\x01"; const char *const GCOVRecord::FunctionTag = "\0\0\0\1"; const char *const GCOVRecord::BlockTag = "\0\0\x41\x01"; const char *const GCOVRecord::EdgeTag = "\0\0\x43\x01"; class GCOVFunction; class GCOVBlock; // Constructed only by requesting it from a GCOVBlock, this object stores a // list of line numbers and a single filename, representing lines that belong // to the block. class GCOVLines : public GCOVRecord { public: void addLine(uint32_t Line) { assert(Line != 0 && "Line zero is not a valid real line number."); Lines.push_back(Line); } uint32_t length() const { // Here 2 = 1 for string length + 1 for '0' id#. return lengthOfGCOVString(Filename) + 2 + Lines.size(); } void writeOut() { write(0); writeGCOVString(Filename); for (int i = 0, e = Lines.size(); i != e; ++i) write(Lines[i]); } GCOVLines(StringRef F, raw_ostream *os) : Filename(F) { this->os = os; } private: StringRef Filename; SmallVector<uint32_t, 32> Lines; }; // Represent a basic block in GCOV. Each block has a unique number in the // function, number of lines belonging to each block, and a set of edges to // other blocks. class GCOVBlock : public GCOVRecord { public: GCOVLines &getFile(StringRef Filename) { GCOVLines *&Lines = LinesByFile[Filename]; if (!Lines) { Lines = new GCOVLines(Filename, os); } return *Lines; } void addEdge(GCOVBlock &Successor) { OutEdges.push_back(&Successor); } void writeOut() { uint32_t Len = 3; SmallVector<StringMapEntry<GCOVLines *> *, 32> SortedLinesByFile; for (StringMap<GCOVLines *>::iterator I = LinesByFile.begin(), E = LinesByFile.end(); I != E; ++I) { Len += I->second->length(); SortedLinesByFile.push_back(&*I); } writeBytes(LinesTag, 4); write(Len); write(Number); std::sort(SortedLinesByFile.begin(), SortedLinesByFile.end(), [](StringMapEntry<GCOVLines *> *LHS, StringMapEntry<GCOVLines *> *RHS) { return LHS->getKey() < RHS->getKey(); }); for (SmallVectorImpl<StringMapEntry<GCOVLines *> *>::iterator I = SortedLinesByFile.begin(), E = SortedLinesByFile.end(); I != E; ++I) (*I)->getValue()->writeOut(); write(0); write(0); } ~GCOVBlock() { DeleteContainerSeconds(LinesByFile); } private: friend class GCOVFunction; GCOVBlock(uint32_t Number, raw_ostream *os) : Number(Number) { this->os = os; } uint32_t Number; StringMap<GCOVLines *> LinesByFile; SmallVector<GCOVBlock *, 4> OutEdges; }; // A function has a unique identifier, a checksum (we leave as zero) and a // set of blocks and a map of edges between blocks. This is the only GCOV // object users can construct, the blocks and lines will be rooted here. class GCOVFunction : public GCOVRecord { public: GCOVFunction(DISubprogram SP, raw_ostream *os, uint32_t Ident, bool UseCfgChecksum) : SP(SP), Ident(Ident), UseCfgChecksum(UseCfgChecksum), CfgChecksum(0) { this->os = os; Function *F = SP.getFunction(); DEBUG(dbgs() << "Function: " << getFunctionName(SP) << "\n"); uint32_t i = 0; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { Blocks[BB] = new GCOVBlock(i++, os); } ReturnBlock = new GCOVBlock(i++, os); std::string FunctionNameAndLine; raw_string_ostream FNLOS(FunctionNameAndLine); FNLOS << getFunctionName(SP) << SP.getLineNumber(); FNLOS.flush(); FuncChecksum = hash_value(FunctionNameAndLine); } ~GCOVFunction() { DeleteContainerSeconds(Blocks); delete ReturnBlock; } GCOVBlock &getBlock(BasicBlock *BB) { return *Blocks[BB]; } GCOVBlock &getReturnBlock() { return *ReturnBlock; } std::string getEdgeDestinations() { std::string EdgeDestinations; raw_string_ostream EDOS(EdgeDestinations); Function *F = Blocks.begin()->first->getParent(); for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { GCOVBlock &Block = *Blocks[I]; for (int i = 0, e = Block.OutEdges.size(); i != e; ++i) EDOS << Block.OutEdges[i]->Number; } return EdgeDestinations; } uint32_t getFuncChecksum() { return FuncChecksum; } void setCfgChecksum(uint32_t Checksum) { CfgChecksum = Checksum; } void writeOut() { writeBytes(FunctionTag, 4); uint32_t BlockLen = 1 + 1 + 1 + lengthOfGCOVString(getFunctionName(SP)) + 1 + lengthOfGCOVString(SP.getFilename()) + 1; if (UseCfgChecksum) ++BlockLen; write(BlockLen); write(Ident); write(FuncChecksum); if (UseCfgChecksum) write(CfgChecksum); writeGCOVString(getFunctionName(SP)); writeGCOVString(SP.getFilename()); write(SP.getLineNumber()); // Emit count of blocks. writeBytes(BlockTag, 4); write(Blocks.size() + 1); for (int i = 0, e = Blocks.size() + 1; i != e; ++i) { write(0); // No flags on our blocks. } DEBUG(dbgs() << Blocks.size() << " blocks.\n"); // Emit edges between blocks. if (Blocks.empty()) return; Function *F = Blocks.begin()->first->getParent(); for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { GCOVBlock &Block = *Blocks[I]; if (Block.OutEdges.empty()) continue; writeBytes(EdgeTag, 4); write(Block.OutEdges.size() * 2 + 1); write(Block.Number); for (int i = 0, e = Block.OutEdges.size(); i != e; ++i) { DEBUG(dbgs() << Block.Number << " -> " << Block.OutEdges[i]->Number << "\n"); write(Block.OutEdges[i]->Number); write(0); // no flags } } // Emit lines for each block. for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { Blocks[I]->writeOut(); } } private: DISubprogram SP; uint32_t Ident; uint32_t FuncChecksum; bool UseCfgChecksum; uint32_t CfgChecksum; DenseMap<BasicBlock *, GCOVBlock *> Blocks; GCOVBlock *ReturnBlock; }; } std::string GCOVProfiler::mangleName(DICompileUnit CU, const char *NewStem) { if (NamedMDNode *GCov = M->getNamedMetadata("llvm.gcov")) { for (int i = 0, e = GCov->getNumOperands(); i != e; ++i) { MDNode *N = GCov->getOperand(i); if (N->getNumOperands() != 2) continue; MDString *GCovFile = dyn_cast<MDString>(N->getOperand(0)); MDNode *CompileUnit = dyn_cast<MDNode>(N->getOperand(1)); if (!GCovFile || !CompileUnit) continue; if (CompileUnit == CU) { SmallString<128> Filename = GCovFile->getString(); sys::path::replace_extension(Filename, NewStem); return Filename.str(); } } } SmallString<128> Filename = CU.getFilename(); sys::path::replace_extension(Filename, NewStem); StringRef FName = sys::path::filename(Filename); SmallString<128> CurPath; if (sys::fs::current_path(CurPath)) return FName; sys::path::append(CurPath, FName.str()); return CurPath.str(); } bool GCOVProfiler::runOnModule(Module &M) { this->M = &M; Ctx = &M.getContext(); if (Options.EmitNotes) emitProfileNotes(); if (Options.EmitData) return emitProfileArcs(); return false; } static bool functionHasLines(Function *F) { // Check whether this function actually has any source lines. Not only // do these waste space, they also can crash gcov. for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), IE = BB->end(); I != IE; ++I) { // Debug intrinsic locations correspond to the location of the // declaration, not necessarily any statements or expressions. if (isa<DbgInfoIntrinsic>(I)) continue; const DebugLoc &Loc = I->getDebugLoc(); if (Loc.isUnknown()) continue; // Artificial lines such as calls to the global constructors. if (Loc.getLine() == 0) continue; return true; } } return false; } void GCOVProfiler::emitProfileNotes() { NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return; for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { // Each compile unit gets its own .gcno file. This means that whether we run // this pass over the original .o's as they're produced, or run it after // LTO, we'll generate the same .gcno files. DICompileUnit CU(CU_Nodes->getOperand(i)); std::string ErrorInfo; raw_fd_ostream out(mangleName(CU, "gcno").c_str(), ErrorInfo, sys::fs::F_None); std::string EdgeDestinations; DIArray SPs = CU.getSubprograms(); for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) { DISubprogram SP(SPs.getElement(i)); assert((!SP || SP.isSubprogram()) && "A MDNode in subprograms of a CU should be null or a DISubprogram."); if (!SP) continue; Function *F = SP.getFunction(); if (!F) continue; if (!functionHasLines(F)) continue; // gcov expects every function to start with an entry block that has a // single successor, so split the entry block to make sure of that. BasicBlock &EntryBlock = F->getEntryBlock(); BasicBlock::iterator It = EntryBlock.begin(); while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It; EntryBlock.splitBasicBlock(It); Funcs.push_back( make_unique<GCOVFunction>(SP, &out, i, Options.UseCfgChecksum)); GCOVFunction &Func = *Funcs.back(); for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { GCOVBlock &Block = Func.getBlock(BB); TerminatorInst *TI = BB->getTerminator(); if (int successors = TI->getNumSuccessors()) { for (int i = 0; i != successors; ++i) { Block.addEdge(Func.getBlock(TI->getSuccessor(i))); } } else if (isa<ReturnInst>(TI)) { Block.addEdge(Func.getReturnBlock()); } uint32_t Line = 0; for (BasicBlock::iterator I = BB->begin(), IE = BB->end(); I != IE; ++I) { // Debug intrinsic locations correspond to the location of the // declaration, not necessarily any statements or expressions. if (isa<DbgInfoIntrinsic>(I)) continue; const DebugLoc &Loc = I->getDebugLoc(); if (Loc.isUnknown()) continue; // Artificial lines such as calls to the global constructors. if (Loc.getLine() == 0) continue; if (Line == Loc.getLine()) continue; Line = Loc.getLine(); if (SP != getDISubprogram(Loc.getScope(*Ctx))) continue; GCOVLines &Lines = Block.getFile(SP.getFilename()); Lines.addLine(Loc.getLine()); } } EdgeDestinations += Func.getEdgeDestinations(); } FileChecksums.push_back(hash_value(EdgeDestinations)); out.write("oncg", 4); out.write(ReversedVersion, 4); out.write(reinterpret_cast<char*>(&FileChecksums.back()), 4); for (auto &Func : Funcs) { Func->setCfgChecksum(FileChecksums.back()); Func->writeOut(); } out.write("\0\0\0\0\0\0\0\0", 8); // EOF out.close(); } } bool GCOVProfiler::emitProfileArcs() { NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return false; bool Result = false; bool InsertIndCounterIncrCode = false; for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { DICompileUnit CU(CU_Nodes->getOperand(i)); DIArray SPs = CU.getSubprograms(); SmallVector<std::pair<GlobalVariable *, MDNode *>, 8> CountersBySP; for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) { DISubprogram SP(SPs.getElement(i)); assert((!SP || SP.isSubprogram()) && "A MDNode in subprograms of a CU should be null or a DISubprogram."); if (!SP) continue; Function *F = SP.getFunction(); if (!F) continue; if (!functionHasLines(F)) continue; if (!Result) Result = true; unsigned Edges = 0; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { TerminatorInst *TI = BB->getTerminator(); if (isa<ReturnInst>(TI)) ++Edges; else Edges += TI->getNumSuccessors(); } ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(*Ctx), Edges); GlobalVariable *Counters = new GlobalVariable(*M, CounterTy, false, GlobalValue::InternalLinkage, Constant::getNullValue(CounterTy), "__llvm_gcov_ctr"); CountersBySP.push_back(std::make_pair(Counters, (MDNode*)SP)); UniqueVector<BasicBlock *> ComplexEdgePreds; UniqueVector<BasicBlock *> ComplexEdgeSuccs; unsigned Edge = 0; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { TerminatorInst *TI = BB->getTerminator(); int Successors = isa<ReturnInst>(TI) ? 1 : TI->getNumSuccessors(); if (Successors) { if (Successors == 1) { IRBuilder<> Builder(BB->getFirstInsertionPt()); Value *Counter = Builder.CreateConstInBoundsGEP2_64(Counters, 0, Edge); Value *Count = Builder.CreateLoad(Counter); Count = Builder.CreateAdd(Count, Builder.getInt64(1)); Builder.CreateStore(Count, Counter); } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { IRBuilder<> Builder(BI); Value *Sel = Builder.CreateSelect(BI->getCondition(), Builder.getInt64(Edge), Builder.getInt64(Edge + 1)); SmallVector<Value *, 2> Idx; Idx.push_back(Builder.getInt64(0)); Idx.push_back(Sel); Value *Counter = Builder.CreateInBoundsGEP(Counters, Idx); Value *Count = Builder.CreateLoad(Counter); Count = Builder.CreateAdd(Count, Builder.getInt64(1)); Builder.CreateStore(Count, Counter); } else { ComplexEdgePreds.insert(BB); for (int i = 0; i != Successors; ++i) ComplexEdgeSuccs.insert(TI->getSuccessor(i)); } Edge += Successors; } } if (!ComplexEdgePreds.empty()) { GlobalVariable *EdgeTable = buildEdgeLookupTable(F, Counters, ComplexEdgePreds, ComplexEdgeSuccs); GlobalVariable *EdgeState = getEdgeStateValue(); for (int i = 0, e = ComplexEdgePreds.size(); i != e; ++i) { IRBuilder<> Builder(ComplexEdgePreds[i + 1]->getFirstInsertionPt()); Builder.CreateStore(Builder.getInt32(i), EdgeState); } for (int i = 0, e = ComplexEdgeSuccs.size(); i != e; ++i) { // Call runtime to perform increment. IRBuilder<> Builder(ComplexEdgeSuccs[i+1]->getFirstInsertionPt()); Value *CounterPtrArray = Builder.CreateConstInBoundsGEP2_64(EdgeTable, 0, i * ComplexEdgePreds.size()); // Build code to increment the counter. InsertIndCounterIncrCode = true; Builder.CreateCall2(getIncrementIndirectCounterFunc(), EdgeState, CounterPtrArray); } } } Function *WriteoutF = insertCounterWriteout(CountersBySP); Function *FlushF = insertFlush(CountersBySP); // Create a small bit of code that registers the "__llvm_gcov_writeout" to // be executed at exit and the "__llvm_gcov_flush" function to be executed // when "__gcov_flush" is called. FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Function *F = Function::Create(FTy, GlobalValue::InternalLinkage, "__llvm_gcov_init", M); F->setUnnamedAddr(true); F->setLinkage(GlobalValue::InternalLinkage); F->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) F->addFnAttr(Attribute::NoRedZone); BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); IRBuilder<> Builder(BB); FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Type *Params[] = { PointerType::get(FTy, 0), PointerType::get(FTy, 0) }; FTy = FunctionType::get(Builder.getVoidTy(), Params, false); // Initialize the environment and register the local writeout and flush // functions. Constant *GCOVInit = M->getOrInsertFunction("llvm_gcov_init", FTy); Builder.CreateCall2(GCOVInit, WriteoutF, FlushF); Builder.CreateRetVoid(); appendToGlobalCtors(*M, F, 0); } if (InsertIndCounterIncrCode) insertIndirectCounterIncrement(); return Result; } // All edges with successors that aren't branches are "complex", because it // requires complex logic to pick which counter to update. GlobalVariable *GCOVProfiler::buildEdgeLookupTable( Function *F, GlobalVariable *Counters, const UniqueVector<BasicBlock *> &Preds, const UniqueVector<BasicBlock *> &Succs) { // TODO: support invoke, threads. We rely on the fact that nothing can modify // the whole-Module pred edge# between the time we set it and the time we next // read it. Threads and invoke make this untrue. // emit [(succs * preds) x i64*], logically [succ x [pred x i64*]]. size_t TableSize = Succs.size() * Preds.size(); Type *Int64PtrTy = Type::getInt64PtrTy(*Ctx); ArrayType *EdgeTableTy = ArrayType::get(Int64PtrTy, TableSize); std::unique_ptr<Constant * []> EdgeTable(new Constant *[TableSize]); Constant *NullValue = Constant::getNullValue(Int64PtrTy); for (size_t i = 0; i != TableSize; ++i) EdgeTable[i] = NullValue; unsigned Edge = 0; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { TerminatorInst *TI = BB->getTerminator(); int Successors = isa<ReturnInst>(TI) ? 1 : TI->getNumSuccessors(); if (Successors > 1 && !isa<BranchInst>(TI) && !isa<ReturnInst>(TI)) { for (int i = 0; i != Successors; ++i) { BasicBlock *Succ = TI->getSuccessor(i); IRBuilder<> Builder(Succ); Value *Counter = Builder.CreateConstInBoundsGEP2_64(Counters, 0, Edge + i); EdgeTable[((Succs.idFor(Succ)-1) * Preds.size()) + (Preds.idFor(BB)-1)] = cast<Constant>(Counter); } } Edge += Successors; } ArrayRef<Constant*> V(&EdgeTable[0], TableSize); GlobalVariable *EdgeTableGV = new GlobalVariable( *M, EdgeTableTy, true, GlobalValue::InternalLinkage, ConstantArray::get(EdgeTableTy, V), "__llvm_gcda_edge_table"); EdgeTableGV->setUnnamedAddr(true); return EdgeTableGV; } Constant *GCOVProfiler::getStartFileFunc() { Type *Args[] = { Type::getInt8PtrTy(*Ctx), // const char *orig_filename Type::getInt8PtrTy(*Ctx), // const char version[4] Type::getInt32Ty(*Ctx), // uint32_t checksum }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); return M->getOrInsertFunction("llvm_gcda_start_file", FTy); } Constant *GCOVProfiler::getIncrementIndirectCounterFunc() { Type *Int32Ty = Type::getInt32Ty(*Ctx); Type *Int64Ty = Type::getInt64Ty(*Ctx); Type *Args[] = { Int32Ty->getPointerTo(), // uint32_t *predecessor Int64Ty->getPointerTo()->getPointerTo() // uint64_t **counters }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); return M->getOrInsertFunction("__llvm_gcov_indirect_counter_increment", FTy); } Constant *GCOVProfiler::getEmitFunctionFunc() { Type *Args[] = { Type::getInt32Ty(*Ctx), // uint32_t ident Type::getInt8PtrTy(*Ctx), // const char *function_name Type::getInt32Ty(*Ctx), // uint32_t func_checksum Type::getInt8Ty(*Ctx), // uint8_t use_extra_checksum Type::getInt32Ty(*Ctx), // uint32_t cfg_checksum }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); return M->getOrInsertFunction("llvm_gcda_emit_function", FTy); } Constant *GCOVProfiler::getEmitArcsFunc() { Type *Args[] = { Type::getInt32Ty(*Ctx), // uint32_t num_counters Type::getInt64PtrTy(*Ctx), // uint64_t *counters }; FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); return M->getOrInsertFunction("llvm_gcda_emit_arcs", FTy); } Constant *GCOVProfiler::getSummaryInfoFunc() { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); return M->getOrInsertFunction("llvm_gcda_summary_info", FTy); } Constant *GCOVProfiler::getDeleteWriteoutFunctionListFunc() { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); return M->getOrInsertFunction("llvm_delete_writeout_function_list", FTy); } Constant *GCOVProfiler::getDeleteFlushFunctionListFunc() { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); return M->getOrInsertFunction("llvm_delete_flush_function_list", FTy); } Constant *GCOVProfiler::getEndFileFunc() { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); return M->getOrInsertFunction("llvm_gcda_end_file", FTy); } GlobalVariable *GCOVProfiler::getEdgeStateValue() { GlobalVariable *GV = M->getGlobalVariable("__llvm_gcov_global_state_pred"); if (!GV) { GV = new GlobalVariable(*M, Type::getInt32Ty(*Ctx), false, GlobalValue::InternalLinkage, ConstantInt::get(Type::getInt32Ty(*Ctx), 0xffffffff), "__llvm_gcov_global_state_pred"); GV->setUnnamedAddr(true); } return GV; } Function *GCOVProfiler::insertCounterWriteout( ArrayRef<std::pair<GlobalVariable *, MDNode *> > CountersBySP) { FunctionType *WriteoutFTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Function *WriteoutF = M->getFunction("__llvm_gcov_writeout"); if (!WriteoutF) WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage, "__llvm_gcov_writeout", M); WriteoutF->setUnnamedAddr(true); WriteoutF->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) WriteoutF->addFnAttr(Attribute::NoRedZone); BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF); IRBuilder<> Builder(BB); Constant *StartFile = getStartFileFunc(); Constant *EmitFunction = getEmitFunctionFunc(); Constant *EmitArcs = getEmitArcsFunc(); Constant *SummaryInfo = getSummaryInfoFunc(); Constant *EndFile = getEndFileFunc(); NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (CU_Nodes) { for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { DICompileUnit CU(CU_Nodes->getOperand(i)); std::string FilenameGcda = mangleName(CU, "gcda"); uint32_t CfgChecksum = FileChecksums.empty() ? 0 : FileChecksums[i]; Builder.CreateCall3(StartFile, Builder.CreateGlobalStringPtr(FilenameGcda), Builder.CreateGlobalStringPtr(ReversedVersion), Builder.getInt32(CfgChecksum)); for (unsigned j = 0, e = CountersBySP.size(); j != e; ++j) { DISubprogram SP(CountersBySP[j].second); uint32_t FuncChecksum = Funcs.empty() ? 0 : Funcs[j]->getFuncChecksum(); Builder.CreateCall5( EmitFunction, Builder.getInt32(j), Options.FunctionNamesInData ? Builder.CreateGlobalStringPtr(getFunctionName(SP)) : Constant::getNullValue(Builder.getInt8PtrTy()), Builder.getInt32(FuncChecksum), Builder.getInt8(Options.UseCfgChecksum), Builder.getInt32(CfgChecksum)); GlobalVariable *GV = CountersBySP[j].first; unsigned Arcs = cast<ArrayType>(GV->getType()->getElementType())->getNumElements(); Builder.CreateCall2(EmitArcs, Builder.getInt32(Arcs), Builder.CreateConstGEP2_64(GV, 0, 0)); } Builder.CreateCall(SummaryInfo); Builder.CreateCall(EndFile); } } Builder.CreateRetVoid(); return WriteoutF; } void GCOVProfiler::insertIndirectCounterIncrement() { Function *Fn = cast<Function>(GCOVProfiler::getIncrementIndirectCounterFunc()); Fn->setUnnamedAddr(true); Fn->setLinkage(GlobalValue::InternalLinkage); Fn->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) Fn->addFnAttr(Attribute::NoRedZone); // Create basic blocks for function. BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", Fn); IRBuilder<> Builder(BB); BasicBlock *PredNotNegOne = BasicBlock::Create(*Ctx, "", Fn); BasicBlock *CounterEnd = BasicBlock::Create(*Ctx, "", Fn); BasicBlock *Exit = BasicBlock::Create(*Ctx, "exit", Fn); // uint32_t pred = *predecessor; // if (pred == 0xffffffff) return; Argument *Arg = Fn->arg_begin(); Arg->setName("predecessor"); Value *Pred = Builder.CreateLoad(Arg, "pred"); Value *Cond = Builder.CreateICmpEQ(Pred, Builder.getInt32(0xffffffff)); BranchInst::Create(Exit, PredNotNegOne, Cond, BB); Builder.SetInsertPoint(PredNotNegOne); // uint64_t *counter = counters[pred]; // if (!counter) return; Value *ZExtPred = Builder.CreateZExt(Pred, Builder.getInt64Ty()); Arg = std::next(Fn->arg_begin()); Arg->setName("counters"); Value *GEP = Builder.CreateGEP(Arg, ZExtPred); Value *Counter = Builder.CreateLoad(GEP, "counter"); Cond = Builder.CreateICmpEQ(Counter, Constant::getNullValue( Builder.getInt64Ty()->getPointerTo())); Builder.CreateCondBr(Cond, Exit, CounterEnd); // ++*counter; Builder.SetInsertPoint(CounterEnd); Value *Add = Builder.CreateAdd(Builder.CreateLoad(Counter), Builder.getInt64(1)); Builder.CreateStore(Add, Counter); Builder.CreateBr(Exit); // Fill in the exit block. Builder.SetInsertPoint(Exit); Builder.CreateRetVoid(); } Function *GCOVProfiler:: insertFlush(ArrayRef<std::pair<GlobalVariable*, MDNode*> > CountersBySP) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); Function *FlushF = M->getFunction("__llvm_gcov_flush"); if (!FlushF) FlushF = Function::Create(FTy, GlobalValue::InternalLinkage, "__llvm_gcov_flush", M); else FlushF->setLinkage(GlobalValue::InternalLinkage); FlushF->setUnnamedAddr(true); FlushF->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) FlushF->addFnAttr(Attribute::NoRedZone); BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", FlushF); // Write out the current counters. Constant *WriteoutF = M->getFunction("__llvm_gcov_writeout"); assert(WriteoutF && "Need to create the writeout function first!"); IRBuilder<> Builder(Entry); Builder.CreateCall(WriteoutF); // Zero out the counters. for (ArrayRef<std::pair<GlobalVariable *, MDNode *> >::iterator I = CountersBySP.begin(), E = CountersBySP.end(); I != E; ++I) { GlobalVariable *GV = I->first; Constant *Null = Constant::getNullValue(GV->getType()->getElementType()); Builder.CreateStore(Null, GV); } Type *RetTy = FlushF->getReturnType(); if (RetTy == Type::getVoidTy(*Ctx)) Builder.CreateRetVoid(); else if (RetTy->isIntegerTy()) // Used if __llvm_gcov_flush was implicitly declared. Builder.CreateRet(ConstantInt::get(RetTy, 0)); else report_fatal_error("invalid return type for __llvm_gcov_flush"); return FlushF; }