//===-- AMDILCFGStructurizer.cpp - CFG Structurizer -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // /// \file //==-----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUInstrInfo.h" #include "R600InstrInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "structcfg" #define DEFAULT_VEC_SLOTS 8 // TODO: move-begin. //===----------------------------------------------------------------------===// // // Statistics for CFGStructurizer. // //===----------------------------------------------------------------------===// STATISTIC(numSerialPatternMatch, "CFGStructurizer number of serial pattern " "matched"); STATISTIC(numIfPatternMatch, "CFGStructurizer number of if pattern " "matched"); STATISTIC(numLoopcontPatternMatch, "CFGStructurizer number of loop-continue " "pattern matched"); STATISTIC(numClonedBlock, "CFGStructurizer cloned blocks"); STATISTIC(numClonedInstr, "CFGStructurizer cloned instructions"); namespace llvm { void initializeAMDGPUCFGStructurizerPass(PassRegistry&); } //===----------------------------------------------------------------------===// // // Miscellaneous utility for CFGStructurizer. // //===----------------------------------------------------------------------===// namespace { #define SHOWNEWINSTR(i) \ DEBUG(dbgs() << "New instr: " << *i << "\n"); #define SHOWNEWBLK(b, msg) \ DEBUG( \ dbgs() << msg << "BB" << b->getNumber() << "size " << b->size(); \ dbgs() << "\n"; \ ); #define SHOWBLK_DETAIL(b, msg) \ DEBUG( \ if (b) { \ dbgs() << msg << "BB" << b->getNumber() << "size " << b->size(); \ b->print(dbgs()); \ dbgs() << "\n"; \ } \ ); #define INVALIDSCCNUM -1 template<class NodeT> void ReverseVector(SmallVectorImpl<NodeT *> &Src) { size_t sz = Src.size(); for (size_t i = 0; i < sz/2; ++i) { NodeT *t = Src[i]; Src[i] = Src[sz - i - 1]; Src[sz - i - 1] = t; } } } // end anonymous namespace //===----------------------------------------------------------------------===// // // supporting data structure for CFGStructurizer // //===----------------------------------------------------------------------===// namespace { class BlockInformation { public: bool IsRetired; int SccNum; BlockInformation() : IsRetired(false), SccNum(INVALIDSCCNUM) {} }; } // end anonymous namespace //===----------------------------------------------------------------------===// // // CFGStructurizer // //===----------------------------------------------------------------------===// namespace { class AMDGPUCFGStructurizer : public MachineFunctionPass { public: typedef SmallVector<MachineBasicBlock *, 32> MBBVector; typedef std::map<MachineBasicBlock *, BlockInformation *> MBBInfoMap; typedef std::map<MachineLoop *, MachineBasicBlock *> LoopLandInfoMap; enum PathToKind { Not_SinglePath = 0, SinglePath_InPath = 1, SinglePath_NotInPath = 2 }; static char ID; AMDGPUCFGStructurizer() : MachineFunctionPass(ID), TII(nullptr), TRI(nullptr) { initializeAMDGPUCFGStructurizerPass(*PassRegistry::getPassRegistry()); } const char *getPassName() const override { return "AMDGPU Control Flow Graph structurizer Pass"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved<MachineFunctionAnalysis>(); AU.addRequired<MachineFunctionAnalysis>(); AU.addRequired<MachineDominatorTree>(); AU.addRequired<MachinePostDominatorTree>(); AU.addRequired<MachineLoopInfo>(); } /// Perform the CFG structurization bool run(); /// Perform the CFG preparation /// This step will remove every unconditionnal/dead jump instructions and make /// sure all loops have an exit block bool prepare(); bool runOnMachineFunction(MachineFunction &MF) override { TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo()); TRI = &TII->getRegisterInfo(); DEBUG(MF.dump();); OrderedBlks.clear(); FuncRep = &MF; MLI = &getAnalysis<MachineLoopInfo>(); DEBUG(dbgs() << "LoopInfo:\n"; PrintLoopinfo(*MLI);); MDT = &getAnalysis<MachineDominatorTree>(); DEBUG(MDT->print(dbgs(), (const llvm::Module*)nullptr);); PDT = &getAnalysis<MachinePostDominatorTree>(); DEBUG(PDT->print(dbgs());); prepare(); run(); DEBUG(MF.dump();); return true; } protected: MachineDominatorTree *MDT; MachinePostDominatorTree *PDT; MachineLoopInfo *MLI; const R600InstrInfo *TII; const AMDGPURegisterInfo *TRI; // PRINT FUNCTIONS /// Print the ordered Blocks. void printOrderedBlocks() const { size_t i = 0; for (MBBVector::const_iterator iterBlk = OrderedBlks.begin(), iterBlkEnd = OrderedBlks.end(); iterBlk != iterBlkEnd; ++iterBlk, ++i) { dbgs() << "BB" << (*iterBlk)->getNumber(); dbgs() << "(" << getSCCNum(*iterBlk) << "," << (*iterBlk)->size() << ")"; if (i != 0 && i % 10 == 0) { dbgs() << "\n"; } else { dbgs() << " "; } } } static void PrintLoopinfo(const MachineLoopInfo &LoopInfo) { for (MachineLoop::iterator iter = LoopInfo.begin(), iterEnd = LoopInfo.end(); iter != iterEnd; ++iter) { (*iter)->print(dbgs(), 0); } } // UTILITY FUNCTIONS int getSCCNum(MachineBasicBlock *MBB) const; MachineBasicBlock *getLoopLandInfo(MachineLoop *LoopRep) const; bool hasBackEdge(MachineBasicBlock *MBB) const; static unsigned getLoopDepth(MachineLoop *LoopRep); bool isRetiredBlock(MachineBasicBlock *MBB) const; bool isActiveLoophead(MachineBasicBlock *MBB) const; PathToKind singlePathTo(MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB, bool AllowSideEntry = true) const; int countActiveBlock(MBBVector::const_iterator It, MBBVector::const_iterator E) const; bool needMigrateBlock(MachineBasicBlock *MBB) const; // Utility Functions void reversePredicateSetter(MachineBasicBlock::iterator I); /// Compute the reversed DFS post order of Blocks void orderBlocks(MachineFunction *MF); // Function originally from CFGStructTraits void insertInstrEnd(MachineBasicBlock *MBB, int NewOpcode, DebugLoc DL = DebugLoc()); MachineInstr *insertInstrBefore(MachineBasicBlock *MBB, int NewOpcode, DebugLoc DL = DebugLoc()); MachineInstr *insertInstrBefore(MachineBasicBlock::iterator I, int NewOpcode); void insertCondBranchBefore(MachineBasicBlock::iterator I, int NewOpcode, DebugLoc DL); void insertCondBranchBefore(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, int NewOpcode, int RegNum, DebugLoc DL); void insertCondBranchEnd(MachineBasicBlock *MBB, int NewOpcode, int RegNum); static int getBranchNzeroOpcode(int OldOpcode); static int getBranchZeroOpcode(int OldOpcode); static int getContinueNzeroOpcode(int OldOpcode); static int getContinueZeroOpcode(int OldOpcode); static MachineBasicBlock *getTrueBranch(MachineInstr *MI); static void setTrueBranch(MachineInstr *MI, MachineBasicBlock *MBB); static MachineBasicBlock *getFalseBranch(MachineBasicBlock *MBB, MachineInstr *MI); static bool isCondBranch(MachineInstr *MI); static bool isUncondBranch(MachineInstr *MI); static DebugLoc getLastDebugLocInBB(MachineBasicBlock *MBB); static MachineInstr *getNormalBlockBranchInstr(MachineBasicBlock *MBB); /// The correct naming for this is getPossibleLoopendBlockBranchInstr. /// /// BB with backward-edge could have move instructions after the branch /// instruction. Such move instruction "belong to" the loop backward-edge. MachineInstr *getLoopendBlockBranchInstr(MachineBasicBlock *MBB); static MachineInstr *getReturnInstr(MachineBasicBlock *MBB); static MachineInstr *getContinueInstr(MachineBasicBlock *MBB); static bool isReturnBlock(MachineBasicBlock *MBB); static void cloneSuccessorList(MachineBasicBlock *DstMBB, MachineBasicBlock *SrcMBB) ; static MachineBasicBlock *clone(MachineBasicBlock *MBB); /// MachineBasicBlock::ReplaceUsesOfBlockWith doesn't serve the purpose /// because the AMDGPU instruction is not recognized as terminator fix this /// and retire this routine void replaceInstrUseOfBlockWith(MachineBasicBlock *SrcMBB, MachineBasicBlock *OldMBB, MachineBasicBlock *NewBlk); static void wrapup(MachineBasicBlock *MBB); int patternMatch(MachineBasicBlock *MBB); int patternMatchGroup(MachineBasicBlock *MBB); int serialPatternMatch(MachineBasicBlock *MBB); int ifPatternMatch(MachineBasicBlock *MBB); int loopendPatternMatch(); int mergeLoop(MachineLoop *LoopRep); int loopcontPatternMatch(MachineLoop *LoopRep, MachineBasicBlock *LoopHeader); void handleLoopcontBlock(MachineBasicBlock *ContingMBB, MachineLoop *ContingLoop, MachineBasicBlock *ContMBB, MachineLoop *ContLoop); /// return true iff src1Blk->succ_size() == 0 && src1Blk and src2Blk are in /// the same loop with LoopLandInfo without explicitly keeping track of /// loopContBlks and loopBreakBlks, this is a method to get the information. bool isSameloopDetachedContbreak(MachineBasicBlock *Src1MBB, MachineBasicBlock *Src2MBB); int handleJumpintoIf(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB); int handleJumpintoIfImp(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB); int improveSimpleJumpintoIf(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, MachineBasicBlock **LandMBBPtr); void showImproveSimpleJumpintoIf(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB, bool Detail = false); int cloneOnSideEntryTo(MachineBasicBlock *PreMBB, MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB); void mergeSerialBlock(MachineBasicBlock *DstMBB, MachineBasicBlock *SrcMBB); void mergeIfthenelseBlock(MachineInstr *BranchMI, MachineBasicBlock *MBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB); void mergeLooplandBlock(MachineBasicBlock *DstMBB, MachineBasicBlock *LandMBB); void mergeLoopbreakBlock(MachineBasicBlock *ExitingMBB, MachineBasicBlock *LandMBB); void settleLoopcontBlock(MachineBasicBlock *ContingMBB, MachineBasicBlock *ContMBB); /// normalizeInfiniteLoopExit change /// B1: /// uncond_br LoopHeader /// /// to /// B1: /// cond_br 1 LoopHeader dummyExit /// and return the newly added dummy exit block MachineBasicBlock *normalizeInfiniteLoopExit(MachineLoop *LoopRep); void removeUnconditionalBranch(MachineBasicBlock *MBB); /// Remove duplicate branches instructions in a block. /// For instance /// B0: /// cond_br X B1 B2 /// cond_br X B1 B2 /// is transformed to /// B0: /// cond_br X B1 B2 void removeRedundantConditionalBranch(MachineBasicBlock *MBB); void addDummyExitBlock(SmallVectorImpl<MachineBasicBlock *> &RetMBB); void removeSuccessor(MachineBasicBlock *MBB); MachineBasicBlock *cloneBlockForPredecessor(MachineBasicBlock *MBB, MachineBasicBlock *PredMBB); void migrateInstruction(MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB, MachineBasicBlock::iterator I); void recordSccnum(MachineBasicBlock *MBB, int SCCNum); void retireBlock(MachineBasicBlock *MBB); void setLoopLandBlock(MachineLoop *LoopRep, MachineBasicBlock *MBB = nullptr); MachineBasicBlock *findNearestCommonPostDom(std::set<MachineBasicBlock *>&); /// This is work around solution for findNearestCommonDominator not avaiable /// to post dom a proper fix should go to Dominators.h. MachineBasicBlock *findNearestCommonPostDom(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2); private: MBBInfoMap BlockInfoMap; LoopLandInfoMap LLInfoMap; std::map<MachineLoop *, bool> Visited; MachineFunction *FuncRep; SmallVector<MachineBasicBlock *, DEFAULT_VEC_SLOTS> OrderedBlks; }; int AMDGPUCFGStructurizer::getSCCNum(MachineBasicBlock *MBB) const { MBBInfoMap::const_iterator It = BlockInfoMap.find(MBB); if (It == BlockInfoMap.end()) return INVALIDSCCNUM; return (*It).second->SccNum; } MachineBasicBlock *AMDGPUCFGStructurizer::getLoopLandInfo(MachineLoop *LoopRep) const { LoopLandInfoMap::const_iterator It = LLInfoMap.find(LoopRep); if (It == LLInfoMap.end()) return nullptr; return (*It).second; } bool AMDGPUCFGStructurizer::hasBackEdge(MachineBasicBlock *MBB) const { MachineLoop *LoopRep = MLI->getLoopFor(MBB); if (!LoopRep) return false; MachineBasicBlock *LoopHeader = LoopRep->getHeader(); return MBB->isSuccessor(LoopHeader); } unsigned AMDGPUCFGStructurizer::getLoopDepth(MachineLoop *LoopRep) { return LoopRep ? LoopRep->getLoopDepth() : 0; } bool AMDGPUCFGStructurizer::isRetiredBlock(MachineBasicBlock *MBB) const { MBBInfoMap::const_iterator It = BlockInfoMap.find(MBB); if (It == BlockInfoMap.end()) return false; return (*It).second->IsRetired; } bool AMDGPUCFGStructurizer::isActiveLoophead(MachineBasicBlock *MBB) const { MachineLoop *LoopRep = MLI->getLoopFor(MBB); while (LoopRep && LoopRep->getHeader() == MBB) { MachineBasicBlock *LoopLand = getLoopLandInfo(LoopRep); if(!LoopLand) return true; if (!isRetiredBlock(LoopLand)) return true; LoopRep = LoopRep->getParentLoop(); } return false; } AMDGPUCFGStructurizer::PathToKind AMDGPUCFGStructurizer::singlePathTo( MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB, bool AllowSideEntry) const { assert(DstMBB); if (SrcMBB == DstMBB) return SinglePath_InPath; while (SrcMBB && SrcMBB->succ_size() == 1) { SrcMBB = *SrcMBB->succ_begin(); if (SrcMBB == DstMBB) return SinglePath_InPath; if (!AllowSideEntry && SrcMBB->pred_size() > 1) return Not_SinglePath; } if (SrcMBB && SrcMBB->succ_size()==0) return SinglePath_NotInPath; return Not_SinglePath; } int AMDGPUCFGStructurizer::countActiveBlock(MBBVector::const_iterator It, MBBVector::const_iterator E) const { int Count = 0; while (It != E) { if (!isRetiredBlock(*It)) ++Count; ++It; } return Count; } bool AMDGPUCFGStructurizer::needMigrateBlock(MachineBasicBlock *MBB) const { unsigned BlockSizeThreshold = 30; unsigned CloneInstrThreshold = 100; bool MultiplePreds = MBB && (MBB->pred_size() > 1); if(!MultiplePreds) return false; unsigned BlkSize = MBB->size(); return ((BlkSize > BlockSizeThreshold) && (BlkSize * (MBB->pred_size() - 1) > CloneInstrThreshold)); } void AMDGPUCFGStructurizer::reversePredicateSetter( MachineBasicBlock::iterator I) { while (I--) { if (I->getOpcode() == AMDGPU::PRED_X) { switch (static_cast<MachineInstr *>(I)->getOperand(2).getImm()) { case OPCODE_IS_ZERO_INT: static_cast<MachineInstr *>(I)->getOperand(2) .setImm(OPCODE_IS_NOT_ZERO_INT); return; case OPCODE_IS_NOT_ZERO_INT: static_cast<MachineInstr *>(I)->getOperand(2) .setImm(OPCODE_IS_ZERO_INT); return; case OPCODE_IS_ZERO: static_cast<MachineInstr *>(I)->getOperand(2) .setImm(OPCODE_IS_NOT_ZERO); return; case OPCODE_IS_NOT_ZERO: static_cast<MachineInstr *>(I)->getOperand(2) .setImm(OPCODE_IS_ZERO); return; default: llvm_unreachable("PRED_X Opcode invalid!"); } } } } void AMDGPUCFGStructurizer::insertInstrEnd(MachineBasicBlock *MBB, int NewOpcode, DebugLoc DL) { MachineInstr *MI = MBB->getParent() ->CreateMachineInstr(TII->get(NewOpcode), DL); MBB->push_back(MI); //assume the instruction doesn't take any reg operand ... SHOWNEWINSTR(MI); } MachineInstr *AMDGPUCFGStructurizer::insertInstrBefore(MachineBasicBlock *MBB, int NewOpcode, DebugLoc DL) { MachineInstr *MI = MBB->getParent()->CreateMachineInstr(TII->get(NewOpcode), DL); if (MBB->begin() != MBB->end()) MBB->insert(MBB->begin(), MI); else MBB->push_back(MI); SHOWNEWINSTR(MI); return MI; } MachineInstr *AMDGPUCFGStructurizer::insertInstrBefore( MachineBasicBlock::iterator I, int NewOpcode) { MachineInstr *OldMI = &(*I); MachineBasicBlock *MBB = OldMI->getParent(); MachineInstr *NewMBB = MBB->getParent()->CreateMachineInstr(TII->get(NewOpcode), DebugLoc()); MBB->insert(I, NewMBB); //assume the instruction doesn't take any reg operand ... SHOWNEWINSTR(NewMBB); return NewMBB; } void AMDGPUCFGStructurizer::insertCondBranchBefore( MachineBasicBlock::iterator I, int NewOpcode, DebugLoc DL) { MachineInstr *OldMI = &(*I); MachineBasicBlock *MBB = OldMI->getParent(); MachineFunction *MF = MBB->getParent(); MachineInstr *NewMI = MF->CreateMachineInstr(TII->get(NewOpcode), DL); MBB->insert(I, NewMI); MachineInstrBuilder MIB(*MF, NewMI); MIB.addReg(OldMI->getOperand(1).getReg(), false); SHOWNEWINSTR(NewMI); //erase later oldInstr->eraseFromParent(); } void AMDGPUCFGStructurizer::insertCondBranchBefore(MachineBasicBlock *blk, MachineBasicBlock::iterator I, int NewOpcode, int RegNum, DebugLoc DL) { MachineFunction *MF = blk->getParent(); MachineInstr *NewInstr = MF->CreateMachineInstr(TII->get(NewOpcode), DL); //insert before blk->insert(I, NewInstr); MachineInstrBuilder(*MF, NewInstr).addReg(RegNum, false); SHOWNEWINSTR(NewInstr); } void AMDGPUCFGStructurizer::insertCondBranchEnd(MachineBasicBlock *MBB, int NewOpcode, int RegNum) { MachineFunction *MF = MBB->getParent(); MachineInstr *NewInstr = MF->CreateMachineInstr(TII->get(NewOpcode), DebugLoc()); MBB->push_back(NewInstr); MachineInstrBuilder(*MF, NewInstr).addReg(RegNum, false); SHOWNEWINSTR(NewInstr); } int AMDGPUCFGStructurizer::getBranchNzeroOpcode(int OldOpcode) { switch(OldOpcode) { case AMDGPU::JUMP_COND: case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET; case AMDGPU::BRANCH_COND_i32: case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALNZ_f32; default: llvm_unreachable("internal error"); } return -1; } int AMDGPUCFGStructurizer::getBranchZeroOpcode(int OldOpcode) { switch(OldOpcode) { case AMDGPU::JUMP_COND: case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET; case AMDGPU::BRANCH_COND_i32: case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALZ_f32; default: llvm_unreachable("internal error"); } return -1; } int AMDGPUCFGStructurizer::getContinueNzeroOpcode(int OldOpcode) { switch(OldOpcode) { case AMDGPU::JUMP_COND: case AMDGPU::JUMP: return AMDGPU::CONTINUE_LOGICALNZ_i32; default: llvm_unreachable("internal error"); }; return -1; } int AMDGPUCFGStructurizer::getContinueZeroOpcode(int OldOpcode) { switch(OldOpcode) { case AMDGPU::JUMP_COND: case AMDGPU::JUMP: return AMDGPU::CONTINUE_LOGICALZ_i32; default: llvm_unreachable("internal error"); } return -1; } MachineBasicBlock *AMDGPUCFGStructurizer::getTrueBranch(MachineInstr *MI) { return MI->getOperand(0).getMBB(); } void AMDGPUCFGStructurizer::setTrueBranch(MachineInstr *MI, MachineBasicBlock *MBB) { MI->getOperand(0).setMBB(MBB); } MachineBasicBlock * AMDGPUCFGStructurizer::getFalseBranch(MachineBasicBlock *MBB, MachineInstr *MI) { assert(MBB->succ_size() == 2); MachineBasicBlock *TrueBranch = getTrueBranch(MI); MachineBasicBlock::succ_iterator It = MBB->succ_begin(); MachineBasicBlock::succ_iterator Next = It; ++Next; return (*It == TrueBranch) ? *Next : *It; } bool AMDGPUCFGStructurizer::isCondBranch(MachineInstr *MI) { switch (MI->getOpcode()) { case AMDGPU::JUMP_COND: case AMDGPU::BRANCH_COND_i32: case AMDGPU::BRANCH_COND_f32: return true; default: return false; } return false; } bool AMDGPUCFGStructurizer::isUncondBranch(MachineInstr *MI) { switch (MI->getOpcode()) { case AMDGPU::JUMP: case AMDGPU::BRANCH: return true; default: return false; } return false; } DebugLoc AMDGPUCFGStructurizer::getLastDebugLocInBB(MachineBasicBlock *MBB) { //get DebugLoc from the first MachineBasicBlock instruction with debug info DebugLoc DL; for (MachineBasicBlock::iterator It = MBB->begin(); It != MBB->end(); ++It) { MachineInstr *instr = &(*It); if (instr->getDebugLoc().isUnknown() == false) DL = instr->getDebugLoc(); } return DL; } MachineInstr *AMDGPUCFGStructurizer::getNormalBlockBranchInstr( MachineBasicBlock *MBB) { MachineBasicBlock::reverse_iterator It = MBB->rbegin(); MachineInstr *MI = &*It; if (MI && (isCondBranch(MI) || isUncondBranch(MI))) return MI; return nullptr; } MachineInstr *AMDGPUCFGStructurizer::getLoopendBlockBranchInstr( MachineBasicBlock *MBB) { for (MachineBasicBlock::reverse_iterator It = MBB->rbegin(), E = MBB->rend(); It != E; ++It) { // FIXME: Simplify MachineInstr *MI = &*It; if (MI) { if (isCondBranch(MI) || isUncondBranch(MI)) return MI; else if (!TII->isMov(MI->getOpcode())) break; } } return nullptr; } MachineInstr *AMDGPUCFGStructurizer::getReturnInstr(MachineBasicBlock *MBB) { MachineBasicBlock::reverse_iterator It = MBB->rbegin(); if (It != MBB->rend()) { MachineInstr *instr = &(*It); if (instr->getOpcode() == AMDGPU::RETURN) return instr; } return nullptr; } MachineInstr *AMDGPUCFGStructurizer::getContinueInstr(MachineBasicBlock *MBB) { MachineBasicBlock::reverse_iterator It = MBB->rbegin(); if (It != MBB->rend()) { MachineInstr *MI = &(*It); if (MI->getOpcode() == AMDGPU::CONTINUE) return MI; } return nullptr; } bool AMDGPUCFGStructurizer::isReturnBlock(MachineBasicBlock *MBB) { MachineInstr *MI = getReturnInstr(MBB); bool IsReturn = (MBB->succ_size() == 0); if (MI) assert(IsReturn); else if (IsReturn) DEBUG( dbgs() << "BB" << MBB->getNumber() <<" is return block without RETURN instr\n";); return IsReturn; } void AMDGPUCFGStructurizer::cloneSuccessorList(MachineBasicBlock *DstMBB, MachineBasicBlock *SrcMBB) { for (MachineBasicBlock::succ_iterator It = SrcMBB->succ_begin(), iterEnd = SrcMBB->succ_end(); It != iterEnd; ++It) DstMBB->addSuccessor(*It); // *iter's predecessor is also taken care of } MachineBasicBlock *AMDGPUCFGStructurizer::clone(MachineBasicBlock *MBB) { MachineFunction *Func = MBB->getParent(); MachineBasicBlock *NewMBB = Func->CreateMachineBasicBlock(); Func->push_back(NewMBB); //insert to function for (MachineBasicBlock::iterator It = MBB->begin(), E = MBB->end(); It != E; ++It) { MachineInstr *MI = Func->CloneMachineInstr(It); NewMBB->push_back(MI); } return NewMBB; } void AMDGPUCFGStructurizer::replaceInstrUseOfBlockWith( MachineBasicBlock *SrcMBB, MachineBasicBlock *OldMBB, MachineBasicBlock *NewBlk) { MachineInstr *BranchMI = getLoopendBlockBranchInstr(SrcMBB); if (BranchMI && isCondBranch(BranchMI) && getTrueBranch(BranchMI) == OldMBB) setTrueBranch(BranchMI, NewBlk); } void AMDGPUCFGStructurizer::wrapup(MachineBasicBlock *MBB) { assert((!MBB->getParent()->getJumpTableInfo() || MBB->getParent()->getJumpTableInfo()->isEmpty()) && "found a jump table"); //collect continue right before endloop SmallVector<MachineInstr *, DEFAULT_VEC_SLOTS> ContInstr; MachineBasicBlock::iterator Pre = MBB->begin(); MachineBasicBlock::iterator E = MBB->end(); MachineBasicBlock::iterator It = Pre; while (It != E) { if (Pre->getOpcode() == AMDGPU::CONTINUE && It->getOpcode() == AMDGPU::ENDLOOP) ContInstr.push_back(Pre); Pre = It; ++It; } //delete continue right before endloop for (unsigned i = 0; i < ContInstr.size(); ++i) ContInstr[i]->eraseFromParent(); // TODO to fix up jump table so later phase won't be confused. if // (jumpTableInfo->isEmpty() == false) { need to clean the jump table, but // there isn't such an interface yet. alternatively, replace all the other // blocks in the jump table with the entryBlk //} } bool AMDGPUCFGStructurizer::prepare() { bool Changed = false; //FIXME: if not reducible flow graph, make it so ??? DEBUG(dbgs() << "AMDGPUCFGStructurizer::prepare\n";); orderBlocks(FuncRep); SmallVector<MachineBasicBlock *, DEFAULT_VEC_SLOTS> RetBlks; // Add an ExitBlk to loop that don't have one for (MachineLoopInfo::iterator It = MLI->begin(), E = MLI->end(); It != E; ++It) { MachineLoop *LoopRep = (*It); MBBVector ExitingMBBs; LoopRep->getExitingBlocks(ExitingMBBs); if (ExitingMBBs.size() == 0) { MachineBasicBlock* DummyExitBlk = normalizeInfiniteLoopExit(LoopRep); if (DummyExitBlk) RetBlks.push_back(DummyExitBlk); } } // Remove unconditional branch instr. // Add dummy exit block iff there are multiple returns. for (SmallVectorImpl<MachineBasicBlock *>::const_iterator It = OrderedBlks.begin(), E = OrderedBlks.end(); It != E; ++It) { MachineBasicBlock *MBB = *It; removeUnconditionalBranch(MBB); removeRedundantConditionalBranch(MBB); if (isReturnBlock(MBB)) { RetBlks.push_back(MBB); } assert(MBB->succ_size() <= 2); } if (RetBlks.size() >= 2) { addDummyExitBlock(RetBlks); Changed = true; } return Changed; } bool AMDGPUCFGStructurizer::run() { //Assume reducible CFG... DEBUG(dbgs() << "AMDGPUCFGStructurizer::run\n"); #ifdef STRESSTEST //Use the worse block ordering to test the algorithm. ReverseVector(orderedBlks); #endif DEBUG(dbgs() << "Ordered blocks:\n"; printOrderedBlocks();); int NumIter = 0; bool Finish = false; MachineBasicBlock *MBB; bool MakeProgress = false; int NumRemainedBlk = countActiveBlock(OrderedBlks.begin(), OrderedBlks.end()); do { ++NumIter; DEBUG( dbgs() << "numIter = " << NumIter << ", numRemaintedBlk = " << NumRemainedBlk << "\n"; ); SmallVectorImpl<MachineBasicBlock *>::const_iterator It = OrderedBlks.begin(); SmallVectorImpl<MachineBasicBlock *>::const_iterator E = OrderedBlks.end(); SmallVectorImpl<MachineBasicBlock *>::const_iterator SccBeginIter = It; MachineBasicBlock *SccBeginMBB = nullptr; int SccNumBlk = 0; // The number of active blocks, init to a // maximum possible number. int SccNumIter; // Number of iteration in this SCC. while (It != E) { MBB = *It; if (!SccBeginMBB) { SccBeginIter = It; SccBeginMBB = MBB; SccNumIter = 0; SccNumBlk = NumRemainedBlk; // Init to maximum possible number. DEBUG( dbgs() << "start processing SCC" << getSCCNum(SccBeginMBB); dbgs() << "\n"; ); } if (!isRetiredBlock(MBB)) patternMatch(MBB); ++It; bool ContNextScc = true; if (It == E || getSCCNum(SccBeginMBB) != getSCCNum(*It)) { // Just finish one scc. ++SccNumIter; int sccRemainedNumBlk = countActiveBlock(SccBeginIter, It); if (sccRemainedNumBlk != 1 && sccRemainedNumBlk >= SccNumBlk) { DEBUG( dbgs() << "Can't reduce SCC " << getSCCNum(MBB) << ", sccNumIter = " << SccNumIter; dbgs() << "doesn't make any progress\n"; ); ContNextScc = true; } else if (sccRemainedNumBlk != 1 && sccRemainedNumBlk < SccNumBlk) { SccNumBlk = sccRemainedNumBlk; It = SccBeginIter; ContNextScc = false; DEBUG( dbgs() << "repeat processing SCC" << getSCCNum(MBB) << "sccNumIter = " << SccNumIter << '\n'; ); } else { // Finish the current scc. ContNextScc = true; } } else { // Continue on next component in the current scc. ContNextScc = false; } if (ContNextScc) SccBeginMBB = nullptr; } //while, "one iteration" over the function. MachineBasicBlock *EntryMBB = GraphTraits<MachineFunction *>::nodes_begin(FuncRep); if (EntryMBB->succ_size() == 0) { Finish = true; DEBUG( dbgs() << "Reduce to one block\n"; ); } else { int NewnumRemainedBlk = countActiveBlock(OrderedBlks.begin(), OrderedBlks.end()); // consider cloned blocks ?? if (NewnumRemainedBlk == 1 || NewnumRemainedBlk < NumRemainedBlk) { MakeProgress = true; NumRemainedBlk = NewnumRemainedBlk; } else { MakeProgress = false; DEBUG( dbgs() << "No progress\n"; ); } } } while (!Finish && MakeProgress); // Misc wrap up to maintain the consistency of the Function representation. wrapup(GraphTraits<MachineFunction *>::nodes_begin(FuncRep)); // Detach retired Block, release memory. for (MBBInfoMap::iterator It = BlockInfoMap.begin(), E = BlockInfoMap.end(); It != E; ++It) { if ((*It).second && (*It).second->IsRetired) { assert(((*It).first)->getNumber() != -1); DEBUG( dbgs() << "Erase BB" << ((*It).first)->getNumber() << "\n"; ); (*It).first->eraseFromParent(); //Remove from the parent Function. } delete (*It).second; } BlockInfoMap.clear(); LLInfoMap.clear(); if (!Finish) { DEBUG(FuncRep->viewCFG()); llvm_unreachable("IRREDUCIBLE_CFG"); } return true; } void AMDGPUCFGStructurizer::orderBlocks(MachineFunction *MF) { int SccNum = 0; MachineBasicBlock *MBB; for (scc_iterator<MachineFunction *> It = scc_begin(MF); !It.isAtEnd(); ++It, ++SccNum) { const std::vector<MachineBasicBlock *> &SccNext = *It; for (std::vector<MachineBasicBlock *>::const_iterator blockIter = SccNext.begin(), blockEnd = SccNext.end(); blockIter != blockEnd; ++blockIter) { MBB = *blockIter; OrderedBlks.push_back(MBB); recordSccnum(MBB, SccNum); } } //walk through all the block in func to check for unreachable typedef GraphTraits<MachineFunction *> GTM; MachineFunction::iterator It = GTM::nodes_begin(MF), E = GTM::nodes_end(MF); for (; It != E; ++It) { MachineBasicBlock *MBB = &(*It); SccNum = getSCCNum(MBB); if (SccNum == INVALIDSCCNUM) dbgs() << "unreachable block BB" << MBB->getNumber() << "\n"; } } int AMDGPUCFGStructurizer::patternMatch(MachineBasicBlock *MBB) { int NumMatch = 0; int CurMatch; DEBUG( dbgs() << "Begin patternMatch BB" << MBB->getNumber() << "\n"; ); while ((CurMatch = patternMatchGroup(MBB)) > 0) NumMatch += CurMatch; DEBUG( dbgs() << "End patternMatch BB" << MBB->getNumber() << ", numMatch = " << NumMatch << "\n"; ); return NumMatch; } int AMDGPUCFGStructurizer::patternMatchGroup(MachineBasicBlock *MBB) { int NumMatch = 0; NumMatch += loopendPatternMatch(); NumMatch += serialPatternMatch(MBB); NumMatch += ifPatternMatch(MBB); return NumMatch; } int AMDGPUCFGStructurizer::serialPatternMatch(MachineBasicBlock *MBB) { if (MBB->succ_size() != 1) return 0; MachineBasicBlock *childBlk = *MBB->succ_begin(); if (childBlk->pred_size() != 1 || isActiveLoophead(childBlk)) return 0; mergeSerialBlock(MBB, childBlk); ++numSerialPatternMatch; return 1; } int AMDGPUCFGStructurizer::ifPatternMatch(MachineBasicBlock *MBB) { //two edges if (MBB->succ_size() != 2) return 0; if (hasBackEdge(MBB)) return 0; MachineInstr *BranchMI = getNormalBlockBranchInstr(MBB); if (!BranchMI) return 0; assert(isCondBranch(BranchMI)); int NumMatch = 0; MachineBasicBlock *TrueMBB = getTrueBranch(BranchMI); NumMatch += serialPatternMatch(TrueMBB); NumMatch += ifPatternMatch(TrueMBB); MachineBasicBlock *FalseMBB = getFalseBranch(MBB, BranchMI); NumMatch += serialPatternMatch(FalseMBB); NumMatch += ifPatternMatch(FalseMBB); MachineBasicBlock *LandBlk; int Cloned = 0; assert (!TrueMBB->succ_empty() || !FalseMBB->succ_empty()); // TODO: Simplify if (TrueMBB->succ_size() == 1 && FalseMBB->succ_size() == 1 && *TrueMBB->succ_begin() == *FalseMBB->succ_begin()) { // Diamond pattern LandBlk = *TrueMBB->succ_begin(); } else if (TrueMBB->succ_size() == 1 && *TrueMBB->succ_begin() == FalseMBB) { // Triangle pattern, false is empty LandBlk = FalseMBB; FalseMBB = nullptr; } else if (FalseMBB->succ_size() == 1 && *FalseMBB->succ_begin() == TrueMBB) { // Triangle pattern, true is empty // We reverse the predicate to make a triangle, empty false pattern; std::swap(TrueMBB, FalseMBB); reversePredicateSetter(MBB->end()); LandBlk = FalseMBB; FalseMBB = nullptr; } else if (FalseMBB->succ_size() == 1 && isSameloopDetachedContbreak(TrueMBB, FalseMBB)) { LandBlk = *FalseMBB->succ_begin(); } else if (TrueMBB->succ_size() == 1 && isSameloopDetachedContbreak(FalseMBB, TrueMBB)) { LandBlk = *TrueMBB->succ_begin(); } else { return NumMatch + handleJumpintoIf(MBB, TrueMBB, FalseMBB); } // improveSimpleJumpinfoIf can handle the case where landBlk == NULL but the // new BB created for landBlk==NULL may introduce new challenge to the // reduction process. if (LandBlk && ((TrueMBB && TrueMBB->pred_size() > 1) || (FalseMBB && FalseMBB->pred_size() > 1))) { Cloned += improveSimpleJumpintoIf(MBB, TrueMBB, FalseMBB, &LandBlk); } if (TrueMBB && TrueMBB->pred_size() > 1) { TrueMBB = cloneBlockForPredecessor(TrueMBB, MBB); ++Cloned; } if (FalseMBB && FalseMBB->pred_size() > 1) { FalseMBB = cloneBlockForPredecessor(FalseMBB, MBB); ++Cloned; } mergeIfthenelseBlock(BranchMI, MBB, TrueMBB, FalseMBB, LandBlk); ++numIfPatternMatch; numClonedBlock += Cloned; return 1 + Cloned + NumMatch; } int AMDGPUCFGStructurizer::loopendPatternMatch() { std::vector<MachineLoop *> NestedLoops; for (MachineLoopInfo::iterator It = MLI->begin(), E = MLI->end(); It != E; ++It) for (MachineLoop *ML : depth_first(*It)) NestedLoops.push_back(ML); if (NestedLoops.size() == 0) return 0; // Process nested loop outside->inside, so "continue" to a outside loop won't // be mistaken as "break" of the current loop. int Num = 0; for (std::vector<MachineLoop *>::reverse_iterator It = NestedLoops.rbegin(), E = NestedLoops.rend(); It != E; ++It) { MachineLoop *ExaminedLoop = *It; if (ExaminedLoop->getNumBlocks() == 0 || Visited[ExaminedLoop]) continue; DEBUG(dbgs() << "Processing:\n"; ExaminedLoop->dump();); int NumBreak = mergeLoop(ExaminedLoop); if (NumBreak == -1) break; Num += NumBreak; } return Num; } int AMDGPUCFGStructurizer::mergeLoop(MachineLoop *LoopRep) { MachineBasicBlock *LoopHeader = LoopRep->getHeader(); MBBVector ExitingMBBs; LoopRep->getExitingBlocks(ExitingMBBs); assert(!ExitingMBBs.empty() && "Infinite Loop not supported"); DEBUG(dbgs() << "Loop has " << ExitingMBBs.size() << " exiting blocks\n";); // We assume a single ExitBlk MBBVector ExitBlks; LoopRep->getExitBlocks(ExitBlks); SmallPtrSet<MachineBasicBlock *, 2> ExitBlkSet; for (unsigned i = 0, e = ExitBlks.size(); i < e; ++i) ExitBlkSet.insert(ExitBlks[i]); assert(ExitBlkSet.size() == 1); MachineBasicBlock *ExitBlk = *ExitBlks.begin(); assert(ExitBlk && "Loop has several exit block"); MBBVector LatchBlks; typedef GraphTraits<Inverse<MachineBasicBlock*> > InvMBBTraits; InvMBBTraits::ChildIteratorType PI = InvMBBTraits::child_begin(LoopHeader), PE = InvMBBTraits::child_end(LoopHeader); for (; PI != PE; PI++) { if (LoopRep->contains(*PI)) LatchBlks.push_back(*PI); } for (unsigned i = 0, e = ExitingMBBs.size(); i < e; ++i) mergeLoopbreakBlock(ExitingMBBs[i], ExitBlk); for (unsigned i = 0, e = LatchBlks.size(); i < e; ++i) settleLoopcontBlock(LatchBlks[i], LoopHeader); int Match = 0; do { Match = 0; Match += serialPatternMatch(LoopHeader); Match += ifPatternMatch(LoopHeader); } while (Match > 0); mergeLooplandBlock(LoopHeader, ExitBlk); MachineLoop *ParentLoop = LoopRep->getParentLoop(); if (ParentLoop) MLI->changeLoopFor(LoopHeader, ParentLoop); else MLI->removeBlock(LoopHeader); Visited[LoopRep] = true; return 1; } int AMDGPUCFGStructurizer::loopcontPatternMatch(MachineLoop *LoopRep, MachineBasicBlock *LoopHeader) { int NumCont = 0; SmallVector<MachineBasicBlock *, DEFAULT_VEC_SLOTS> ContMBB; typedef GraphTraits<Inverse<MachineBasicBlock *> > GTIM; GTIM::ChildIteratorType It = GTIM::child_begin(LoopHeader), E = GTIM::child_end(LoopHeader); for (; It != E; ++It) { MachineBasicBlock *MBB = *It; if (LoopRep->contains(MBB)) { handleLoopcontBlock(MBB, MLI->getLoopFor(MBB), LoopHeader, LoopRep); ContMBB.push_back(MBB); ++NumCont; } } for (SmallVectorImpl<MachineBasicBlock *>::iterator It = ContMBB.begin(), E = ContMBB.end(); It != E; ++It) { (*It)->removeSuccessor(LoopHeader); } numLoopcontPatternMatch += NumCont; return NumCont; } bool AMDGPUCFGStructurizer::isSameloopDetachedContbreak( MachineBasicBlock *Src1MBB, MachineBasicBlock *Src2MBB) { if (Src1MBB->succ_size() == 0) { MachineLoop *LoopRep = MLI->getLoopFor(Src1MBB); if (LoopRep&& LoopRep == MLI->getLoopFor(Src2MBB)) { MachineBasicBlock *&TheEntry = LLInfoMap[LoopRep]; if (TheEntry) { DEBUG( dbgs() << "isLoopContBreakBlock yes src1 = BB" << Src1MBB->getNumber() << " src2 = BB" << Src2MBB->getNumber() << "\n"; ); return true; } } } return false; } int AMDGPUCFGStructurizer::handleJumpintoIf(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB) { int Num = handleJumpintoIfImp(HeadMBB, TrueMBB, FalseMBB); if (Num == 0) { DEBUG( dbgs() << "handleJumpintoIf swap trueBlk and FalseBlk" << "\n"; ); Num = handleJumpintoIfImp(HeadMBB, FalseMBB, TrueMBB); } return Num; } int AMDGPUCFGStructurizer::handleJumpintoIfImp(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB) { int Num = 0; MachineBasicBlock *DownBlk; //trueBlk could be the common post dominator DownBlk = TrueMBB; DEBUG( dbgs() << "handleJumpintoIfImp head = BB" << HeadMBB->getNumber() << " true = BB" << TrueMBB->getNumber() << ", numSucc=" << TrueMBB->succ_size() << " false = BB" << FalseMBB->getNumber() << "\n"; ); while (DownBlk) { DEBUG( dbgs() << "check down = BB" << DownBlk->getNumber(); ); if (singlePathTo(FalseMBB, DownBlk) == SinglePath_InPath) { DEBUG( dbgs() << " working\n"; ); Num += cloneOnSideEntryTo(HeadMBB, TrueMBB, DownBlk); Num += cloneOnSideEntryTo(HeadMBB, FalseMBB, DownBlk); numClonedBlock += Num; Num += serialPatternMatch(*HeadMBB->succ_begin()); Num += serialPatternMatch(*std::next(HeadMBB->succ_begin())); Num += ifPatternMatch(HeadMBB); assert(Num > 0); break; } DEBUG( dbgs() << " not working\n"; ); DownBlk = (DownBlk->succ_size() == 1) ? (*DownBlk->succ_begin()) : nullptr; } // walk down the postDomTree return Num; } void AMDGPUCFGStructurizer::showImproveSimpleJumpintoIf( MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB, bool Detail) { dbgs() << "head = BB" << HeadMBB->getNumber() << " size = " << HeadMBB->size(); if (Detail) { dbgs() << "\n"; HeadMBB->print(dbgs()); dbgs() << "\n"; } if (TrueMBB) { dbgs() << ", true = BB" << TrueMBB->getNumber() << " size = " << TrueMBB->size() << " numPred = " << TrueMBB->pred_size(); if (Detail) { dbgs() << "\n"; TrueMBB->print(dbgs()); dbgs() << "\n"; } } if (FalseMBB) { dbgs() << ", false = BB" << FalseMBB->getNumber() << " size = " << FalseMBB->size() << " numPred = " << FalseMBB->pred_size(); if (Detail) { dbgs() << "\n"; FalseMBB->print(dbgs()); dbgs() << "\n"; } } if (LandMBB) { dbgs() << ", land = BB" << LandMBB->getNumber() << " size = " << LandMBB->size() << " numPred = " << LandMBB->pred_size(); if (Detail) { dbgs() << "\n"; LandMBB->print(dbgs()); dbgs() << "\n"; } } dbgs() << "\n"; } int AMDGPUCFGStructurizer::improveSimpleJumpintoIf(MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, MachineBasicBlock **LandMBBPtr) { bool MigrateTrue = false; bool MigrateFalse = false; MachineBasicBlock *LandBlk = *LandMBBPtr; assert((!TrueMBB || TrueMBB->succ_size() <= 1) && (!FalseMBB || FalseMBB->succ_size() <= 1)); if (TrueMBB == FalseMBB) return 0; MigrateTrue = needMigrateBlock(TrueMBB); MigrateFalse = needMigrateBlock(FalseMBB); if (!MigrateTrue && !MigrateFalse) return 0; // If we need to migrate either trueBlk and falseBlk, migrate the rest that // have more than one predecessors. without doing this, its predecessor // rather than headBlk will have undefined value in initReg. if (!MigrateTrue && TrueMBB && TrueMBB->pred_size() > 1) MigrateTrue = true; if (!MigrateFalse && FalseMBB && FalseMBB->pred_size() > 1) MigrateFalse = true; DEBUG( dbgs() << "before improveSimpleJumpintoIf: "; showImproveSimpleJumpintoIf(HeadMBB, TrueMBB, FalseMBB, LandBlk, 0); ); // org: headBlk => if () {trueBlk} else {falseBlk} => landBlk // // new: headBlk => if () {initReg = 1; org trueBlk branch} else // {initReg = 0; org falseBlk branch } // => landBlk => if (initReg) {org trueBlk} else {org falseBlk} // => org landBlk // if landBlk->pred_size() > 2, put the about if-else inside // if (initReg !=2) {...} // // add initReg = initVal to headBlk const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32); if (!MigrateTrue || !MigrateFalse) { // XXX: We have an opportunity here to optimize the "branch into if" case // here. Branch into if looks like this: // entry // / | // diamond_head branch_from // / \ | // diamond_false diamond_true // \ / // done // // The diamond_head block begins the "if" and the diamond_true block // is the block being "branched into". // // If MigrateTrue is true, then TrueBB is the block being "branched into" // and if MigrateFalse is true, then FalseBB is the block being // "branched into" // // Here is the pseudo code for how I think the optimization should work: // 1. Insert MOV GPR0, 0 before the branch instruction in diamond_head. // 2. Insert MOV GPR0, 1 before the branch instruction in branch_from. // 3. Move the branch instruction from diamond_head into its own basic // block (new_block). // 4. Add an unconditional branch from diamond_head to new_block // 5. Replace the branch instruction in branch_from with an unconditional // branch to new_block. If branch_from has multiple predecessors, then // we need to replace the True/False block in the branch // instruction instead of replacing it. // 6. Change the condition of the branch instruction in new_block from // COND to (COND || GPR0) // // In order insert these MOV instruction, we will need to use the // RegisterScavenger. Usually liveness stops being tracked during // the late machine optimization passes, however if we implement // bool TargetRegisterInfo::requiresRegisterScavenging( // const MachineFunction &MF) // and have it return true, liveness will be tracked correctly // by generic optimization passes. We will also need to make sure that // all of our target-specific passes that run after regalloc and before // the CFGStructurizer track liveness and we will need to modify this pass // to correctly track liveness. // // After the above changes, the new CFG should look like this: // entry // / | // diamond_head branch_from // \ / // new_block // / | // diamond_false diamond_true // \ / // done // // Without this optimization, we are forced to duplicate the diamond_true // block and we will end up with a CFG like this: // // entry // / | // diamond_head branch_from // / \ | // diamond_false diamond_true diamond_true (duplicate) // \ / | // done --------------------| // // Duplicating diamond_true can be very costly especially if it has a // lot of instructions. return 0; } int NumNewBlk = 0; bool LandBlkHasOtherPred = (LandBlk->pred_size() > 2); //insert AMDGPU::ENDIF to avoid special case "input landBlk == NULL" MachineBasicBlock::iterator I = insertInstrBefore(LandBlk, AMDGPU::ENDIF); if (LandBlkHasOtherPred) { llvm_unreachable("Extra register needed to handle CFG"); unsigned CmpResReg = HeadMBB->getParent()->getRegInfo().createVirtualRegister(I32RC); llvm_unreachable("Extra compare instruction needed to handle CFG"); insertCondBranchBefore(LandBlk, I, AMDGPU::IF_PREDICATE_SET, CmpResReg, DebugLoc()); } // XXX: We are running this after RA, so creating virtual registers will // cause an assertion failure in the PostRA scheduling pass. unsigned InitReg = HeadMBB->getParent()->getRegInfo().createVirtualRegister(I32RC); insertCondBranchBefore(LandBlk, I, AMDGPU::IF_PREDICATE_SET, InitReg, DebugLoc()); if (MigrateTrue) { migrateInstruction(TrueMBB, LandBlk, I); // need to uncondionally insert the assignment to ensure a path from its // predecessor rather than headBlk has valid value in initReg if // (initVal != 1). llvm_unreachable("Extra register needed to handle CFG"); } insertInstrBefore(I, AMDGPU::ELSE); if (MigrateFalse) { migrateInstruction(FalseMBB, LandBlk, I); // need to uncondionally insert the assignment to ensure a path from its // predecessor rather than headBlk has valid value in initReg if // (initVal != 0) llvm_unreachable("Extra register needed to handle CFG"); } if (LandBlkHasOtherPred) { // add endif insertInstrBefore(I, AMDGPU::ENDIF); // put initReg = 2 to other predecessors of landBlk for (MachineBasicBlock::pred_iterator PI = LandBlk->pred_begin(), PE = LandBlk->pred_end(); PI != PE; ++PI) { MachineBasicBlock *MBB = *PI; if (MBB != TrueMBB && MBB != FalseMBB) llvm_unreachable("Extra register needed to handle CFG"); } } DEBUG( dbgs() << "result from improveSimpleJumpintoIf: "; showImproveSimpleJumpintoIf(HeadMBB, TrueMBB, FalseMBB, LandBlk, 0); ); // update landBlk *LandMBBPtr = LandBlk; return NumNewBlk; } void AMDGPUCFGStructurizer::handleLoopcontBlock(MachineBasicBlock *ContingMBB, MachineLoop *ContingLoop, MachineBasicBlock *ContMBB, MachineLoop *ContLoop) { DEBUG(dbgs() << "loopcontPattern cont = BB" << ContingMBB->getNumber() << " header = BB" << ContMBB->getNumber() << "\n"; dbgs() << "Trying to continue loop-depth = " << getLoopDepth(ContLoop) << " from loop-depth = " << getLoopDepth(ContingLoop) << "\n";); settleLoopcontBlock(ContingMBB, ContMBB); } void AMDGPUCFGStructurizer::mergeSerialBlock(MachineBasicBlock *DstMBB, MachineBasicBlock *SrcMBB) { DEBUG( dbgs() << "serialPattern BB" << DstMBB->getNumber() << " <= BB" << SrcMBB->getNumber() << "\n"; ); DstMBB->splice(DstMBB->end(), SrcMBB, SrcMBB->begin(), SrcMBB->end()); DstMBB->removeSuccessor(SrcMBB); cloneSuccessorList(DstMBB, SrcMBB); removeSuccessor(SrcMBB); MLI->removeBlock(SrcMBB); retireBlock(SrcMBB); } void AMDGPUCFGStructurizer::mergeIfthenelseBlock(MachineInstr *BranchMI, MachineBasicBlock *MBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB) { assert (TrueMBB); DEBUG( dbgs() << "ifPattern BB" << MBB->getNumber(); dbgs() << "{ "; if (TrueMBB) { dbgs() << "BB" << TrueMBB->getNumber(); } dbgs() << " } else "; dbgs() << "{ "; if (FalseMBB) { dbgs() << "BB" << FalseMBB->getNumber(); } dbgs() << " }\n "; dbgs() << "landBlock: "; if (!LandMBB) { dbgs() << "NULL"; } else { dbgs() << "BB" << LandMBB->getNumber(); } dbgs() << "\n"; ); int OldOpcode = BranchMI->getOpcode(); DebugLoc BranchDL = BranchMI->getDebugLoc(); // transform to // if cond // trueBlk // else // falseBlk // endif // landBlk MachineBasicBlock::iterator I = BranchMI; insertCondBranchBefore(I, getBranchNzeroOpcode(OldOpcode), BranchDL); if (TrueMBB) { MBB->splice(I, TrueMBB, TrueMBB->begin(), TrueMBB->end()); MBB->removeSuccessor(TrueMBB); if (LandMBB && TrueMBB->succ_size()!=0) TrueMBB->removeSuccessor(LandMBB); retireBlock(TrueMBB); MLI->removeBlock(TrueMBB); } if (FalseMBB) { insertInstrBefore(I, AMDGPU::ELSE); MBB->splice(I, FalseMBB, FalseMBB->begin(), FalseMBB->end()); MBB->removeSuccessor(FalseMBB); if (LandMBB && FalseMBB->succ_size() != 0) FalseMBB->removeSuccessor(LandMBB); retireBlock(FalseMBB); MLI->removeBlock(FalseMBB); } insertInstrBefore(I, AMDGPU::ENDIF); BranchMI->eraseFromParent(); if (LandMBB && TrueMBB && FalseMBB) MBB->addSuccessor(LandMBB); } void AMDGPUCFGStructurizer::mergeLooplandBlock(MachineBasicBlock *DstBlk, MachineBasicBlock *LandMBB) { DEBUG(dbgs() << "loopPattern header = BB" << DstBlk->getNumber() << " land = BB" << LandMBB->getNumber() << "\n";); insertInstrBefore(DstBlk, AMDGPU::WHILELOOP, DebugLoc()); insertInstrEnd(DstBlk, AMDGPU::ENDLOOP, DebugLoc()); DstBlk->addSuccessor(LandMBB); DstBlk->removeSuccessor(DstBlk); } void AMDGPUCFGStructurizer::mergeLoopbreakBlock(MachineBasicBlock *ExitingMBB, MachineBasicBlock *LandMBB) { DEBUG(dbgs() << "loopbreakPattern exiting = BB" << ExitingMBB->getNumber() << " land = BB" << LandMBB->getNumber() << "\n";); MachineInstr *BranchMI = getLoopendBlockBranchInstr(ExitingMBB); assert(BranchMI && isCondBranch(BranchMI)); DebugLoc DL = BranchMI->getDebugLoc(); MachineBasicBlock *TrueBranch = getTrueBranch(BranchMI); MachineBasicBlock::iterator I = BranchMI; if (TrueBranch != LandMBB) reversePredicateSetter(I); insertCondBranchBefore(ExitingMBB, I, AMDGPU::IF_PREDICATE_SET, AMDGPU::PREDICATE_BIT, DL); insertInstrBefore(I, AMDGPU::BREAK); insertInstrBefore(I, AMDGPU::ENDIF); //now branchInst can be erase safely BranchMI->eraseFromParent(); //now take care of successors, retire blocks ExitingMBB->removeSuccessor(LandMBB); } void AMDGPUCFGStructurizer::settleLoopcontBlock(MachineBasicBlock *ContingMBB, MachineBasicBlock *ContMBB) { DEBUG(dbgs() << "settleLoopcontBlock conting = BB" << ContingMBB->getNumber() << ", cont = BB" << ContMBB->getNumber() << "\n";); MachineInstr *MI = getLoopendBlockBranchInstr(ContingMBB); if (MI) { assert(isCondBranch(MI)); MachineBasicBlock::iterator I = MI; MachineBasicBlock *TrueBranch = getTrueBranch(MI); int OldOpcode = MI->getOpcode(); DebugLoc DL = MI->getDebugLoc(); bool UseContinueLogical = ((&*ContingMBB->rbegin()) == MI); if (UseContinueLogical == false) { int BranchOpcode = TrueBranch == ContMBB ? getBranchNzeroOpcode(OldOpcode) : getBranchZeroOpcode(OldOpcode); insertCondBranchBefore(I, BranchOpcode, DL); // insertEnd to ensure phi-moves, if exist, go before the continue-instr. insertInstrEnd(ContingMBB, AMDGPU::CONTINUE, DL); insertInstrEnd(ContingMBB, AMDGPU::ENDIF, DL); } else { int BranchOpcode = TrueBranch == ContMBB ? getContinueNzeroOpcode(OldOpcode) : getContinueZeroOpcode(OldOpcode); insertCondBranchBefore(I, BranchOpcode, DL); } MI->eraseFromParent(); } else { // if we've arrived here then we've already erased the branch instruction // travel back up the basic block to see the last reference of our debug // location we've just inserted that reference here so it should be // representative insertEnd to ensure phi-moves, if exist, go before the // continue-instr. insertInstrEnd(ContingMBB, AMDGPU::CONTINUE, getLastDebugLocInBB(ContingMBB)); } } int AMDGPUCFGStructurizer::cloneOnSideEntryTo(MachineBasicBlock *PreMBB, MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB) { int Cloned = 0; assert(PreMBB->isSuccessor(SrcMBB)); while (SrcMBB && SrcMBB != DstMBB) { assert(SrcMBB->succ_size() == 1); if (SrcMBB->pred_size() > 1) { SrcMBB = cloneBlockForPredecessor(SrcMBB, PreMBB); ++Cloned; } PreMBB = SrcMBB; SrcMBB = *SrcMBB->succ_begin(); } return Cloned; } MachineBasicBlock * AMDGPUCFGStructurizer::cloneBlockForPredecessor(MachineBasicBlock *MBB, MachineBasicBlock *PredMBB) { assert(PredMBB->isSuccessor(MBB) && "succBlk is not a prececessor of curBlk"); MachineBasicBlock *CloneMBB = clone(MBB); //clone instructions replaceInstrUseOfBlockWith(PredMBB, MBB, CloneMBB); //srcBlk, oldBlk, newBlk PredMBB->removeSuccessor(MBB); PredMBB->addSuccessor(CloneMBB); // add all successor to cloneBlk cloneSuccessorList(CloneMBB, MBB); numClonedInstr += MBB->size(); DEBUG( dbgs() << "Cloned block: " << "BB" << MBB->getNumber() << "size " << MBB->size() << "\n"; ); SHOWNEWBLK(CloneMBB, "result of Cloned block: "); return CloneMBB; } void AMDGPUCFGStructurizer::migrateInstruction(MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB, MachineBasicBlock::iterator I) { MachineBasicBlock::iterator SpliceEnd; //look for the input branchinstr, not the AMDGPU branchinstr MachineInstr *BranchMI = getNormalBlockBranchInstr(SrcMBB); if (!BranchMI) { DEBUG( dbgs() << "migrateInstruction don't see branch instr\n" ; ); SpliceEnd = SrcMBB->end(); } else { DEBUG( dbgs() << "migrateInstruction see branch instr\n" ; BranchMI->dump(); ); SpliceEnd = BranchMI; } DEBUG( dbgs() << "migrateInstruction before splice dstSize = " << DstMBB->size() << "srcSize = " << SrcMBB->size() << "\n"; ); //splice insert before insertPos DstMBB->splice(I, SrcMBB, SrcMBB->begin(), SpliceEnd); DEBUG( dbgs() << "migrateInstruction after splice dstSize = " << DstMBB->size() << "srcSize = " << SrcMBB->size() << "\n"; ); } MachineBasicBlock * AMDGPUCFGStructurizer::normalizeInfiniteLoopExit(MachineLoop* LoopRep) { MachineBasicBlock *LoopHeader = LoopRep->getHeader(); MachineBasicBlock *LoopLatch = LoopRep->getLoopLatch(); const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32); if (!LoopHeader || !LoopLatch) return nullptr; MachineInstr *BranchMI = getLoopendBlockBranchInstr(LoopLatch); // Is LoopRep an infinite loop ? if (!BranchMI || !isUncondBranch(BranchMI)) return nullptr; MachineBasicBlock *DummyExitBlk = FuncRep->CreateMachineBasicBlock(); FuncRep->push_back(DummyExitBlk); //insert to function SHOWNEWBLK(DummyExitBlk, "DummyExitBlock to normalize infiniteLoop: "); DEBUG(dbgs() << "Old branch instr: " << *BranchMI << "\n";); MachineBasicBlock::iterator I = BranchMI; unsigned ImmReg = FuncRep->getRegInfo().createVirtualRegister(I32RC); llvm_unreachable("Extra register needed to handle CFG"); MachineInstr *NewMI = insertInstrBefore(I, AMDGPU::BRANCH_COND_i32); MachineInstrBuilder MIB(*FuncRep, NewMI); MIB.addMBB(LoopHeader); MIB.addReg(ImmReg, false); SHOWNEWINSTR(NewMI); BranchMI->eraseFromParent(); LoopLatch->addSuccessor(DummyExitBlk); return DummyExitBlk; } void AMDGPUCFGStructurizer::removeUnconditionalBranch(MachineBasicBlock *MBB) { MachineInstr *BranchMI; // I saw two unconditional branch in one basic block in example // test_fc_do_while_or.c need to fix the upstream on this to remove the loop. while ((BranchMI = getLoopendBlockBranchInstr(MBB)) && isUncondBranch(BranchMI)) { DEBUG(dbgs() << "Removing uncond branch instr"; BranchMI->dump();); BranchMI->eraseFromParent(); } } void AMDGPUCFGStructurizer::removeRedundantConditionalBranch( MachineBasicBlock *MBB) { if (MBB->succ_size() != 2) return; MachineBasicBlock *MBB1 = *MBB->succ_begin(); MachineBasicBlock *MBB2 = *std::next(MBB->succ_begin()); if (MBB1 != MBB2) return; MachineInstr *BranchMI = getNormalBlockBranchInstr(MBB); assert(BranchMI && isCondBranch(BranchMI)); DEBUG(dbgs() << "Removing unneeded cond branch instr"; BranchMI->dump();); BranchMI->eraseFromParent(); SHOWNEWBLK(MBB1, "Removing redundant successor"); MBB->removeSuccessor(MBB1); } void AMDGPUCFGStructurizer::addDummyExitBlock( SmallVectorImpl<MachineBasicBlock*> &RetMBB) { MachineBasicBlock *DummyExitBlk = FuncRep->CreateMachineBasicBlock(); FuncRep->push_back(DummyExitBlk); //insert to function insertInstrEnd(DummyExitBlk, AMDGPU::RETURN); for (SmallVectorImpl<MachineBasicBlock *>::iterator It = RetMBB.begin(), E = RetMBB.end(); It != E; ++It) { MachineBasicBlock *MBB = *It; MachineInstr *MI = getReturnInstr(MBB); if (MI) MI->eraseFromParent(); MBB->addSuccessor(DummyExitBlk); DEBUG( dbgs() << "Add dummyExitBlock to BB" << MBB->getNumber() << " successors\n"; ); } SHOWNEWBLK(DummyExitBlk, "DummyExitBlock: "); } void AMDGPUCFGStructurizer::removeSuccessor(MachineBasicBlock *MBB) { while (MBB->succ_size()) MBB->removeSuccessor(*MBB->succ_begin()); } void AMDGPUCFGStructurizer::recordSccnum(MachineBasicBlock *MBB, int SccNum) { BlockInformation *&srcBlkInfo = BlockInfoMap[MBB]; if (!srcBlkInfo) srcBlkInfo = new BlockInformation(); srcBlkInfo->SccNum = SccNum; } void AMDGPUCFGStructurizer::retireBlock(MachineBasicBlock *MBB) { DEBUG( dbgs() << "Retiring BB" << MBB->getNumber() << "\n"; ); BlockInformation *&SrcBlkInfo = BlockInfoMap[MBB]; if (!SrcBlkInfo) SrcBlkInfo = new BlockInformation(); SrcBlkInfo->IsRetired = true; assert(MBB->succ_size() == 0 && MBB->pred_size() == 0 && "can't retire block yet"); } void AMDGPUCFGStructurizer::setLoopLandBlock(MachineLoop *loopRep, MachineBasicBlock *MBB) { MachineBasicBlock *&TheEntry = LLInfoMap[loopRep]; if (!MBB) { MBB = FuncRep->CreateMachineBasicBlock(); FuncRep->push_back(MBB); //insert to function SHOWNEWBLK(MBB, "DummyLandingBlock for loop without break: "); } TheEntry = MBB; DEBUG( dbgs() << "setLoopLandBlock loop-header = BB" << loopRep->getHeader()->getNumber() << " landing-block = BB" << MBB->getNumber() << "\n"; ); } MachineBasicBlock * AMDGPUCFGStructurizer::findNearestCommonPostDom(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2) { if (PDT->dominates(MBB1, MBB2)) return MBB1; if (PDT->dominates(MBB2, MBB1)) return MBB2; MachineDomTreeNode *Node1 = PDT->getNode(MBB1); MachineDomTreeNode *Node2 = PDT->getNode(MBB2); // Handle newly cloned node. if (!Node1 && MBB1->succ_size() == 1) return findNearestCommonPostDom(*MBB1->succ_begin(), MBB2); if (!Node2 && MBB2->succ_size() == 1) return findNearestCommonPostDom(MBB1, *MBB2->succ_begin()); if (!Node1 || !Node2) return nullptr; Node1 = Node1->getIDom(); while (Node1) { if (PDT->dominates(Node1, Node2)) return Node1->getBlock(); Node1 = Node1->getIDom(); } return nullptr; } MachineBasicBlock * AMDGPUCFGStructurizer::findNearestCommonPostDom( std::set<MachineBasicBlock *> &MBBs) { MachineBasicBlock *CommonDom; std::set<MachineBasicBlock *>::const_iterator It = MBBs.begin(); std::set<MachineBasicBlock *>::const_iterator E = MBBs.end(); for (CommonDom = *It; It != E && CommonDom; ++It) { MachineBasicBlock *MBB = *It; if (MBB != CommonDom) CommonDom = findNearestCommonPostDom(MBB, CommonDom); } DEBUG( dbgs() << "Common post dominator for exit blocks is "; if (CommonDom) dbgs() << "BB" << CommonDom->getNumber() << "\n"; else dbgs() << "NULL\n"; ); return CommonDom; } char AMDGPUCFGStructurizer::ID = 0; } // end anonymous namespace INITIALIZE_PASS_BEGIN(AMDGPUCFGStructurizer, "amdgpustructurizer", "AMDGPU CFG Structurizer", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(AMDGPUCFGStructurizer, "amdgpustructurizer", "AMDGPU CFG Structurizer", false, false) FunctionPass *llvm::createAMDGPUCFGStructurizerPass() { return new AMDGPUCFGStructurizer(); }