//===-- MipsSEInstrInfo.cpp - Mips32/64 Instruction Information -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips32/64 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "MipsSEInstrInfo.h" #include "InstPrinter/MipsInstPrinter.h" #include "MipsMachineFunction.h" #include "MipsTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; MipsSEInstrInfo::MipsSEInstrInfo(MipsTargetMachine &tm) : MipsInstrInfo(tm, tm.getRelocationModel() == Reloc::PIC_ ? Mips::B : Mips::J), RI(*tm.getSubtargetImpl()), IsN64(tm.getSubtarget<MipsSubtarget>().isABI_N64()) {} const MipsRegisterInfo &MipsSEInstrInfo::getRegisterInfo() const { return RI; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned MipsSEInstrInfo:: isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { unsigned Opc = MI->getOpcode(); if ((Opc == Mips::LW) || (Opc == Mips::LD) || (Opc == Mips::LWC1) || (Opc == Mips::LDC1) || (Opc == Mips::LDC164)) { if ((MI->getOperand(1).isFI()) && // is a stack slot (MI->getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(2)))) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned MipsSEInstrInfo:: isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { unsigned Opc = MI->getOpcode(); if ((Opc == Mips::SW) || (Opc == Mips::SD) || (Opc == Mips::SWC1) || (Opc == Mips::SDC1) || (Opc == Mips::SDC164)) { if ((MI->getOperand(1).isFI()) && // is a stack slot (MI->getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(2)))) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } void MipsSEInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { unsigned Opc = 0, ZeroReg = 0; bool isMicroMips = TM.getSubtarget<MipsSubtarget>().inMicroMipsMode(); if (Mips::GPR32RegClass.contains(DestReg)) { // Copy to CPU Reg. if (Mips::GPR32RegClass.contains(SrcReg)) { if (isMicroMips) Opc = Mips::MOVE16_MM; else Opc = Mips::ADDu, ZeroReg = Mips::ZERO; } else if (Mips::CCRRegClass.contains(SrcReg)) Opc = Mips::CFC1; else if (Mips::FGR32RegClass.contains(SrcReg)) Opc = Mips::MFC1; else if (Mips::HI32RegClass.contains(SrcReg)) { Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI; SrcReg = 0; } else if (Mips::LO32RegClass.contains(SrcReg)) { Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO; SrcReg = 0; } else if (Mips::HI32DSPRegClass.contains(SrcReg)) Opc = Mips::MFHI_DSP; else if (Mips::LO32DSPRegClass.contains(SrcReg)) Opc = Mips::MFLO_DSP; else if (Mips::DSPCCRegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(Mips::RDDSP), DestReg).addImm(1 << 4) .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); return; } else if (Mips::MSACtrlRegClass.contains(SrcReg)) Opc = Mips::CFCMSA; } else if (Mips::GPR32RegClass.contains(SrcReg)) { // Copy from CPU Reg. if (Mips::CCRRegClass.contains(DestReg)) Opc = Mips::CTC1; else if (Mips::FGR32RegClass.contains(DestReg)) Opc = Mips::MTC1; else if (Mips::HI32RegClass.contains(DestReg)) Opc = Mips::MTHI, DestReg = 0; else if (Mips::LO32RegClass.contains(DestReg)) Opc = Mips::MTLO, DestReg = 0; else if (Mips::HI32DSPRegClass.contains(DestReg)) Opc = Mips::MTHI_DSP; else if (Mips::LO32DSPRegClass.contains(DestReg)) Opc = Mips::MTLO_DSP; else if (Mips::DSPCCRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Mips::WRDSP)) .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1 << 4) .addReg(DestReg, RegState::ImplicitDefine); return; } else if (Mips::MSACtrlRegClass.contains(DestReg)) Opc = Mips::CTCMSA; } else if (Mips::FGR32RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_S; else if (Mips::AFGR64RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_D32; else if (Mips::FGR64RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_D64; else if (Mips::GPR64RegClass.contains(DestReg)) { // Copy to CPU64 Reg. if (Mips::GPR64RegClass.contains(SrcReg)) Opc = Mips::DADDu, ZeroReg = Mips::ZERO_64; else if (Mips::HI64RegClass.contains(SrcReg)) Opc = Mips::MFHI64, SrcReg = 0; else if (Mips::LO64RegClass.contains(SrcReg)) Opc = Mips::MFLO64, SrcReg = 0; else if (Mips::FGR64RegClass.contains(SrcReg)) Opc = Mips::DMFC1; } else if (Mips::GPR64RegClass.contains(SrcReg)) { // Copy from CPU64 Reg. if (Mips::HI64RegClass.contains(DestReg)) Opc = Mips::MTHI64, DestReg = 0; else if (Mips::LO64RegClass.contains(DestReg)) Opc = Mips::MTLO64, DestReg = 0; else if (Mips::FGR64RegClass.contains(DestReg)) Opc = Mips::DMTC1; } else if (Mips::MSA128BRegClass.contains(DestReg)) { // Copy to MSA reg if (Mips::MSA128BRegClass.contains(SrcReg)) Opc = Mips::MOVE_V; } assert(Opc && "Cannot copy registers"); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc)); if (DestReg) MIB.addReg(DestReg, RegState::Define); if (SrcReg) MIB.addReg(SrcReg, getKillRegState(KillSrc)); if (ZeroReg) MIB.addReg(ZeroReg); } void MipsSEInstrInfo:: storeRegToStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, int64_t Offset) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore); unsigned Opc = 0; if (Mips::GPR32RegClass.hasSubClassEq(RC)) Opc = Mips::SW; else if (Mips::GPR64RegClass.hasSubClassEq(RC)) Opc = Mips::SD; else if (Mips::ACC64RegClass.hasSubClassEq(RC)) Opc = Mips::STORE_ACC64; else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC)) Opc = Mips::STORE_ACC64DSP; else if (Mips::ACC128RegClass.hasSubClassEq(RC)) Opc = Mips::STORE_ACC128; else if (Mips::DSPCCRegClass.hasSubClassEq(RC)) Opc = Mips::STORE_CCOND_DSP; else if (Mips::FGR32RegClass.hasSubClassEq(RC)) Opc = Mips::SWC1; else if (Mips::AFGR64RegClass.hasSubClassEq(RC)) Opc = Mips::SDC1; else if (Mips::FGR64RegClass.hasSubClassEq(RC)) Opc = Mips::SDC164; else if (RC->hasType(MVT::v16i8)) Opc = Mips::ST_B; else if (RC->hasType(MVT::v8i16) || RC->hasType(MVT::v8f16)) Opc = Mips::ST_H; else if (RC->hasType(MVT::v4i32) || RC->hasType(MVT::v4f32)) Opc = Mips::ST_W; else if (RC->hasType(MVT::v2i64) || RC->hasType(MVT::v2f64)) Opc = Mips::ST_D; assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(Offset).addMemOperand(MMO); } void MipsSEInstrInfo:: loadRegFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, int64_t Offset) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad); unsigned Opc = 0; if (Mips::GPR32RegClass.hasSubClassEq(RC)) Opc = Mips::LW; else if (Mips::GPR64RegClass.hasSubClassEq(RC)) Opc = Mips::LD; else if (Mips::ACC64RegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_ACC64; else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_ACC64DSP; else if (Mips::ACC128RegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_ACC128; else if (Mips::DSPCCRegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_CCOND_DSP; else if (Mips::FGR32RegClass.hasSubClassEq(RC)) Opc = Mips::LWC1; else if (Mips::AFGR64RegClass.hasSubClassEq(RC)) Opc = Mips::LDC1; else if (Mips::FGR64RegClass.hasSubClassEq(RC)) Opc = Mips::LDC164; else if (RC->hasType(MVT::v16i8)) Opc = Mips::LD_B; else if (RC->hasType(MVT::v8i16) || RC->hasType(MVT::v8f16)) Opc = Mips::LD_H; else if (RC->hasType(MVT::v4i32) || RC->hasType(MVT::v4f32)) Opc = Mips::LD_W; else if (RC->hasType(MVT::v2i64) || RC->hasType(MVT::v2f64)) Opc = Mips::LD_D; assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc), DestReg).addFrameIndex(FI).addImm(Offset) .addMemOperand(MMO); } bool MipsSEInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { MachineBasicBlock &MBB = *MI->getParent(); bool isMicroMips = TM.getSubtarget<MipsSubtarget>().inMicroMipsMode(); unsigned Opc; switch(MI->getDesc().getOpcode()) { default: return false; case Mips::RetRA: expandRetRA(MBB, MI); break; case Mips::PseudoMFHI: Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI; expandPseudoMFHiLo(MBB, MI, Opc); break; case Mips::PseudoMFLO: Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO; expandPseudoMFHiLo(MBB, MI, Opc); break; case Mips::PseudoMFHI64: expandPseudoMFHiLo(MBB, MI, Mips::MFHI64); break; case Mips::PseudoMFLO64: expandPseudoMFHiLo(MBB, MI, Mips::MFLO64); break; case Mips::PseudoMTLOHI: expandPseudoMTLoHi(MBB, MI, Mips::MTLO, Mips::MTHI, false); break; case Mips::PseudoMTLOHI64: expandPseudoMTLoHi(MBB, MI, Mips::MTLO64, Mips::MTHI64, false); break; case Mips::PseudoMTLOHI_DSP: expandPseudoMTLoHi(MBB, MI, Mips::MTLO_DSP, Mips::MTHI_DSP, true); break; case Mips::PseudoCVT_S_W: expandCvtFPInt(MBB, MI, Mips::CVT_S_W, Mips::MTC1, false); break; case Mips::PseudoCVT_D32_W: expandCvtFPInt(MBB, MI, Mips::CVT_D32_W, Mips::MTC1, false); break; case Mips::PseudoCVT_S_L: expandCvtFPInt(MBB, MI, Mips::CVT_S_L, Mips::DMTC1, true); break; case Mips::PseudoCVT_D64_W: expandCvtFPInt(MBB, MI, Mips::CVT_D64_W, Mips::MTC1, true); break; case Mips::PseudoCVT_D64_L: expandCvtFPInt(MBB, MI, Mips::CVT_D64_L, Mips::DMTC1, true); break; case Mips::BuildPairF64: expandBuildPairF64(MBB, MI, false); break; case Mips::BuildPairF64_64: expandBuildPairF64(MBB, MI, true); break; case Mips::ExtractElementF64: expandExtractElementF64(MBB, MI, false); break; case Mips::ExtractElementF64_64: expandExtractElementF64(MBB, MI, true); break; case Mips::MIPSeh_return32: case Mips::MIPSeh_return64: expandEhReturn(MBB, MI); break; } MBB.erase(MI); return true; } /// getOppositeBranchOpc - Return the inverse of the specified /// opcode, e.g. turning BEQ to BNE. unsigned MipsSEInstrInfo::getOppositeBranchOpc(unsigned Opc) const { switch (Opc) { default: llvm_unreachable("Illegal opcode!"); case Mips::BEQ: return Mips::BNE; case Mips::BNE: return Mips::BEQ; case Mips::BGTZ: return Mips::BLEZ; case Mips::BGEZ: return Mips::BLTZ; case Mips::BLTZ: return Mips::BGEZ; case Mips::BLEZ: return Mips::BGTZ; case Mips::BEQ64: return Mips::BNE64; case Mips::BNE64: return Mips::BEQ64; case Mips::BGTZ64: return Mips::BLEZ64; case Mips::BGEZ64: return Mips::BLTZ64; case Mips::BLTZ64: return Mips::BGEZ64; case Mips::BLEZ64: return Mips::BGTZ64; case Mips::BC1T: return Mips::BC1F; case Mips::BC1F: return Mips::BC1T; } } /// Adjust SP by Amount bytes. void MipsSEInstrInfo::adjustStackPtr(unsigned SP, int64_t Amount, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const MipsSubtarget &STI = TM.getSubtarget<MipsSubtarget>(); DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc(); unsigned ADDu = STI.isABI_N64() ? Mips::DADDu : Mips::ADDu; unsigned ADDiu = STI.isABI_N64() ? Mips::DADDiu : Mips::ADDiu; if (isInt<16>(Amount))// addi sp, sp, amount BuildMI(MBB, I, DL, get(ADDiu), SP).addReg(SP).addImm(Amount); else { // Expand immediate that doesn't fit in 16-bit. unsigned Reg = loadImmediate(Amount, MBB, I, DL, nullptr); BuildMI(MBB, I, DL, get(ADDu), SP).addReg(SP).addReg(Reg, RegState::Kill); } } /// This function generates the sequence of instructions needed to get the /// result of adding register REG and immediate IMM. unsigned MipsSEInstrInfo::loadImmediate(int64_t Imm, MachineBasicBlock &MBB, MachineBasicBlock::iterator II, DebugLoc DL, unsigned *NewImm) const { MipsAnalyzeImmediate AnalyzeImm; const MipsSubtarget &STI = TM.getSubtarget<MipsSubtarget>(); MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); unsigned Size = STI.isABI_N64() ? 64 : 32; unsigned LUi = STI.isABI_N64() ? Mips::LUi64 : Mips::LUi; unsigned ZEROReg = STI.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO; const TargetRegisterClass *RC = STI.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; bool LastInstrIsADDiu = NewImm; const MipsAnalyzeImmediate::InstSeq &Seq = AnalyzeImm.Analyze(Imm, Size, LastInstrIsADDiu); MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); assert(Seq.size() && (!LastInstrIsADDiu || (Seq.size() > 1))); // The first instruction can be a LUi, which is different from other // instructions (ADDiu, ORI and SLL) in that it does not have a register // operand. unsigned Reg = RegInfo.createVirtualRegister(RC); if (Inst->Opc == LUi) BuildMI(MBB, II, DL, get(LUi), Reg).addImm(SignExtend64<16>(Inst->ImmOpnd)); else BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(ZEROReg) .addImm(SignExtend64<16>(Inst->ImmOpnd)); // Build the remaining instructions in Seq. for (++Inst; Inst != Seq.end() - LastInstrIsADDiu; ++Inst) BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(Reg, RegState::Kill) .addImm(SignExtend64<16>(Inst->ImmOpnd)); if (LastInstrIsADDiu) *NewImm = Inst->ImmOpnd; return Reg; } unsigned MipsSEInstrInfo::getAnalyzableBrOpc(unsigned Opc) const { return (Opc == Mips::BEQ || Opc == Mips::BNE || Opc == Mips::BGTZ || Opc == Mips::BGEZ || Opc == Mips::BLTZ || Opc == Mips::BLEZ || Opc == Mips::BEQ64 || Opc == Mips::BNE64 || Opc == Mips::BGTZ64 || Opc == Mips::BGEZ64 || Opc == Mips::BLTZ64 || Opc == Mips::BLEZ64 || Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::B || Opc == Mips::J) ? Opc : 0; } void MipsSEInstrInfo::expandRetRA(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const auto &Subtarget = TM.getSubtarget<MipsSubtarget>(); if (Subtarget.isGP64bit()) BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn64)) .addReg(Mips::RA_64); else BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn)).addReg(Mips::RA); } std::pair<bool, bool> MipsSEInstrInfo::compareOpndSize(unsigned Opc, const MachineFunction &MF) const { const MCInstrDesc &Desc = get(Opc); assert(Desc.NumOperands == 2 && "Unary instruction expected."); const MipsRegisterInfo *RI = &getRegisterInfo(); unsigned DstRegSize = getRegClass(Desc, 0, RI, MF)->getSize(); unsigned SrcRegSize = getRegClass(Desc, 1, RI, MF)->getSize(); return std::make_pair(DstRegSize > SrcRegSize, DstRegSize < SrcRegSize); } void MipsSEInstrInfo::expandPseudoMFHiLo(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned NewOpc) const { BuildMI(MBB, I, I->getDebugLoc(), get(NewOpc), I->getOperand(0).getReg()); } void MipsSEInstrInfo::expandPseudoMTLoHi(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned LoOpc, unsigned HiOpc, bool HasExplicitDef) const { // Expand // lo_hi pseudomtlohi $gpr0, $gpr1 // to these two instructions: // mtlo $gpr0 // mthi $gpr1 DebugLoc DL = I->getDebugLoc(); const MachineOperand &SrcLo = I->getOperand(1), &SrcHi = I->getOperand(2); MachineInstrBuilder LoInst = BuildMI(MBB, I, DL, get(LoOpc)); MachineInstrBuilder HiInst = BuildMI(MBB, I, DL, get(HiOpc)); LoInst.addReg(SrcLo.getReg(), getKillRegState(SrcLo.isKill())); HiInst.addReg(SrcHi.getReg(), getKillRegState(SrcHi.isKill())); // Add lo/hi registers if the mtlo/hi instructions created have explicit // def registers. if (HasExplicitDef) { unsigned DstReg = I->getOperand(0).getReg(); unsigned DstLo = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo); unsigned DstHi = getRegisterInfo().getSubReg(DstReg, Mips::sub_hi); LoInst.addReg(DstLo, RegState::Define); HiInst.addReg(DstHi, RegState::Define); } } void MipsSEInstrInfo::expandCvtFPInt(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned CvtOpc, unsigned MovOpc, bool IsI64) const { const MCInstrDesc &CvtDesc = get(CvtOpc), &MovDesc = get(MovOpc); const MachineOperand &Dst = I->getOperand(0), &Src = I->getOperand(1); unsigned DstReg = Dst.getReg(), SrcReg = Src.getReg(), TmpReg = DstReg; unsigned KillSrc = getKillRegState(Src.isKill()); DebugLoc DL = I->getDebugLoc(); bool DstIsLarger, SrcIsLarger; std::tie(DstIsLarger, SrcIsLarger) = compareOpndSize(CvtOpc, *MBB.getParent()); if (DstIsLarger) TmpReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo); if (SrcIsLarger) DstReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo); BuildMI(MBB, I, DL, MovDesc, TmpReg).addReg(SrcReg, KillSrc); BuildMI(MBB, I, DL, CvtDesc, DstReg).addReg(TmpReg, RegState::Kill); } void MipsSEInstrInfo::expandExtractElementF64(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, bool FP64) const { unsigned DstReg = I->getOperand(0).getReg(); unsigned SrcReg = I->getOperand(1).getReg(); unsigned N = I->getOperand(2).getImm(); DebugLoc dl = I->getDebugLoc(); assert(N < 2 && "Invalid immediate"); unsigned SubIdx = N ? Mips::sub_hi : Mips::sub_lo; unsigned SubReg = getRegisterInfo().getSubReg(SrcReg, SubIdx); if (SubIdx == Mips::sub_hi && FP64) { // FIXME: The .addReg(SrcReg, RegState::Implicit) is a white lie used to // temporarily work around a widespread bug in the -mfp64 support. // The problem is that none of the 32-bit fpu ops mention the fact // that they clobber the upper 32-bits of the 64-bit FPR. Fixing that // requires a major overhaul of the FPU implementation which can't // be done right now due to time constraints. // MFHC1 is one of two instructions that are affected since they are // the only instructions that don't read the lower 32-bits. // We therefore pretend that it reads the bottom 32-bits to // artificially create a dependency and prevent the scheduler // changing the behaviour of the code. BuildMI(MBB, I, dl, get(Mips::MFHC1), DstReg).addReg(SubReg).addReg( SrcReg, RegState::Implicit); } else BuildMI(MBB, I, dl, get(Mips::MFC1), DstReg).addReg(SubReg); } void MipsSEInstrInfo::expandBuildPairF64(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, bool FP64) const { unsigned DstReg = I->getOperand(0).getReg(); unsigned LoReg = I->getOperand(1).getReg(), HiReg = I->getOperand(2).getReg(); const MCInstrDesc& Mtc1Tdd = get(Mips::MTC1); DebugLoc dl = I->getDebugLoc(); const TargetRegisterInfo &TRI = getRegisterInfo(); bool HasMTHC1 = TM.getSubtarget<MipsSubtarget>().hasMips32r2() || TM.getSubtarget<MipsSubtarget>().hasMips32r6(); // When mthc1 is available, use: // mtc1 Lo, $fp // mthc1 Hi, $fp // // Otherwise, for FP64: // spill + reload via ldc1 // This has not been implemented since FP64 on MIPS32 and earlier is not // supported. // // Otherwise, for FP32: // mtc1 Lo, $fp // mtc1 Hi, $fp + 1 BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_lo)) .addReg(LoReg); if (HasMTHC1 || FP64) { assert(TM.getSubtarget<MipsSubtarget>().hasMips32r2() && "MTHC1 requires MIPS32r2"); // FIXME: The .addReg(DstReg) is a white lie used to temporarily work // around a widespread bug in the -mfp64 support. // The problem is that none of the 32-bit fpu ops mention the fact // that they clobber the upper 32-bits of the 64-bit FPR. Fixing that // requires a major overhaul of the FPU implementation which can't // be done right now due to time constraints. // MTHC1 is one of two instructions that are affected since they are // the only instructions that don't read the lower 32-bits. // We therefore pretend that it reads the bottom 32-bits to // artificially create a dependency and prevent the scheduler // changing the behaviour of the code. BuildMI(MBB, I, dl, get(FP64 ? Mips::MTHC1_D64 : Mips::MTHC1_D32), DstReg) .addReg(DstReg) .addReg(HiReg); } else BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_hi)) .addReg(HiReg); } void MipsSEInstrInfo::expandEhReturn(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { // This pseudo instruction is generated as part of the lowering of // ISD::EH_RETURN. We convert it to a stack increment by OffsetReg, and // indirect jump to TargetReg const MipsSubtarget &STI = TM.getSubtarget<MipsSubtarget>(); unsigned ADDU = STI.isABI_N64() ? Mips::DADDu : Mips::ADDu; unsigned SP = STI.isGP64bit() ? Mips::SP_64 : Mips::SP; unsigned RA = STI.isGP64bit() ? Mips::RA_64 : Mips::RA; unsigned T9 = STI.isGP64bit() ? Mips::T9_64 : Mips::T9; unsigned ZERO = STI.isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; unsigned OffsetReg = I->getOperand(0).getReg(); unsigned TargetReg = I->getOperand(1).getReg(); // addu $ra, $v0, $zero // addu $sp, $sp, $v1 // jr $ra (via RetRA) if (TM.getRelocationModel() == Reloc::PIC_) BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), T9) .addReg(TargetReg).addReg(ZERO); BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), RA) .addReg(TargetReg).addReg(ZERO); BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), SP) .addReg(SP).addReg(OffsetReg); expandRetRA(MBB, I); } const MipsInstrInfo *llvm::createMipsSEInstrInfo(MipsTargetMachine &TM) { return new MipsSEInstrInfo(TM); }