//===-- MipsLongBranch.cpp - Emit long branches ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass expands a branch or jump instruction into a long branch if its // offset is too large to fit into its immediate field. // // FIXME: Fix pc-region jump instructions which cross 256MB segment boundaries. //===----------------------------------------------------------------------===// #include "Mips.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "MCTargetDesc/MipsMCNaCl.h" #include "MipsTargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "mips-long-branch" STATISTIC(LongBranches, "Number of long branches."); static cl::opt<bool> SkipLongBranch( "skip-mips-long-branch", cl::init(false), cl::desc("MIPS: Skip long branch pass."), cl::Hidden); static cl::opt<bool> ForceLongBranch( "force-mips-long-branch", cl::init(false), cl::desc("MIPS: Expand all branches to long format."), cl::Hidden); namespace { typedef MachineBasicBlock::iterator Iter; typedef MachineBasicBlock::reverse_iterator ReverseIter; struct MBBInfo { uint64_t Size, Address; bool HasLongBranch; MachineInstr *Br; MBBInfo() : Size(0), HasLongBranch(false), Br(nullptr) {} }; class MipsLongBranch : public MachineFunctionPass { public: static char ID; MipsLongBranch(TargetMachine &tm) : MachineFunctionPass(ID), TM(tm), IsPIC(TM.getRelocationModel() == Reloc::PIC_), ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()), LongBranchSeqSize(!IsPIC ? 2 : (ABI == MipsSubtarget::N64 ? 10 : (!TM.getSubtarget<MipsSubtarget>().isTargetNaCl() ? 9 : 10))) {} const char *getPassName() const override { return "Mips Long Branch"; } bool runOnMachineFunction(MachineFunction &F) override; private: void splitMBB(MachineBasicBlock *MBB); void initMBBInfo(); int64_t computeOffset(const MachineInstr *Br); void replaceBranch(MachineBasicBlock &MBB, Iter Br, DebugLoc DL, MachineBasicBlock *MBBOpnd); void expandToLongBranch(MBBInfo &Info); const TargetMachine &TM; MachineFunction *MF; SmallVector<MBBInfo, 16> MBBInfos; bool IsPIC; unsigned ABI; unsigned LongBranchSeqSize; }; char MipsLongBranch::ID = 0; } // end of anonymous namespace /// createMipsLongBranchPass - Returns a pass that converts branches to long /// branches. FunctionPass *llvm::createMipsLongBranchPass(MipsTargetMachine &tm) { return new MipsLongBranch(tm); } /// Iterate over list of Br's operands and search for a MachineBasicBlock /// operand. static MachineBasicBlock *getTargetMBB(const MachineInstr &Br) { for (unsigned I = 0, E = Br.getDesc().getNumOperands(); I < E; ++I) { const MachineOperand &MO = Br.getOperand(I); if (MO.isMBB()) return MO.getMBB(); } assert(false && "This instruction does not have an MBB operand."); return nullptr; } // Traverse the list of instructions backwards until a non-debug instruction is // found or it reaches E. static ReverseIter getNonDebugInstr(ReverseIter B, ReverseIter E) { for (; B != E; ++B) if (!B->isDebugValue()) return B; return E; } // Split MBB if it has two direct jumps/branches. void MipsLongBranch::splitMBB(MachineBasicBlock *MBB) { ReverseIter End = MBB->rend(); ReverseIter LastBr = getNonDebugInstr(MBB->rbegin(), End); // Return if MBB has no branch instructions. if ((LastBr == End) || (!LastBr->isConditionalBranch() && !LastBr->isUnconditionalBranch())) return; ReverseIter FirstBr = getNonDebugInstr(std::next(LastBr), End); // MBB has only one branch instruction if FirstBr is not a branch // instruction. if ((FirstBr == End) || (!FirstBr->isConditionalBranch() && !FirstBr->isUnconditionalBranch())) return; assert(!FirstBr->isIndirectBranch() && "Unexpected indirect branch found."); // Create a new MBB. Move instructions in MBB to the newly created MBB. MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(MBB->getBasicBlock()); // Insert NewMBB and fix control flow. MachineBasicBlock *Tgt = getTargetMBB(*FirstBr); NewMBB->transferSuccessors(MBB); NewMBB->removeSuccessor(Tgt); MBB->addSuccessor(NewMBB); MBB->addSuccessor(Tgt); MF->insert(std::next(MachineFunction::iterator(MBB)), NewMBB); NewMBB->splice(NewMBB->end(), MBB, (++LastBr).base(), MBB->end()); } // Fill MBBInfos. void MipsLongBranch::initMBBInfo() { // Split the MBBs if they have two branches. Each basic block should have at // most one branch after this loop is executed. for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E;) splitMBB(I++); MF->RenumberBlocks(); MBBInfos.clear(); MBBInfos.resize(MF->size()); const MipsInstrInfo *TII = static_cast<const MipsInstrInfo*>(TM.getInstrInfo()); for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) { MachineBasicBlock *MBB = MF->getBlockNumbered(I); // Compute size of MBB. for (MachineBasicBlock::instr_iterator MI = MBB->instr_begin(); MI != MBB->instr_end(); ++MI) MBBInfos[I].Size += TII->GetInstSizeInBytes(&*MI); // Search for MBB's branch instruction. ReverseIter End = MBB->rend(); ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End); if ((Br != End) && !Br->isIndirectBranch() && (Br->isConditionalBranch() || (Br->isUnconditionalBranch() && TM.getRelocationModel() == Reloc::PIC_))) MBBInfos[I].Br = (++Br).base(); } } // Compute offset of branch in number of bytes. int64_t MipsLongBranch::computeOffset(const MachineInstr *Br) { int64_t Offset = 0; int ThisMBB = Br->getParent()->getNumber(); int TargetMBB = getTargetMBB(*Br)->getNumber(); // Compute offset of a forward branch. if (ThisMBB < TargetMBB) { for (int N = ThisMBB + 1; N < TargetMBB; ++N) Offset += MBBInfos[N].Size; return Offset + 4; } // Compute offset of a backward branch. for (int N = ThisMBB; N >= TargetMBB; --N) Offset += MBBInfos[N].Size; return -Offset + 4; } // Replace Br with a branch which has the opposite condition code and a // MachineBasicBlock operand MBBOpnd. void MipsLongBranch::replaceBranch(MachineBasicBlock &MBB, Iter Br, DebugLoc DL, MachineBasicBlock *MBBOpnd) { const MipsInstrInfo *TII = static_cast<const MipsInstrInfo*>(TM.getInstrInfo()); unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode()); const MCInstrDesc &NewDesc = TII->get(NewOpc); MachineInstrBuilder MIB = BuildMI(MBB, Br, DL, NewDesc); for (unsigned I = 0, E = Br->getDesc().getNumOperands(); I < E; ++I) { MachineOperand &MO = Br->getOperand(I); if (!MO.isReg()) { assert(MO.isMBB() && "MBB operand expected."); break; } MIB.addReg(MO.getReg()); } MIB.addMBB(MBBOpnd); // Bundle the instruction in the delay slot to the newly created branch // and erase the original branch. assert(Br->isBundledWithSucc()); MachineBasicBlock::instr_iterator II(Br); MIBundleBuilder(&*MIB).append((++II)->removeFromBundle()); Br->eraseFromParent(); } // Expand branch instructions to long branches. void MipsLongBranch::expandToLongBranch(MBBInfo &I) { MachineBasicBlock::iterator Pos; MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br); DebugLoc DL = I.Br->getDebugLoc(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator FallThroughMBB = ++MachineFunction::iterator(MBB); MachineBasicBlock *LongBrMBB = MF->CreateMachineBasicBlock(BB); const MipsInstrInfo *TII = static_cast<const MipsInstrInfo*>(TM.getInstrInfo()); MF->insert(FallThroughMBB, LongBrMBB); MBB->removeSuccessor(TgtMBB); MBB->addSuccessor(LongBrMBB); if (IsPIC) { MachineBasicBlock *BalTgtMBB = MF->CreateMachineBasicBlock(BB); MF->insert(FallThroughMBB, BalTgtMBB); LongBrMBB->addSuccessor(BalTgtMBB); BalTgtMBB->addSuccessor(TgtMBB); // We must select between the MIPS32r6/MIPS64r6 BAL (which is a normal // instruction) and the pre-MIPS32r6/MIPS64r6 definition (which is an // pseudo-instruction wrapping BGEZAL). const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>(); unsigned BalOp = Subtarget.hasMips32r6() ? Mips::BAL : Mips::BAL_BR; if (ABI != MipsSubtarget::N64) { // $longbr: // addiu $sp, $sp, -8 // sw $ra, 0($sp) // lui $at, %hi($tgt - $baltgt) // bal $baltgt // addiu $at, $at, %lo($tgt - $baltgt) // $baltgt: // addu $at, $ra, $at // lw $ra, 0($sp) // jr $at // addiu $sp, $sp, 8 // $fallthrough: // Pos = LongBrMBB->begin(); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP) .addReg(Mips::SP).addImm(-8); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW)).addReg(Mips::RA) .addReg(Mips::SP).addImm(0); // LUi and ADDiu instructions create 32-bit offset of the target basic // block from the target of BAL instruction. We cannot use immediate // value for this offset because it cannot be determined accurately when // the program has inline assembly statements. We therefore use the // relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which // are resolved during the fixup, so the values will always be correct. // // Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt) // expressions at this point (it is possible only at the MC layer), // we replace LUi and ADDiu with pseudo instructions // LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic // blocks as operands to these instructions. When lowering these pseudo // instructions to LUi and ADDiu in the MC layer, we will create // %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as // operands to lowered instructions. BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi), Mips::AT) .addMBB(TgtMBB).addMBB(BalTgtMBB); MIBundleBuilder(*LongBrMBB, Pos) .append(BuildMI(*MF, DL, TII->get(BalOp)).addMBB(BalTgtMBB)) .append(BuildMI(*MF, DL, TII->get(Mips::LONG_BRANCH_ADDiu), Mips::AT) .addReg(Mips::AT) .addMBB(TgtMBB) .addMBB(BalTgtMBB)); Pos = BalTgtMBB->begin(); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT) .addReg(Mips::RA).addReg(Mips::AT); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA) .addReg(Mips::SP).addImm(0); if (!TM.getSubtarget<MipsSubtarget>().isTargetNaCl()) { MIBundleBuilder(*BalTgtMBB, Pos) .append(BuildMI(*MF, DL, TII->get(Mips::JR)).addReg(Mips::AT)) .append(BuildMI(*MF, DL, TII->get(Mips::ADDiu), Mips::SP) .addReg(Mips::SP).addImm(8)); } else { // In NaCl, modifying the sp is not allowed in branch delay slot. BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP) .addReg(Mips::SP).addImm(8); MIBundleBuilder(*BalTgtMBB, Pos) .append(BuildMI(*MF, DL, TII->get(Mips::JR)).addReg(Mips::AT)) .append(BuildMI(*MF, DL, TII->get(Mips::NOP))); // Bundle-align the target of indirect branch JR. TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN); } } else { // $longbr: // daddiu $sp, $sp, -16 // sd $ra, 0($sp) // daddiu $at, $zero, %hi($tgt - $baltgt) // dsll $at, $at, 16 // bal $baltgt // daddiu $at, $at, %lo($tgt - $baltgt) // $baltgt: // daddu $at, $ra, $at // ld $ra, 0($sp) // jr64 $at // daddiu $sp, $sp, 16 // $fallthrough: // // We assume the branch is within-function, and that offset is within // +/- 2GB. High 32 bits will therefore always be zero. // Note that this will work even if the offset is negative, because // of the +1 modification that's added in that case. For example, if the // offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is // // 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000 // // and the bits [47:32] are zero. For %highest // // 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000 // // and the bits [63:48] are zero. Pos = LongBrMBB->begin(); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64) .addReg(Mips::SP_64).addImm(-16); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD)).addReg(Mips::RA_64) .addReg(Mips::SP_64).addImm(0); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64).addReg(Mips::ZERO_64) .addMBB(TgtMBB, MipsII::MO_ABS_HI).addMBB(BalTgtMBB); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64) .addReg(Mips::AT_64).addImm(16); MIBundleBuilder(*LongBrMBB, Pos) .append(BuildMI(*MF, DL, TII->get(BalOp)).addMBB(BalTgtMBB)) .append( BuildMI(*MF, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64) .addReg(Mips::AT_64) .addMBB(TgtMBB, MipsII::MO_ABS_LO) .addMBB(BalTgtMBB)); Pos = BalTgtMBB->begin(); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64) .addReg(Mips::RA_64).addReg(Mips::AT_64); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64) .addReg(Mips::SP_64).addImm(0); MIBundleBuilder(*BalTgtMBB, Pos) .append(BuildMI(*MF, DL, TII->get(Mips::JR64)).addReg(Mips::AT_64)) .append(BuildMI(*MF, DL, TII->get(Mips::DADDiu), Mips::SP_64) .addReg(Mips::SP_64).addImm(16)); } assert(LongBrMBB->size() + BalTgtMBB->size() == LongBranchSeqSize); } else { // $longbr: // j $tgt // nop // $fallthrough: // Pos = LongBrMBB->begin(); LongBrMBB->addSuccessor(TgtMBB); MIBundleBuilder(*LongBrMBB, Pos) .append(BuildMI(*MF, DL, TII->get(Mips::J)).addMBB(TgtMBB)) .append(BuildMI(*MF, DL, TII->get(Mips::NOP))); assert(LongBrMBB->size() == LongBranchSeqSize); } if (I.Br->isUnconditionalBranch()) { // Change branch destination. assert(I.Br->getDesc().getNumOperands() == 1); I.Br->RemoveOperand(0); I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB)); } else // Change branch destination and reverse condition. replaceBranch(*MBB, I.Br, DL, FallThroughMBB); } static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII) { MachineBasicBlock &MBB = F.front(); MachineBasicBlock::iterator I = MBB.begin(); DebugLoc DL = MBB.findDebugLoc(MBB.begin()); BuildMI(MBB, I, DL, TII->get(Mips::LUi), Mips::V0) .addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI); BuildMI(MBB, I, DL, TII->get(Mips::ADDiu), Mips::V0) .addReg(Mips::V0).addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO); MBB.removeLiveIn(Mips::V0); } bool MipsLongBranch::runOnMachineFunction(MachineFunction &F) { const MipsInstrInfo *TII = static_cast<const MipsInstrInfo*>(TM.getInstrInfo()); if (TM.getSubtarget<MipsSubtarget>().inMips16Mode()) return false; if ((TM.getRelocationModel() == Reloc::PIC_) && TM.getSubtarget<MipsSubtarget>().isABI_O32() && F.getInfo<MipsFunctionInfo>()->globalBaseRegSet()) emitGPDisp(F, TII); if (SkipLongBranch) return true; MF = &F; initMBBInfo(); SmallVectorImpl<MBBInfo>::iterator I, E = MBBInfos.end(); bool EverMadeChange = false, MadeChange = true; while (MadeChange) { MadeChange = false; for (I = MBBInfos.begin(); I != E; ++I) { // Skip if this MBB doesn't have a branch or the branch has already been // converted to a long branch. if (!I->Br || I->HasLongBranch) continue; int ShVal = TM.getSubtarget<MipsSubtarget>().inMicroMipsMode() ? 2 : 4; int64_t Offset = computeOffset(I->Br) / ShVal; if (TM.getSubtarget<MipsSubtarget>().isTargetNaCl()) { // The offset calculation does not include sandboxing instructions // that will be added later in the MC layer. Since at this point we // don't know the exact amount of code that "sandboxing" will add, we // conservatively estimate that code will not grow more than 100%. Offset *= 2; } // Check if offset fits into 16-bit immediate field of branches. if (!ForceLongBranch && isInt<16>(Offset)) continue; I->HasLongBranch = true; I->Size += LongBranchSeqSize * 4; ++LongBranches; EverMadeChange = MadeChange = true; } } if (!EverMadeChange) return true; // Compute basic block addresses. if (TM.getRelocationModel() == Reloc::PIC_) { uint64_t Address = 0; for (I = MBBInfos.begin(); I != E; Address += I->Size, ++I) I->Address = Address; } // Do the expansion. for (I = MBBInfos.begin(); I != E; ++I) if (I->HasLongBranch) expandToLongBranch(*I); MF->RenumberBlocks(); return true; }