//===-- MipsastISel.cpp - Mips FastISel implementation //---------------------===// #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLibraryInfo.h" #include "MipsRegisterInfo.h" #include "MipsISelLowering.h" #include "MipsMachineFunction.h" #include "MipsSubtarget.h" #include "MipsTargetMachine.h" using namespace llvm; namespace { // All possible address modes. typedef struct Address { enum { RegBase, FrameIndexBase } BaseType; union { unsigned Reg; int FI; } Base; int64_t Offset; // Innocuous defaults for our address. Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; } } Address; class MipsFastISel final : public FastISel { /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can /// make the right decision when generating code for different targets. Module &M; const TargetMachine &TM; const TargetInstrInfo &TII; const TargetLowering &TLI; const MipsSubtarget *Subtarget; MipsFunctionInfo *MFI; // Convenience variables to avoid some queries. LLVMContext *Context; bool TargetSupported; public: explicit MipsFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) : FastISel(funcInfo, libInfo), M(const_cast<Module &>(*funcInfo.Fn->getParent())), TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()), Subtarget(&TM.getSubtarget<MipsSubtarget>()) { MFI = funcInfo.MF->getInfo<MipsFunctionInfo>(); Context = &funcInfo.Fn->getContext(); TargetSupported = ((Subtarget->getRelocationModel() == Reloc::PIC_) && (Subtarget->hasMips32r2() && (Subtarget->isABI_O32()))); } bool TargetSelectInstruction(const Instruction *I) override; unsigned TargetMaterializeConstant(const Constant *C) override; bool ComputeAddress(const Value *Obj, Address &Addr); private: bool EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, unsigned Alignment = 0); bool EmitStore(MVT VT, unsigned SrcReg, Address &Addr, unsigned Alignment = 0); bool SelectLoad(const Instruction *I); bool SelectRet(const Instruction *I); bool SelectStore(const Instruction *I); bool isTypeLegal(Type *Ty, MVT &VT); bool isLoadTypeLegal(Type *Ty, MVT &VT); unsigned MaterializeFP(const ConstantFP *CFP, MVT VT); unsigned MaterializeGV(const GlobalValue *GV, MVT VT); unsigned MaterializeInt(const Constant *C, MVT VT); unsigned Materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); // for some reason, this default is not generated by tablegen // so we explicitly generate it here. // unsigned FastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t imm1, uint64_t imm2, unsigned Op3, bool Op3IsKill) { return 0; } MachineInstrBuilder EmitInst(unsigned Opc) { return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); } MachineInstrBuilder EmitInst(unsigned Opc, unsigned DstReg) { return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DstReg); } MachineInstrBuilder EmitInstStore(unsigned Opc, unsigned SrcReg, unsigned MemReg, int64_t MemOffset) { return EmitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset); } MachineInstrBuilder EmitInstLoad(unsigned Opc, unsigned DstReg, unsigned MemReg, int64_t MemOffset) { return EmitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset); } #include "MipsGenFastISel.inc" }; bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) { EVT evt = TLI.getValueType(Ty, true); // Only handle simple types. if (evt == MVT::Other || !evt.isSimple()) return false; VT = evt.getSimpleVT(); // Handle all legal types, i.e. a register that will directly hold this // value. return TLI.isTypeLegal(VT); } bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { if (isTypeLegal(Ty, VT)) return true; // We will extend this in a later patch: // If this is a type than can be sign or zero-extended to a basic operation // go ahead and accept it now. if (VT == MVT::i8 || VT == MVT::i16) return true; return false; } bool MipsFastISel::ComputeAddress(const Value *Obj, Address &Addr) { // This construct looks a big awkward but it is how other ports handle this // and as this function is more fully completed, these cases which // return false will have additional code in them. // if (isa<Instruction>(Obj)) return false; else if (isa<ConstantExpr>(Obj)) return false; Addr.Base.Reg = getRegForValue(Obj); return Addr.Base.Reg != 0; } bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, unsigned Alignment) { // // more cases will be handled here in following patches. // unsigned Opc; switch (VT.SimpleTy) { case MVT::i32: { ResultReg = createResultReg(&Mips::GPR32RegClass); Opc = Mips::LW; break; } case MVT::i16: { ResultReg = createResultReg(&Mips::GPR32RegClass); Opc = Mips::LHu; break; } case MVT::i8: { ResultReg = createResultReg(&Mips::GPR32RegClass); Opc = Mips::LBu; break; } case MVT::f32: { ResultReg = createResultReg(&Mips::FGR32RegClass); Opc = Mips::LWC1; break; } case MVT::f64: { ResultReg = createResultReg(&Mips::AFGR64RegClass); Opc = Mips::LDC1; break; } default: return false; } EmitInstLoad(Opc, ResultReg, Addr.Base.Reg, Addr.Offset); return true; } // Materialize a constant into a register, and return the register // number (or zero if we failed to handle it). unsigned MipsFastISel::TargetMaterializeConstant(const Constant *C) { EVT CEVT = TLI.getValueType(C->getType(), true); // Only handle simple types. if (!CEVT.isSimple()) return 0; MVT VT = CEVT.getSimpleVT(); if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) return MaterializeFP(CFP, VT); else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) return MaterializeGV(GV, VT); else if (isa<ConstantInt>(C)) return MaterializeInt(C, VT); return 0; } bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr, unsigned Alignment) { // // more cases will be handled here in following patches. // unsigned Opc; switch (VT.SimpleTy) { case MVT::i8: Opc = Mips::SB; break; case MVT::i16: Opc = Mips::SH; break; case MVT::i32: Opc = Mips::SW; break; case MVT::f32: Opc = Mips::SWC1; break; case MVT::f64: Opc = Mips::SDC1; break; default: return false; } EmitInstStore(Opc, SrcReg, Addr.Base.Reg, Addr.Offset); return true; } bool MipsFastISel::SelectLoad(const Instruction *I) { // Atomic loads need special handling. if (cast<LoadInst>(I)->isAtomic()) return false; // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(I->getType(), VT)) return false; // See if we can handle this address. Address Addr; if (!ComputeAddress(I->getOperand(0), Addr)) return false; unsigned ResultReg; if (!EmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) return false; UpdateValueMap(I, ResultReg); return true; } bool MipsFastISel::SelectStore(const Instruction *I) { Value *Op0 = I->getOperand(0); unsigned SrcReg = 0; // Atomic stores need special handling. if (cast<StoreInst>(I)->isAtomic()) return false; // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) return false; // Get the value to be stored into a register. SrcReg = getRegForValue(Op0); if (SrcReg == 0) return false; // See if we can handle this address. Address Addr; if (!ComputeAddress(I->getOperand(1), Addr)) return false; if (!EmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) return false; return true; } bool MipsFastISel::SelectRet(const Instruction *I) { const ReturnInst *Ret = cast<ReturnInst>(I); if (!FuncInfo.CanLowerReturn) return false; if (Ret->getNumOperands() > 0) { return false; } EmitInst(Mips::RetRA); return true; } bool MipsFastISel::TargetSelectInstruction(const Instruction *I) { if (!TargetSupported) return false; switch (I->getOpcode()) { default: break; case Instruction::Load: return SelectLoad(I); case Instruction::Store: return SelectStore(I); case Instruction::Ret: return SelectRet(I); } return false; } } unsigned MipsFastISel::MaterializeFP(const ConstantFP *CFP, MVT VT) { int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); if (VT == MVT::f32) { const TargetRegisterClass *RC = &Mips::FGR32RegClass; unsigned DestReg = createResultReg(RC); unsigned TempReg = Materialize32BitInt(Imm, &Mips::GPR32RegClass); EmitInst(Mips::MTC1, DestReg).addReg(TempReg); return DestReg; } else if (VT == MVT::f64) { const TargetRegisterClass *RC = &Mips::AFGR64RegClass; unsigned DestReg = createResultReg(RC); unsigned TempReg1 = Materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass); unsigned TempReg2 = Materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass); EmitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1); return DestReg; } return 0; } unsigned MipsFastISel::MaterializeGV(const GlobalValue *GV, MVT VT) { // For now 32-bit only. if (VT != MVT::i32) return 0; const TargetRegisterClass *RC = &Mips::GPR32RegClass; unsigned DestReg = createResultReg(RC); const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); bool IsThreadLocal = GVar && GVar->isThreadLocal(); // TLS not supported at this time. if (IsThreadLocal) return 0; EmitInst(Mips::LW, DestReg).addReg(MFI->getGlobalBaseReg()).addGlobalAddress( GV, 0, MipsII::MO_GOT); return DestReg; } unsigned MipsFastISel::MaterializeInt(const Constant *C, MVT VT) { if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) return 0; const TargetRegisterClass *RC = &Mips::GPR32RegClass; const ConstantInt *CI = cast<ConstantInt>(C); int64_t Imm; if (CI->isNegative()) Imm = CI->getSExtValue(); else Imm = CI->getZExtValue(); return Materialize32BitInt(Imm, RC); } unsigned MipsFastISel::Materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC) { unsigned ResultReg = createResultReg(RC); if (isInt<16>(Imm)) { unsigned Opc = Mips::ADDiu; EmitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm); return ResultReg; } else if (isUInt<16>(Imm)) { EmitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm); return ResultReg; } unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; if (Lo) { // Both Lo and Hi have nonzero bits. unsigned TmpReg = createResultReg(RC); EmitInst(Mips::LUi, TmpReg).addImm(Hi); EmitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo); } else { EmitInst(Mips::LUi, ResultReg).addImm(Hi); } return ResultReg; } namespace llvm { FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) { return new MipsFastISel(funcInfo, libInfo); } }