//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines some helpful functions for dealing with the possibility of // Unix signals occurring while your program is running. // //===----------------------------------------------------------------------===// #include "Unix.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Mutex.h" #include <algorithm> #include <string> #include <vector> #if HAVE_EXECINFO_H # include <execinfo.h> // For backtrace(). #endif #if HAVE_SIGNAL_H #include <signal.h> #endif #if HAVE_SYS_STAT_H #include <sys/stat.h> #endif #if HAVE_CXXABI_H #include <cxxabi.h> #endif #if HAVE_DLFCN_H #include <dlfcn.h> #endif #if HAVE_MACH_MACH_H #include <mach/mach.h> #endif using namespace llvm; static RETSIGTYPE SignalHandler(int Sig); // defined below. static SmartMutex<true> SignalsMutex; /// InterruptFunction - The function to call if ctrl-c is pressed. static void (*InterruptFunction)() = nullptr; static std::vector<std::string> FilesToRemove; static std::vector<std::pair<void(*)(void*), void*> > CallBacksToRun; // IntSigs - Signals that represent requested termination. There's no bug // or failure, or if there is, it's not our direct responsibility. For whatever // reason, our continued execution is no longer desirable. static const int IntSigs[] = { SIGHUP, SIGINT, SIGPIPE, SIGTERM, SIGUSR1, SIGUSR2 }; static const int *const IntSigsEnd = std::end(IntSigs); // KillSigs - Signals that represent that we have a bug, and our prompt // termination has been ordered. static const int KillSigs[] = { SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT #ifdef SIGSYS , SIGSYS #endif #ifdef SIGXCPU , SIGXCPU #endif #ifdef SIGXFSZ , SIGXFSZ #endif #ifdef SIGEMT , SIGEMT #endif }; static const int *const KillSigsEnd = std::end(KillSigs); static unsigned NumRegisteredSignals = 0; static struct { struct sigaction SA; int SigNo; } RegisteredSignalInfo[(sizeof(IntSigs)+sizeof(KillSigs))/sizeof(KillSigs[0])]; static void RegisterHandler(int Signal) { assert(NumRegisteredSignals < sizeof(RegisteredSignalInfo)/sizeof(RegisteredSignalInfo[0]) && "Out of space for signal handlers!"); struct sigaction NewHandler; NewHandler.sa_handler = SignalHandler; NewHandler.sa_flags = SA_NODEFER|SA_RESETHAND; sigemptyset(&NewHandler.sa_mask); // Install the new handler, save the old one in RegisteredSignalInfo. sigaction(Signal, &NewHandler, &RegisteredSignalInfo[NumRegisteredSignals].SA); RegisteredSignalInfo[NumRegisteredSignals].SigNo = Signal; ++NumRegisteredSignals; } static void RegisterHandlers() { // If the handlers are already registered, we're done. if (NumRegisteredSignals != 0) return; std::for_each(IntSigs, IntSigsEnd, RegisterHandler); std::for_each(KillSigs, KillSigsEnd, RegisterHandler); } static void UnregisterHandlers() { // Restore all of the signal handlers to how they were before we showed up. for (unsigned i = 0, e = NumRegisteredSignals; i != e; ++i) sigaction(RegisteredSignalInfo[i].SigNo, &RegisteredSignalInfo[i].SA, nullptr); NumRegisteredSignals = 0; } /// RemoveFilesToRemove - Process the FilesToRemove list. This function /// should be called with the SignalsMutex lock held. /// NB: This must be an async signal safe function. It cannot allocate or free /// memory, even in debug builds. static void RemoveFilesToRemove() { // We avoid iterators in case of debug iterators that allocate or release // memory. for (unsigned i = 0, e = FilesToRemove.size(); i != e; ++i) { // We rely on a std::string implementation for which repeated calls to // 'c_str()' don't allocate memory. We pre-call 'c_str()' on all of these // strings to try to ensure this is safe. const char *path = FilesToRemove[i].c_str(); // Get the status so we can determine if it's a file or directory. If we // can't stat the file, ignore it. struct stat buf; if (stat(path, &buf) != 0) continue; // If this is not a regular file, ignore it. We want to prevent removal of // special files like /dev/null, even if the compiler is being run with the // super-user permissions. if (!S_ISREG(buf.st_mode)) continue; // Otherwise, remove the file. We ignore any errors here as there is nothing // else we can do. unlink(path); } } // SignalHandler - The signal handler that runs. static RETSIGTYPE SignalHandler(int Sig) { // Restore the signal behavior to default, so that the program actually // crashes when we return and the signal reissues. This also ensures that if // we crash in our signal handler that the program will terminate immediately // instead of recursing in the signal handler. UnregisterHandlers(); // Unmask all potentially blocked kill signals. sigset_t SigMask; sigfillset(&SigMask); sigprocmask(SIG_UNBLOCK, &SigMask, nullptr); SignalsMutex.acquire(); RemoveFilesToRemove(); if (std::find(IntSigs, IntSigsEnd, Sig) != IntSigsEnd) { if (InterruptFunction) { void (*IF)() = InterruptFunction; SignalsMutex.release(); InterruptFunction = nullptr; IF(); // run the interrupt function. return; } SignalsMutex.release(); raise(Sig); // Execute the default handler. return; } SignalsMutex.release(); // Otherwise if it is a fault (like SEGV) run any handler. for (unsigned i = 0, e = CallBacksToRun.size(); i != e; ++i) CallBacksToRun[i].first(CallBacksToRun[i].second); #ifdef __s390__ // On S/390, certain signals are delivered with PSW Address pointing to // *after* the faulting instruction. Simply returning from the signal // handler would continue execution after that point, instead of // re-raising the signal. Raise the signal manually in those cases. if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP) raise(Sig); #endif } void llvm::sys::RunInterruptHandlers() { SignalsMutex.acquire(); RemoveFilesToRemove(); SignalsMutex.release(); } void llvm::sys::SetInterruptFunction(void (*IF)()) { SignalsMutex.acquire(); InterruptFunction = IF; SignalsMutex.release(); RegisterHandlers(); } // RemoveFileOnSignal - The public API bool llvm::sys::RemoveFileOnSignal(StringRef Filename, std::string* ErrMsg) { SignalsMutex.acquire(); std::string *OldPtr = FilesToRemove.empty() ? nullptr : &FilesToRemove[0]; FilesToRemove.push_back(Filename); // We want to call 'c_str()' on every std::string in this vector so that if // the underlying implementation requires a re-allocation, it happens here // rather than inside of the signal handler. If we see the vector grow, we // have to call it on every entry. If it remains in place, we only need to // call it on the latest one. if (OldPtr == &FilesToRemove[0]) FilesToRemove.back().c_str(); else for (unsigned i = 0, e = FilesToRemove.size(); i != e; ++i) FilesToRemove[i].c_str(); SignalsMutex.release(); RegisterHandlers(); return false; } // DontRemoveFileOnSignal - The public API void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) { SignalsMutex.acquire(); std::vector<std::string>::reverse_iterator RI = std::find(FilesToRemove.rbegin(), FilesToRemove.rend(), Filename); std::vector<std::string>::iterator I = FilesToRemove.end(); if (RI != FilesToRemove.rend()) I = FilesToRemove.erase(RI.base()-1); // We need to call c_str() on every element which would have been moved by // the erase. These elements, in a C++98 implementation where c_str() // requires a reallocation on the first call may have had the call to c_str() // made on insertion become invalid by being copied down an element. for (std::vector<std::string>::iterator E = FilesToRemove.end(); I != E; ++I) I->c_str(); SignalsMutex.release(); } /// AddSignalHandler - Add a function to be called when a signal is delivered /// to the process. The handler can have a cookie passed to it to identify /// what instance of the handler it is. void llvm::sys::AddSignalHandler(void (*FnPtr)(void *), void *Cookie) { CallBacksToRun.push_back(std::make_pair(FnPtr, Cookie)); RegisterHandlers(); } // PrintStackTrace - In the case of a program crash or fault, print out a stack // trace so that the user has an indication of why and where we died. // // On glibc systems we have the 'backtrace' function, which works nicely, but // doesn't demangle symbols. void llvm::sys::PrintStackTrace(FILE *FD) { #if defined(HAVE_BACKTRACE) && defined(ENABLE_BACKTRACES) static void* StackTrace[256]; // Use backtrace() to output a backtrace on Linux systems with glibc. int depth = backtrace(StackTrace, static_cast<int>(array_lengthof(StackTrace))); #if HAVE_DLFCN_H && __GNUG__ int width = 0; for (int i = 0; i < depth; ++i) { Dl_info dlinfo; dladdr(StackTrace[i], &dlinfo); const char* name = strrchr(dlinfo.dli_fname, '/'); int nwidth; if (!name) nwidth = strlen(dlinfo.dli_fname); else nwidth = strlen(name) - 1; if (nwidth > width) width = nwidth; } for (int i = 0; i < depth; ++i) { Dl_info dlinfo; dladdr(StackTrace[i], &dlinfo); fprintf(FD, "%-2d", i); const char* name = strrchr(dlinfo.dli_fname, '/'); if (!name) fprintf(FD, " %-*s", width, dlinfo.dli_fname); else fprintf(FD, " %-*s", width, name+1); fprintf(FD, " %#0*lx", (int)(sizeof(void*) * 2) + 2, (unsigned long)StackTrace[i]); if (dlinfo.dli_sname != nullptr) { fputc(' ', FD); # if HAVE_CXXABI_H int res; char* d = abi::__cxa_demangle(dlinfo.dli_sname, nullptr, nullptr, &res); # else char* d = NULL; # endif if (!d) fputs(dlinfo.dli_sname, FD); else fputs(d, FD); free(d); // FIXME: When we move to C++11, use %t length modifier. It's not in // C++03 and causes gcc to issue warnings. Losing the upper 32 bits of // the stack offset for a stack dump isn't likely to cause any problems. fprintf(FD, " + %u",(unsigned)((char*)StackTrace[i]- (char*)dlinfo.dli_saddr)); } fputc('\n', FD); } #else backtrace_symbols_fd(StackTrace, depth, STDERR_FILENO); #endif #endif } static void PrintStackTraceSignalHandler(void *) { PrintStackTrace(stderr); } /// PrintStackTraceOnErrorSignal - When an error signal (such as SIGABRT or /// SIGSEGV) is delivered to the process, print a stack trace and then exit. void llvm::sys::PrintStackTraceOnErrorSignal() { AddSignalHandler(PrintStackTraceSignalHandler, nullptr); #if defined(__APPLE__) && defined(ENABLE_CRASH_OVERRIDES) // Environment variable to disable any kind of crash dialog. if (getenv("LLVM_DISABLE_CRASH_REPORT")) { mach_port_t self = mach_task_self(); exception_mask_t mask = EXC_MASK_CRASH; kern_return_t ret = task_set_exception_ports(self, mask, MACH_PORT_NULL, EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES, THREAD_STATE_NONE); (void)ret; } #endif } /***/ // On Darwin, raise sends a signal to the main thread instead of the current // thread. This has the unfortunate effect that assert() and abort() will end up // bypassing our crash recovery attempts. We work around this for anything in // the same linkage unit by just defining our own versions of the assert handler // and abort. #if defined(__APPLE__) && defined(ENABLE_CRASH_OVERRIDES) #include <signal.h> #include <pthread.h> int raise(int sig) { return pthread_kill(pthread_self(), sig); } void __assert_rtn(const char *func, const char *file, int line, const char *expr) { if (func) fprintf(stderr, "Assertion failed: (%s), function %s, file %s, line %d.\n", expr, func, file, line); else fprintf(stderr, "Assertion failed: (%s), file %s, line %d.\n", expr, file, line); abort(); } void abort() { raise(SIGABRT); usleep(1000); __builtin_trap(); } #endif