//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "JITRegistrar.h" #include "ObjectImageCommon.h" #include "RuntimeDyldELF.h" #include "RuntimeDyldImpl.h" #include "RuntimeDyldMachO.h" #include "llvm/Object/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MutexGuard.h" using namespace llvm; using namespace llvm::object; #define DEBUG_TYPE "dyld" // Empty out-of-line virtual destructor as the key function. RuntimeDyldImpl::~RuntimeDyldImpl() {} // Pin the JITRegistrar's and ObjectImage*'s vtables to this file. void JITRegistrar::anchor() {} void ObjectImage::anchor() {} void ObjectImageCommon::anchor() {} namespace llvm { void RuntimeDyldImpl::registerEHFrames() {} void RuntimeDyldImpl::deregisterEHFrames() {} // Resolve the relocations for all symbols we currently know about. void RuntimeDyldImpl::resolveRelocations() { MutexGuard locked(lock); // First, resolve relocations associated with external symbols. resolveExternalSymbols(); // Just iterate over the sections we have and resolve all the relocations // in them. Gross overkill, but it gets the job done. for (int i = 0, e = Sections.size(); i != e; ++i) { // The Section here (Sections[i]) refers to the section in which the // symbol for the relocation is located. The SectionID in the relocation // entry provides the section to which the relocation will be applied. uint64_t Addr = Sections[i].LoadAddress; DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t" << format("%p", (uint8_t *)Addr) << "\n"); resolveRelocationList(Relocations[i], Addr); Relocations.erase(i); } } void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { MutexGuard locked(lock); for (unsigned i = 0, e = Sections.size(); i != e; ++i) { if (Sections[i].Address == LocalAddress) { reassignSectionAddress(i, TargetAddress); return; } } llvm_unreachable("Attempting to remap address of unknown section!"); } static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) { uint64_t Address; if (std::error_code EC = Sym.getAddress(Address)) return EC; if (Address == UnknownAddressOrSize) { Result = UnknownAddressOrSize; return object_error::success; } const ObjectFile *Obj = Sym.getObject(); section_iterator SecI(Obj->section_begin()); if (std::error_code EC = Sym.getSection(SecI)) return EC; if (SecI == Obj->section_end()) { Result = UnknownAddressOrSize; return object_error::success; } uint64_t SectionAddress; if (std::error_code EC = SecI->getAddress(SectionAddress)) return EC; Result = Address - SectionAddress; return object_error::success; } ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) { MutexGuard locked(lock); std::unique_ptr<ObjectImage> Obj(InputObject); if (!Obj) return nullptr; // Save information about our target Arch = (Triple::ArchType)Obj->getArch(); IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian(); // Compute the memory size required to load all sections to be loaded // and pass this information to the memory manager if (MemMgr->needsToReserveAllocationSpace()) { uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0; computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW); MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); } // Symbols found in this object StringMap<SymbolLoc> LocalSymbols; // Used sections from the object file ObjSectionToIDMap LocalSections; // Common symbols requiring allocation, with their sizes and alignments CommonSymbolMap CommonSymbols; // Maximum required total memory to allocate all common symbols uint64_t CommonSize = 0; // Parse symbols DEBUG(dbgs() << "Parse symbols:\n"); for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E; ++I) { object::SymbolRef::Type SymType; StringRef Name; Check(I->getType(SymType)); Check(I->getName(Name)); uint32_t Flags = I->getFlags(); bool IsCommon = Flags & SymbolRef::SF_Common; if (IsCommon) { // Add the common symbols to a list. We'll allocate them all below. if (!GlobalSymbolTable.count(Name)) { uint32_t Align; Check(I->getAlignment(Align)); uint64_t Size = 0; Check(I->getSize(Size)); CommonSize += Size + Align; CommonSymbols[*I] = CommonSymbolInfo(Size, Align); } } else { if (SymType == object::SymbolRef::ST_Function || SymType == object::SymbolRef::ST_Data || SymType == object::SymbolRef::ST_Unknown) { uint64_t SectOffset; StringRef SectionData; bool IsCode; section_iterator SI = Obj->end_sections(); Check(getOffset(*I, SectOffset)); Check(I->getSection(SI)); if (SI == Obj->end_sections()) continue; Check(SI->getContents(SectionData)); Check(SI->isText(IsCode)); unsigned SectionID = findOrEmitSection(*Obj, *SI, IsCode, LocalSections); LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset) << " flags: " << Flags << " SID: " << SectionID); GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset); } } DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n"); } // Allocate common symbols if (CommonSize != 0) emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable); // Parse and process relocations DEBUG(dbgs() << "Parse relocations:\n"); for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections(); SI != SE; ++SI) { unsigned SectionID = 0; StubMap Stubs; section_iterator RelocatedSection = SI->getRelocatedSection(); relocation_iterator I = SI->relocation_begin(); relocation_iterator E = SI->relocation_end(); if (I == E && !ProcessAllSections) continue; bool IsCode = false; Check(RelocatedSection->isText(IsCode)); SectionID = findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections); DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); for (; I != E;) I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols, Stubs); } // Give the subclasses a chance to tie-up any loose ends. finalizeLoad(*Obj, LocalSections); return Obj.release(); } // A helper method for computeTotalAllocSize. // Computes the memory size required to allocate sections with the given sizes, // assuming that all sections are allocated with the given alignment static uint64_t computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, uint64_t Alignment) { uint64_t TotalSize = 0; for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { uint64_t AlignedSize = (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; TotalSize += AlignedSize; } return TotalSize; } // Compute an upper bound of the memory size that is required to load all // sections void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, uint64_t &CodeSize, uint64_t &DataSizeRO, uint64_t &DataSizeRW) { // Compute the size of all sections required for execution std::vector<uint64_t> CodeSectionSizes; std::vector<uint64_t> ROSectionSizes; std::vector<uint64_t> RWSectionSizes; uint64_t MaxAlignment = sizeof(void *); // Collect sizes of all sections to be loaded; // also determine the max alignment of all sections for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); SI != SE; ++SI) { const SectionRef &Section = *SI; bool IsRequired; Check(Section.isRequiredForExecution(IsRequired)); // Consider only the sections that are required to be loaded for execution if (IsRequired) { uint64_t DataSize = 0; uint64_t Alignment64 = 0; bool IsCode = false; bool IsReadOnly = false; StringRef Name; Check(Section.getSize(DataSize)); Check(Section.getAlignment(Alignment64)); Check(Section.isText(IsCode)); Check(Section.isReadOnlyData(IsReadOnly)); Check(Section.getName(Name)); unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); uint64_t SectionSize = DataSize + StubBufSize; // The .eh_frame section (at least on Linux) needs an extra four bytes // padded // with zeroes added at the end. For MachO objects, this section has a // slightly different name, so this won't have any effect for MachO // objects. if (Name == ".eh_frame") SectionSize += 4; if (SectionSize > 0) { // save the total size of the section if (IsCode) { CodeSectionSizes.push_back(SectionSize); } else if (IsReadOnly) { ROSectionSizes.push_back(SectionSize); } else { RWSectionSizes.push_back(SectionSize); } // update the max alignment if (Alignment > MaxAlignment) { MaxAlignment = Alignment; } } } } // Compute the size of all common symbols uint64_t CommonSize = 0; for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E; ++I) { uint32_t Flags = I->getFlags(); if (Flags & SymbolRef::SF_Common) { // Add the common symbols to a list. We'll allocate them all below. uint64_t Size = 0; Check(I->getSize(Size)); CommonSize += Size; } } if (CommonSize != 0) { RWSectionSizes.push_back(CommonSize); } // Compute the required allocation space for each different type of sections // (code, read-only data, read-write data) assuming that all sections are // allocated with the max alignment. Note that we cannot compute with the // individual alignments of the sections, because then the required size // depends on the order, in which the sections are allocated. CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment); DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment); DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment); } // compute stub buffer size for the given section unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, const SectionRef &Section) { unsigned StubSize = getMaxStubSize(); if (StubSize == 0) { return 0; } // FIXME: this is an inefficient way to handle this. We should computed the // necessary section allocation size in loadObject by walking all the sections // once. unsigned StubBufSize = 0; for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); SI != SE; ++SI) { section_iterator RelSecI = SI->getRelocatedSection(); if (!(RelSecI == Section)) continue; for (const RelocationRef &Reloc : SI->relocations()) { (void)Reloc; StubBufSize += StubSize; } } // Get section data size and alignment uint64_t Alignment64; uint64_t DataSize; Check(Section.getSize(DataSize)); Check(Section.getAlignment(Alignment64)); // Add stubbuf size alignment unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; unsigned StubAlignment = getStubAlignment(); unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); if (StubAlignment > EndAlignment) StubBufSize += StubAlignment - EndAlignment; return StubBufSize; } void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, const CommonSymbolMap &CommonSymbols, uint64_t TotalSize, SymbolTableMap &SymbolTable) { // Allocate memory for the section unsigned SectionID = Sections.size(); uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *), SectionID, StringRef(), false); if (!Addr) report_fatal_error("Unable to allocate memory for common symbols!"); uint64_t Offset = 0; Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0)); memset(Addr, 0, TotalSize); DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " << format("%p", Addr) << " DataSize: " << TotalSize << "\n"); // Assign the address of each symbol for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(), itEnd = CommonSymbols.end(); it != itEnd; ++it) { uint64_t Size = it->second.first; uint64_t Align = it->second.second; StringRef Name; it->first.getName(Name); if (Align) { // This symbol has an alignment requirement. uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); Addr += AlignOffset; Offset += AlignOffset; DEBUG(dbgs() << "Allocating common symbol " << Name << " address " << format("%p\n", Addr)); } Obj.updateSymbolAddress(it->first, (uint64_t)Addr); SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset); Offset += Size; Addr += Size; } } unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode) { StringRef data; uint64_t Alignment64; Check(Section.getContents(data)); Check(Section.getAlignment(Alignment64)); unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; bool IsRequired; bool IsVirtual; bool IsZeroInit; bool IsReadOnly; uint64_t DataSize; unsigned PaddingSize = 0; unsigned StubBufSize = 0; StringRef Name; Check(Section.isRequiredForExecution(IsRequired)); Check(Section.isVirtual(IsVirtual)); Check(Section.isZeroInit(IsZeroInit)); Check(Section.isReadOnlyData(IsReadOnly)); Check(Section.getSize(DataSize)); Check(Section.getName(Name)); StubBufSize = computeSectionStubBufSize(Obj, Section); // The .eh_frame section (at least on Linux) needs an extra four bytes padded // with zeroes added at the end. For MachO objects, this section has a // slightly different name, so this won't have any effect for MachO objects. if (Name == ".eh_frame") PaddingSize = 4; uintptr_t Allocate; unsigned SectionID = Sections.size(); uint8_t *Addr; const char *pData = nullptr; // Some sections, such as debug info, don't need to be loaded for execution. // Leave those where they are. if (IsRequired) { Allocate = DataSize + PaddingSize + StubBufSize; Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name) : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name, IsReadOnly); if (!Addr) report_fatal_error("Unable to allocate section memory!"); // Virtual sections have no data in the object image, so leave pData = 0 if (!IsVirtual) pData = data.data(); // Zero-initialize or copy the data from the image if (IsZeroInit || IsVirtual) memset(Addr, 0, DataSize); else memcpy(Addr, pData, DataSize); // Fill in any extra bytes we allocated for padding if (PaddingSize != 0) { memset(Addr + DataSize, 0, PaddingSize); // Update the DataSize variable so that the stub offset is set correctly. DataSize += PaddingSize; } DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", pData) << " new addr: " << format("%p", Addr) << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize << " Allocate: " << Allocate << "\n"); Obj.updateSectionAddress(Section, (uint64_t)Addr); } else { // Even if we didn't load the section, we need to record an entry for it // to handle later processing (and by 'handle' I mean don't do anything // with these sections). Allocate = 0; Addr = nullptr; DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", data.data()) << " new addr: 0" << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize << " Allocate: " << Allocate << "\n"); } Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData)); return SectionID; } unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections) { unsigned SectionID = 0; ObjSectionToIDMap::iterator i = LocalSections.find(Section); if (i != LocalSections.end()) SectionID = i->second; else { SectionID = emitSection(Obj, Section, IsCode); LocalSections[Section] = SectionID; } return SectionID; } void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, unsigned SectionID) { Relocations[SectionID].push_back(RE); } void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName) { // Relocation by symbol. If the symbol is found in the global symbol table, // create an appropriate section relocation. Otherwise, add it to // ExternalSymbolRelocations. SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName); if (Loc == GlobalSymbolTable.end()) { ExternalSymbolRelocations[SymbolName].push_back(RE); } else { // Copy the RE since we want to modify its addend. RelocationEntry RECopy = RE; RECopy.Addend += Loc->second.second; Relocations[Loc->second.first].push_back(RECopy); } } uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || Arch == Triple::arm64 || Arch == Triple::arm64_be) { // This stub has to be able to access the full address space, // since symbol lookup won't necessarily find a handy, in-range, // PLT stub for functions which could be anywhere. uint32_t *StubAddr = (uint32_t *)Addr; // Stub can use ip0 (== x16) to calculate address *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr> StubAddr++; *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr> StubAddr++; *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr> StubAddr++; *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr> StubAddr++; *StubAddr = 0xd61f0200; // br ip0 return Addr; } else if (Arch == Triple::arm || Arch == Triple::armeb) { // TODO: There is only ARM far stub now. We should add the Thumb stub, // and stubs for branches Thumb - ARM and ARM - Thumb. uint32_t *StubAddr = (uint32_t *)Addr; *StubAddr = 0xe51ff004; // ldr pc,<label> return (uint8_t *)++StubAddr; } else if (Arch == Triple::mipsel || Arch == Triple::mips) { uint32_t *StubAddr = (uint32_t *)Addr; // 0: 3c190000 lui t9,%hi(addr). // 4: 27390000 addiu t9,t9,%lo(addr). // 8: 03200008 jr t9. // c: 00000000 nop. const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0; *StubAddr = LuiT9Instr; StubAddr++; *StubAddr = AdduiT9Instr; StubAddr++; *StubAddr = JrT9Instr; StubAddr++; *StubAddr = NopInstr; return Addr; } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { // PowerPC64 stub: the address points to a function descriptor // instead of the function itself. Load the function address // on r11 and sets it to control register. Also loads the function // TOC in r2 and environment pointer to r11. writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) writeInt32BE(Addr+40, 0x4E800420); // bctr return Addr; } else if (Arch == Triple::systemz) { writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 writeInt16BE(Addr+2, 0x0000); writeInt16BE(Addr+4, 0x0004); writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 // 8-byte address stored at Addr + 8 return Addr; } else if (Arch == Triple::x86_64) { *Addr = 0xFF; // jmp *(Addr+1) = 0x25; // rip // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 } else if (Arch == Triple::x86) { *Addr = 0xE9; // 32-bit pc-relative jump. } return Addr; } // Assign an address to a symbol name and resolve all the relocations // associated with it. void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { // The address to use for relocation resolution is not // the address of the local section buffer. We must be doing // a remote execution environment of some sort. Relocations can't // be applied until all the sections have been moved. The client must // trigger this with a call to MCJIT::finalize() or // RuntimeDyld::resolveRelocations(). // // Addr is a uint64_t because we can't assume the pointer width // of the target is the same as that of the host. Just use a generic // "big enough" type. Sections[SectionID].LoadAddress = Addr; } void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, uint64_t Value) { for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { const RelocationEntry &RE = Relocs[i]; // Ignore relocations for sections that were not loaded if (Sections[RE.SectionID].Address == nullptr) continue; resolveRelocation(RE, Value); } } void RuntimeDyldImpl::resolveExternalSymbols() { while (!ExternalSymbolRelocations.empty()) { StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); StringRef Name = i->first(); if (Name.size() == 0) { // This is an absolute symbol, use an address of zero. DEBUG(dbgs() << "Resolving absolute relocations." << "\n"); RelocationList &Relocs = i->second; resolveRelocationList(Relocs, 0); } else { uint64_t Addr = 0; SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name); if (Loc == GlobalSymbolTable.end()) { // This is an external symbol, try to get its address from // MemoryManager. Addr = MemMgr->getSymbolAddress(Name.data()); // The call to getSymbolAddress may have caused additional modules to // be loaded, which may have added new entries to the // ExternalSymbolRelocations map. Consquently, we need to update our // iterator. This is also why retrieval of the relocation list // associated with this symbol is deferred until below this point. // New entries may have been added to the relocation list. i = ExternalSymbolRelocations.find(Name); } else { // We found the symbol in our global table. It was probably in a // Module that we loaded previously. SymbolLoc SymLoc = Loc->second; Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second; } // FIXME: Implement error handling that doesn't kill the host program! if (!Addr) report_fatal_error("Program used external function '" + Name + "' which could not be resolved!"); updateGOTEntries(Name, Addr); DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" << format("0x%lx", Addr) << "\n"); // This list may have been updated when we called getSymbolAddress, so // don't change this code to get the list earlier. RelocationList &Relocs = i->second; resolveRelocationList(Relocs, Addr); } ExternalSymbolRelocations.erase(i); } } //===----------------------------------------------------------------------===// // RuntimeDyld class implementation RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { // FIXME: There's a potential issue lurking here if a single instance of // RuntimeDyld is used to load multiple objects. The current implementation // associates a single memory manager with a RuntimeDyld instance. Even // though the public class spawns a new 'impl' instance for each load, // they share a single memory manager. This can become a problem when page // permissions are applied. Dyld = nullptr; MM = mm; ProcessAllSections = false; } RuntimeDyld::~RuntimeDyld() { delete Dyld; } static std::unique_ptr<RuntimeDyldELF> createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) { std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM)); Dyld->setProcessAllSections(ProcessAllSections); return Dyld; } static std::unique_ptr<RuntimeDyldMachO> createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) { std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM)); Dyld->setProcessAllSections(ProcessAllSections); return Dyld; } ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) { std::unique_ptr<ObjectImage> InputImage; ObjectFile &Obj = *InputObject; if (InputObject->isELF()) { InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject))); if (!Dyld) Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release(); } else if (InputObject->isMachO()) { InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject))); if (!Dyld) Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release(); } else report_fatal_error("Incompatible object format!"); if (!Dyld->isCompatibleFile(&Obj)) report_fatal_error("Incompatible object format!"); Dyld->loadObject(InputImage.get()); return InputImage.release(); } ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) { std::unique_ptr<ObjectImage> InputImage; sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer()); switch (Type) { case sys::fs::file_magic::elf_relocatable: case sys::fs::file_magic::elf_executable: case sys::fs::file_magic::elf_shared_object: case sys::fs::file_magic::elf_core: InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer)); if (!Dyld) Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release(); break; case sys::fs::file_magic::macho_object: case sys::fs::file_magic::macho_executable: case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib: case sys::fs::file_magic::macho_core: case sys::fs::file_magic::macho_preload_executable: case sys::fs::file_magic::macho_dynamically_linked_shared_lib: case sys::fs::file_magic::macho_dynamic_linker: case sys::fs::file_magic::macho_bundle: case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub: case sys::fs::file_magic::macho_dsym_companion: InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer)); if (!Dyld) Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release(); break; case sys::fs::file_magic::unknown: case sys::fs::file_magic::bitcode: case sys::fs::file_magic::archive: case sys::fs::file_magic::coff_object: case sys::fs::file_magic::coff_import_library: case sys::fs::file_magic::pecoff_executable: case sys::fs::file_magic::macho_universal_binary: case sys::fs::file_magic::windows_resource: report_fatal_error("Incompatible object format!"); } if (!Dyld->isCompatibleFormat(InputBuffer)) report_fatal_error("Incompatible object format!"); Dyld->loadObject(InputImage.get()); return InputImage.release(); } void *RuntimeDyld::getSymbolAddress(StringRef Name) { if (!Dyld) return nullptr; return Dyld->getSymbolAddress(Name); } uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) { if (!Dyld) return 0; return Dyld->getSymbolLoadAddress(Name); } void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { Dyld->reassignSectionAddress(SectionID, Addr); } void RuntimeDyld::mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { Dyld->mapSectionAddress(LocalAddress, TargetAddress); } bool RuntimeDyld::hasError() { return Dyld->hasError(); } StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } void RuntimeDyld::registerEHFrames() { if (Dyld) Dyld->registerEHFrames(); } void RuntimeDyld::deregisterEHFrames() { if (Dyld) Dyld->deregisterEHFrames(); } } // end namespace llvm