//===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_H #define LLVM_LIB_EXECUTIONENGINE_MCJIT_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/IR/Module.h" namespace llvm { class MCJIT; // This is a helper class that the MCJIT execution engine uses for linking // functions across modules that it owns. It aggregates the memory manager // that is passed in to the MCJIT constructor and defers most functionality // to that object. class LinkingMemoryManager : public RTDyldMemoryManager { public: LinkingMemoryManager(MCJIT *Parent, RTDyldMemoryManager *MM) : ParentEngine(Parent), ClientMM(MM) {} uint64_t getSymbolAddress(const std::string &Name) override; // Functions deferred to client memory manager uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override { return ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName); } uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override { return ClientMM->allocateDataSection(Size, Alignment, SectionID, SectionName, IsReadOnly); } void reserveAllocationSpace(uintptr_t CodeSize, uintptr_t DataSizeRO, uintptr_t DataSizeRW) override { return ClientMM->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); } bool needsToReserveAllocationSpace() override { return ClientMM->needsToReserveAllocationSpace(); } void notifyObjectLoaded(ExecutionEngine *EE, const ObjectImage *Obj) override { ClientMM->notifyObjectLoaded(EE, Obj); } void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override { ClientMM->registerEHFrames(Addr, LoadAddr, Size); } void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override { ClientMM->deregisterEHFrames(Addr, LoadAddr, Size); } bool finalizeMemory(std::string *ErrMsg = nullptr) override { return ClientMM->finalizeMemory(ErrMsg); } private: MCJIT *ParentEngine; std::unique_ptr<RTDyldMemoryManager> ClientMM; }; // About Module states: added->loaded->finalized. // // The purpose of the "added" state is having modules in standby. (added=known // but not compiled). The idea is that you can add a module to provide function // definitions but if nothing in that module is referenced by a module in which // a function is executed (note the wording here because it's not exactly the // ideal case) then the module never gets compiled. This is sort of lazy // compilation. // // The purpose of the "loaded" state (loaded=compiled and required sections // copied into local memory but not yet ready for execution) is to have an // intermediate state wherein clients can remap the addresses of sections, using // MCJIT::mapSectionAddress, (in preparation for later copying to a new location // or an external process) before relocations and page permissions are applied. // // It might not be obvious at first glance, but the "remote-mcjit" case in the // lli tool does this. In that case, the intermediate action is taken by the // RemoteMemoryManager in response to the notifyObjectLoaded function being // called. class MCJIT : public ExecutionEngine { MCJIT(Module *M, TargetMachine *tm, RTDyldMemoryManager *MemMgr, bool AllocateGVsWithCode); typedef llvm::SmallPtrSet<Module *, 4> ModulePtrSet; class OwningModuleContainer { public: OwningModuleContainer() { } ~OwningModuleContainer() { freeModulePtrSet(AddedModules); freeModulePtrSet(LoadedModules); freeModulePtrSet(FinalizedModules); } ModulePtrSet::iterator begin_added() { return AddedModules.begin(); } ModulePtrSet::iterator end_added() { return AddedModules.end(); } ModulePtrSet::iterator begin_loaded() { return LoadedModules.begin(); } ModulePtrSet::iterator end_loaded() { return LoadedModules.end(); } ModulePtrSet::iterator begin_finalized() { return FinalizedModules.begin(); } ModulePtrSet::iterator end_finalized() { return FinalizedModules.end(); } void addModule(Module *M) { AddedModules.insert(M); } bool removeModule(Module *M) { return AddedModules.erase(M) || LoadedModules.erase(M) || FinalizedModules.erase(M); } bool hasModuleBeenAddedButNotLoaded(Module *M) { return AddedModules.count(M) != 0; } bool hasModuleBeenLoaded(Module *M) { // If the module is in either the "loaded" or "finalized" sections it // has been loaded. return (LoadedModules.count(M) != 0 ) || (FinalizedModules.count(M) != 0); } bool hasModuleBeenFinalized(Module *M) { return FinalizedModules.count(M) != 0; } bool ownsModule(Module* M) { return (AddedModules.count(M) != 0) || (LoadedModules.count(M) != 0) || (FinalizedModules.count(M) != 0); } void markModuleAsLoaded(Module *M) { // This checks against logic errors in the MCJIT implementation. // This function should never be called with either a Module that MCJIT // does not own or a Module that has already been loaded and/or finalized. assert(AddedModules.count(M) && "markModuleAsLoaded: Module not found in AddedModules"); // Remove the module from the "Added" set. AddedModules.erase(M); // Add the Module to the "Loaded" set. LoadedModules.insert(M); } void markModuleAsFinalized(Module *M) { // This checks against logic errors in the MCJIT implementation. // This function should never be called with either a Module that MCJIT // does not own, a Module that has not been loaded or a Module that has // already been finalized. assert(LoadedModules.count(M) && "markModuleAsFinalized: Module not found in LoadedModules"); // Remove the module from the "Loaded" section of the list. LoadedModules.erase(M); // Add the Module to the "Finalized" section of the list by inserting it // before the 'end' iterator. FinalizedModules.insert(M); } void markAllLoadedModulesAsFinalized() { for (ModulePtrSet::iterator I = LoadedModules.begin(), E = LoadedModules.end(); I != E; ++I) { Module *M = *I; FinalizedModules.insert(M); } LoadedModules.clear(); } private: ModulePtrSet AddedModules; ModulePtrSet LoadedModules; ModulePtrSet FinalizedModules; void freeModulePtrSet(ModulePtrSet& MPS) { // Go through the module set and delete everything. for (ModulePtrSet::iterator I = MPS.begin(), E = MPS.end(); I != E; ++I) { Module *M = *I; delete M; } MPS.clear(); } }; TargetMachine *TM; MCContext *Ctx; LinkingMemoryManager MemMgr; RuntimeDyld Dyld; SmallVector<JITEventListener*, 2> EventListeners; OwningModuleContainer OwnedModules; SmallVector<object::Archive*, 2> Archives; typedef SmallVector<ObjectImage *, 2> LoadedObjectList; LoadedObjectList LoadedObjects; // An optional ObjectCache to be notified of compiled objects and used to // perform lookup of pre-compiled code to avoid re-compilation. ObjectCache *ObjCache; Function *FindFunctionNamedInModulePtrSet(const char *FnName, ModulePtrSet::iterator I, ModulePtrSet::iterator E); void runStaticConstructorsDestructorsInModulePtrSet(bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E); public: ~MCJIT(); /// @name ExecutionEngine interface implementation /// @{ void addModule(Module *M) override; void addObjectFile(std::unique_ptr<object::ObjectFile> O) override; void addArchive(object::Archive *O) override; bool removeModule(Module *M) override; /// FindFunctionNamed - Search all of the active modules to find the one that /// defines FnName. This is very slow operation and shouldn't be used for /// general code. Function *FindFunctionNamed(const char *FnName) override; /// Sets the object manager that MCJIT should use to avoid compilation. void setObjectCache(ObjectCache *manager) override; void setProcessAllSections(bool ProcessAllSections) override { Dyld.setProcessAllSections(ProcessAllSections); } void generateCodeForModule(Module *M) override; /// finalizeObject - ensure the module is fully processed and is usable. /// /// It is the user-level function for completing the process of making the /// object usable for execution. It should be called after sections within an /// object have been relocated using mapSectionAddress. When this method is /// called the MCJIT execution engine will reapply relocations for a loaded /// object. /// Is it OK to finalize a set of modules, add modules and finalize again. // FIXME: Do we really need both of these? void finalizeObject() override; virtual void finalizeModule(Module *); void finalizeLoadedModules(); /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a program. /// /// \param isDtors - Run the destructors instead of constructors. void runStaticConstructorsDestructors(bool isDtors) override; void *getPointerToBasicBlock(BasicBlock *BB) override; void *getPointerToFunction(Function *F) override; void *recompileAndRelinkFunction(Function *F) override; void freeMachineCodeForFunction(Function *F) override; GenericValue runFunction(Function *F, const std::vector<GenericValue> &ArgValues) override; /// getPointerToNamedFunction - This method returns the address of the /// specified function by using the dlsym function call. As such it is only /// useful for resolving library symbols, not code generated symbols. /// /// If AbortOnFailure is false and no function with the given name is /// found, this function silently returns a null pointer. Otherwise, /// it prints a message to stderr and aborts. /// void *getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure = true) override; /// mapSectionAddress - map a section to its target address space value. /// Map the address of a JIT section as returned from the memory manager /// to the address in the target process as the running code will see it. /// This is the address which will be used for relocation resolution. void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) override { Dyld.mapSectionAddress(LocalAddress, TargetAddress); } void RegisterJITEventListener(JITEventListener *L) override; void UnregisterJITEventListener(JITEventListener *L) override; // If successful, these function will implicitly finalize all loaded objects. // To get a function address within MCJIT without causing a finalize, use // getSymbolAddress. uint64_t getGlobalValueAddress(const std::string &Name) override; uint64_t getFunctionAddress(const std::string &Name) override; TargetMachine *getTargetMachine() override { return TM; } /// @} /// @name (Private) Registration Interfaces /// @{ static void Register() { MCJITCtor = createJIT; } static ExecutionEngine *createJIT(Module *M, std::string *ErrorStr, RTDyldMemoryManager *MemMgr, bool GVsWithCode, TargetMachine *TM); // @} // This is not directly exposed via the ExecutionEngine API, but it is // used by the LinkingMemoryManager. uint64_t getSymbolAddress(const std::string &Name, bool CheckFunctionsOnly); protected: /// emitObject -- Generate a JITed object in memory from the specified module /// Currently, MCJIT only supports a single module and the module passed to /// this function call is expected to be the contained module. The module /// is passed as a parameter here to prepare for multiple module support in /// the future. ObjectBufferStream* emitObject(Module *M); void NotifyObjectEmitted(const ObjectImage& Obj); void NotifyFreeingObject(const ObjectImage& Obj); uint64_t getExistingSymbolAddress(const std::string &Name); Module *findModuleForSymbol(const std::string &Name, bool CheckFunctionsOnly); }; } // End llvm namespace #endif