//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DefaultJITMemoryManager class. // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/config.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Memory.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <climits> #include <cstring> #include <vector> #if defined(__linux__) #if defined(HAVE_SYS_STAT_H) #include <sys/stat.h> #endif #include <fcntl.h> #include <unistd.h> #endif using namespace llvm; #define DEBUG_TYPE "jit" STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); JITMemoryManager::~JITMemoryManager() {} //===----------------------------------------------------------------------===// // Memory Block Implementation. //===----------------------------------------------------------------------===// namespace { /// MemoryRangeHeader - For a range of memory, this is the header that we put /// on the block of memory. It is carefully crafted to be one word of memory. /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader /// which starts with this. struct FreeRangeHeader; struct MemoryRangeHeader { /// ThisAllocated - This is true if this block is currently allocated. If /// not, this can be converted to a FreeRangeHeader. unsigned ThisAllocated : 1; /// PrevAllocated - Keep track of whether the block immediately before us is /// allocated. If not, the word immediately before this header is the size /// of the previous block. unsigned PrevAllocated : 1; /// BlockSize - This is the size in bytes of this memory block, /// including this header. uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2); /// getBlockAfter - Return the memory block immediately after this one. /// MemoryRangeHeader &getBlockAfter() const { return *reinterpret_cast<MemoryRangeHeader *>( reinterpret_cast<char*>( const_cast<MemoryRangeHeader *>(this))+BlockSize); } /// getFreeBlockBefore - If the block before this one is free, return it, /// otherwise return null. FreeRangeHeader *getFreeBlockBefore() const { if (PrevAllocated) return nullptr; intptr_t PrevSize = reinterpret_cast<intptr_t *>( const_cast<MemoryRangeHeader *>(this))[-1]; return reinterpret_cast<FreeRangeHeader *>( reinterpret_cast<char*>( const_cast<MemoryRangeHeader *>(this))-PrevSize); } /// FreeBlock - Turn an allocated block into a free block, adjusting /// bits in the object headers, and adding an end of region memory block. FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); /// TrimAllocationToSize - If this allocated block is significantly larger /// than NewSize, split it into two pieces (where the former is NewSize /// bytes, including the header), and add the new block to the free list. FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize); }; /// FreeRangeHeader - For a memory block that isn't already allocated, this /// keeps track of the current block and has a pointer to the next free block. /// Free blocks are kept on a circularly linked list. struct FreeRangeHeader : public MemoryRangeHeader { FreeRangeHeader *Prev; FreeRangeHeader *Next; /// getMinBlockSize - Get the minimum size for a memory block. Blocks /// smaller than this size cannot be created. static unsigned getMinBlockSize() { return sizeof(FreeRangeHeader)+sizeof(intptr_t); } /// SetEndOfBlockSizeMarker - The word at the end of every free block is /// known to be the size of the free block. Set it for this block. void SetEndOfBlockSizeMarker() { void *EndOfBlock = (char*)this + BlockSize; ((intptr_t *)EndOfBlock)[-1] = BlockSize; } FreeRangeHeader *RemoveFromFreeList() { assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); Next->Prev = Prev; return Prev->Next = Next; } void AddToFreeList(FreeRangeHeader *FreeList) { Next = FreeList; Prev = FreeList->Prev; Prev->Next = this; Next->Prev = this; } /// GrowBlock - The block after this block just got deallocated. Merge it /// into the current block. void GrowBlock(uintptr_t NewSize); /// AllocateBlock - Mark this entire block allocated, updating freelists /// etc. This returns a pointer to the circular free-list. FreeRangeHeader *AllocateBlock(); }; } /// AllocateBlock - Mark this entire block allocated, updating freelists /// etc. This returns a pointer to the circular free-list. FreeRangeHeader *FreeRangeHeader::AllocateBlock() { assert(!ThisAllocated && !getBlockAfter().PrevAllocated && "Cannot allocate an allocated block!"); // Mark this block allocated. ThisAllocated = 1; getBlockAfter().PrevAllocated = 1; // Remove it from the free list. return RemoveFromFreeList(); } /// FreeBlock - Turn an allocated block into a free block, adjusting /// bits in the object headers, and adding an end of region memory block. /// If possible, coalesce this block with neighboring blocks. Return the /// FreeRangeHeader to allocate from. FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { MemoryRangeHeader *FollowingBlock = &getBlockAfter(); assert(ThisAllocated && "This block is already free!"); assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); FreeRangeHeader *FreeListToReturn = FreeList; // If the block after this one is free, merge it into this block. if (!FollowingBlock->ThisAllocated) { FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; // "FreeList" always needs to be a valid free block. If we're about to // coalesce with it, update our notion of what the free list is. if (&FollowingFreeBlock == FreeList) { FreeList = FollowingFreeBlock.Next; FreeListToReturn = nullptr; assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); } FollowingFreeBlock.RemoveFromFreeList(); // Include the following block into this one. BlockSize += FollowingFreeBlock.BlockSize; FollowingBlock = &FollowingFreeBlock.getBlockAfter(); // Tell the block after the block we are coalescing that this block is // allocated. FollowingBlock->PrevAllocated = 1; } assert(FollowingBlock->ThisAllocated && "Missed coalescing?"); if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; } // Otherwise, mark this block free. FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; FollowingBlock->PrevAllocated = 0; FreeBlock.ThisAllocated = 0; // Link this into the linked list of free blocks. FreeBlock.AddToFreeList(FreeList); // Add a marker at the end of the block, indicating the size of this free // block. FreeBlock.SetEndOfBlockSizeMarker(); return FreeListToReturn ? FreeListToReturn : &FreeBlock; } /// GrowBlock - The block after this block just got deallocated. Merge it /// into the current block. void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { assert(NewSize > BlockSize && "Not growing block?"); BlockSize = NewSize; SetEndOfBlockSizeMarker(); getBlockAfter().PrevAllocated = 0; } /// TrimAllocationToSize - If this allocated block is significantly larger /// than NewSize, split it into two pieces (where the former is NewSize /// bytes, including the header), and add the new block to the free list. FreeRangeHeader *MemoryRangeHeader:: TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { assert(ThisAllocated && getBlockAfter().PrevAllocated && "Cannot deallocate part of an allocated block!"); // Don't allow blocks to be trimmed below minimum required size NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize); // Round up size for alignment of header. unsigned HeaderAlign = __alignof(FreeRangeHeader); NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); // Size is now the size of the block we will remove from the start of the // current block. assert(NewSize <= BlockSize && "Allocating more space from this block than exists!"); // If splitting this block will cause the remainder to be too small, do not // split the block. if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) return FreeList; // Otherwise, we splice the required number of bytes out of this block, form // a new block immediately after it, then mark this block allocated. MemoryRangeHeader &FormerNextBlock = getBlockAfter(); // Change the size of this block. BlockSize = NewSize; // Get the new block we just sliced out and turn it into a free block. FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; NewNextBlock.ThisAllocated = 0; NewNextBlock.PrevAllocated = 1; NewNextBlock.SetEndOfBlockSizeMarker(); FormerNextBlock.PrevAllocated = 0; NewNextBlock.AddToFreeList(FreeList); return &NewNextBlock; } //===----------------------------------------------------------------------===// // Memory Block Implementation. //===----------------------------------------------------------------------===// namespace { class DefaultJITMemoryManager; class JITAllocator { DefaultJITMemoryManager &JMM; public: JITAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } void *Allocate(size_t Size, size_t /*Alignment*/); void Deallocate(void *Slab, size_t Size); }; /// DefaultJITMemoryManager - Manage memory for the JIT code generation. /// This splits a large block of MAP_NORESERVE'd memory into two /// sections, one for function stubs, one for the functions themselves. We /// have to do this because we may need to emit a function stub while in the /// middle of emitting a function, and we don't know how large the function we /// are emitting is. class DefaultJITMemoryManager : public JITMemoryManager { public: /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at /// least this much unless more is requested. Currently, in 512k slabs. static const size_t DefaultCodeSlabSize = 512 * 1024; /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably /// 16 pages) unless we get an allocation above SizeThreshold. static const size_t DefaultSlabSize = 64 * 1024; /// DefaultSizeThreshold - For any allocation larger than 16K (probably /// 4 pages), we should allocate a separate slab to avoid wasted space at /// the end of a normal slab. static const size_t DefaultSizeThreshold = 16 * 1024; private: // Whether to poison freed memory. bool PoisonMemory; /// LastSlab - This points to the last slab allocated and is used as the /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all /// stubs, data, and code contiguously in memory. In general, however, this /// is not possible because the NearBlock parameter is ignored on Windows /// platforms and even on Unix it works on a best-effort pasis. sys::MemoryBlock LastSlab; // Memory slabs allocated by the JIT. We refer to them as slabs so we don't // confuse them with the blocks of memory described above. std::vector<sys::MemoryBlock> CodeSlabs; BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize, DefaultSizeThreshold> StubAllocator; BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize, DefaultSizeThreshold> DataAllocator; // Circular list of free blocks. FreeRangeHeader *FreeMemoryList; // When emitting code into a memory block, this is the block. MemoryRangeHeader *CurBlock; uint8_t *GOTBase; // Target Specific reserved memory public: DefaultJITMemoryManager(); ~DefaultJITMemoryManager(); /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the /// last slab it allocated, so that subsequent allocations follow it. sys::MemoryBlock allocateNewSlab(size_t size); /// getPointerToNamedFunction - This method returns the address of the /// specified function by using the dlsym function call. void *getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure = true) override; void AllocateGOT() override; // Testing methods. bool CheckInvariants(std::string &ErrorStr) override; size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; } size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; } size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; } unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); } unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); } unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); } /// startFunctionBody - When a function starts, allocate a block of free /// executable memory, returning a pointer to it and its actual size. uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) override { FreeRangeHeader* candidateBlock = FreeMemoryList; FreeRangeHeader* head = FreeMemoryList; FreeRangeHeader* iter = head->Next; uintptr_t largest = candidateBlock->BlockSize; // Search for the largest free block while (iter != head) { if (iter->BlockSize > largest) { largest = iter->BlockSize; candidateBlock = iter; } iter = iter->Next; } largest = largest - sizeof(MemoryRangeHeader); // If this block isn't big enough for the allocation desired, allocate // another block of memory and add it to the free list. if (largest < ActualSize || largest <= FreeRangeHeader::getMinBlockSize()) { DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); candidateBlock = allocateNewCodeSlab((size_t)ActualSize); } // Select this candidate block for allocation CurBlock = candidateBlock; // Allocate the entire memory block. FreeMemoryList = candidateBlock->AllocateBlock(); ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader); return (uint8_t *)(CurBlock + 1); } /// allocateNewCodeSlab - Helper method to allocate a new slab of code /// memory from the OS and add it to the free list. Returns the new /// FreeRangeHeader at the base of the slab. FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) { // If the user needs at least MinSize free memory, then we account for // two MemoryRangeHeaders: the one in the user's block, and the one at the // end of the slab. size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader); size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin); sys::MemoryBlock B = allocateNewSlab(SlabSize); CodeSlabs.push_back(B); char *MemBase = (char*)(B.base()); // Put a tiny allocated block at the end of the memory chunk, so when // FreeBlock calls getBlockAfter it doesn't fall off the end. MemoryRangeHeader *EndBlock = (MemoryRangeHeader*)(MemBase + B.size()) - 1; EndBlock->ThisAllocated = 1; EndBlock->PrevAllocated = 0; EndBlock->BlockSize = sizeof(MemoryRangeHeader); // Start out with a vast new block of free memory. FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase; NewBlock->ThisAllocated = 0; // Make sure getFreeBlockBefore doesn't look into unmapped memory. NewBlock->PrevAllocated = 1; NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock; NewBlock->SetEndOfBlockSizeMarker(); NewBlock->AddToFreeList(FreeMemoryList); assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize && "The block was too small!"); return NewBlock; } /// endFunctionBody - The function F is now allocated, and takes the memory /// in the range [FunctionStart,FunctionEnd). void endFunctionBody(const Function *F, uint8_t *FunctionStart, uint8_t *FunctionEnd) override { assert(FunctionEnd > FunctionStart); assert(FunctionStart == (uint8_t *)(CurBlock+1) && "Mismatched function start/end!"); uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock; // Release the memory at the end of this block that isn't needed. FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); } /// allocateSpace - Allocate a memory block of the given size. This method /// cannot be called between calls to startFunctionBody and endFunctionBody. uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override { CurBlock = FreeMemoryList; FreeMemoryList = FreeMemoryList->AllocateBlock(); uint8_t *result = (uint8_t *)(CurBlock + 1); if (Alignment == 0) Alignment = 1; result = (uint8_t*)(((intptr_t)result+Alignment-1) & ~(intptr_t)(Alignment-1)); uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock; FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); return result; } /// allocateStub - Allocate memory for a function stub. uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, unsigned Alignment) override { return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); } /// allocateGlobal - Allocate memory for a global. uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override { return (uint8_t*)DataAllocator.Allocate(Size, Alignment); } /// allocateCodeSection - Allocate memory for a code section. uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override { // Grow the required block size to account for the block header Size += sizeof(*CurBlock); // Alignment handling. if (!Alignment) Alignment = 16; Size += Alignment - 1; FreeRangeHeader* candidateBlock = FreeMemoryList; FreeRangeHeader* head = FreeMemoryList; FreeRangeHeader* iter = head->Next; uintptr_t largest = candidateBlock->BlockSize; // Search for the largest free block. while (iter != head) { if (iter->BlockSize > largest) { largest = iter->BlockSize; candidateBlock = iter; } iter = iter->Next; } largest = largest - sizeof(MemoryRangeHeader); // If this block isn't big enough for the allocation desired, allocate // another block of memory and add it to the free list. if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) { DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); candidateBlock = allocateNewCodeSlab((size_t)Size); } // Select this candidate block for allocation CurBlock = candidateBlock; // Allocate the entire memory block. FreeMemoryList = candidateBlock->AllocateBlock(); // Release the memory at the end of this block that isn't needed. FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size); uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock); return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment); } /// allocateDataSection - Allocate memory for a data section. uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override { return (uint8_t*)DataAllocator.Allocate(Size, Alignment); } bool finalizeMemory(std::string *ErrMsg) override { return false; } uint8_t *getGOTBase() const override { return GOTBase; } void deallocateBlock(void *Block) { // Find the block that is allocated for this function. MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1; assert(MemRange->ThisAllocated && "Block isn't allocated!"); // Fill the buffer with garbage! if (PoisonMemory) { memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)); } // Free the memory. FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); } /// deallocateFunctionBody - Deallocate all memory for the specified /// function body. void deallocateFunctionBody(void *Body) override { if (Body) deallocateBlock(Body); } /// setMemoryWritable - When code generation is in progress, /// the code pages may need permissions changed. void setMemoryWritable() override { for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) sys::Memory::setWritable(CodeSlabs[i]); } /// setMemoryExecutable - When code generation is done and we're ready to /// start execution, the code pages may need permissions changed. void setMemoryExecutable() override { for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) sys::Memory::setExecutable(CodeSlabs[i]); } /// setPoisonMemory - Controls whether we write garbage over freed memory. /// void setPoisonMemory(bool poison) override { PoisonMemory = poison; } }; } void *JITAllocator::Allocate(size_t Size, size_t /*Alignment*/) { sys::MemoryBlock B = JMM.allocateNewSlab(Size); return B.base(); } void JITAllocator::Deallocate(void *Slab, size_t Size) { sys::MemoryBlock B(Slab, Size); sys::Memory::ReleaseRWX(B); } DefaultJITMemoryManager::DefaultJITMemoryManager() : #ifdef NDEBUG PoisonMemory(false), #else PoisonMemory(true), #endif LastSlab(nullptr, 0), StubAllocator(*this), DataAllocator(*this) { // Allocate space for code. sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); CodeSlabs.push_back(MemBlock); uint8_t *MemBase = (uint8_t*)MemBlock.base(); // We set up the memory chunk with 4 mem regions, like this: // [ START // [ Free #0 ] -> Large space to allocate functions from. // [ Allocated #1 ] -> Tiny space to separate regions. // [ Free #2 ] -> Tiny space so there is always at least 1 free block. // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. // END ] // // The last three blocks are never deallocated or touched. // Add MemoryRangeHeader to the end of the memory region, indicating that // the space after the block of memory is allocated. This is block #3. MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; Mem3->ThisAllocated = 1; Mem3->PrevAllocated = 0; Mem3->BlockSize = sizeof(MemoryRangeHeader); /// Add a tiny free region so that the free list always has one entry. FreeRangeHeader *Mem2 = (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); Mem2->ThisAllocated = 0; Mem2->PrevAllocated = 1; Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); Mem2->SetEndOfBlockSizeMarker(); Mem2->Prev = Mem2; // Mem2 *is* the free list for now. Mem2->Next = Mem2; /// Add a tiny allocated region so that Mem2 is never coalesced away. MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; Mem1->ThisAllocated = 1; Mem1->PrevAllocated = 0; Mem1->BlockSize = sizeof(MemoryRangeHeader); // Add a FreeRangeHeader to the start of the function body region, indicating // that the space is free. Mark the previous block allocated so we never look // at it. FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase; Mem0->ThisAllocated = 0; Mem0->PrevAllocated = 1; Mem0->BlockSize = (char*)Mem1-(char*)Mem0; Mem0->SetEndOfBlockSizeMarker(); Mem0->AddToFreeList(Mem2); // Start out with the freelist pointing to Mem0. FreeMemoryList = Mem0; GOTBase = nullptr; } void DefaultJITMemoryManager::AllocateGOT() { assert(!GOTBase && "Cannot allocate the got multiple times"); GOTBase = new uint8_t[sizeof(void*) * 8192]; HasGOT = true; } DefaultJITMemoryManager::~DefaultJITMemoryManager() { for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) sys::Memory::ReleaseRWX(CodeSlabs[i]); delete[] GOTBase; } sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { // Allocate a new block close to the last one. std::string ErrMsg; sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : nullptr; sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); if (!B.base()) { report_fatal_error("Allocation failed when allocating new memory in the" " JIT\n" + Twine(ErrMsg)); } LastSlab = B; ++NumSlabs; // Initialize the slab to garbage when debugging. if (PoisonMemory) { memset(B.base(), 0xCD, B.size()); } return B; } /// CheckInvariants - For testing only. Return "" if all internal invariants /// are preserved, and a helpful error message otherwise. For free and /// allocated blocks, make sure that adding BlockSize gives a valid block. /// For free blocks, make sure they're in the free list and that their end of /// block size marker is correct. This function should return an error before /// accessing bad memory. This function is defined here instead of in /// JITMemoryManagerTest.cpp so that we don't have to expose all of the /// implementation details of DefaultJITMemoryManager. bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { raw_string_ostream Err(ErrorStr); // Construct a the set of FreeRangeHeader pointers so we can query it // efficiently. llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet; FreeRangeHeader* FreeHead = FreeMemoryList; FreeRangeHeader* FreeRange = FreeHead; do { // Check that the free range pointer is in the blocks we've allocated. bool Found = false; for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), E = CodeSlabs.end(); I != E && !Found; ++I) { char *Start = (char*)I->base(); char *End = Start + I->size(); Found = (Start <= (char*)FreeRange && (char*)FreeRange < End); } if (!Found) { Err << "Corrupt free list; points to " << FreeRange; return false; } if (FreeRange->Next->Prev != FreeRange) { Err << "Next and Prev pointers do not match."; return false; } // Otherwise, add it to the set. FreeHdrSet.insert(FreeRange); FreeRange = FreeRange->Next; } while (FreeRange != FreeHead); // Go over each block, and look at each MemoryRangeHeader. for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), E = CodeSlabs.end(); I != E; ++I) { char *Start = (char*)I->base(); char *End = Start + I->size(); // Check each memory range. for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = nullptr; Start <= (char*)Hdr && (char*)Hdr < End; Hdr = &Hdr->getBlockAfter()) { if (Hdr->ThisAllocated == 0) { // Check that this range is in the free list. if (!FreeHdrSet.count(Hdr)) { Err << "Found free header at " << Hdr << " that is not in free list."; return false; } // Now make sure the size marker at the end of the block is correct. uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1; if (!(Start <= (char*)Marker && (char*)Marker < End)) { Err << "Block size in header points out of current MemoryBlock."; return false; } if (Hdr->BlockSize != *Marker) { Err << "End of block size marker (" << *Marker << ") " << "and BlockSize (" << Hdr->BlockSize << ") don't match."; return false; } } if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) { Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != " << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")"; return false; } else if (!LastHdr && !Hdr->PrevAllocated) { Err << "The first header should have PrevAllocated true."; return false; } // Remember the last header. LastHdr = Hdr; } } // All invariants are preserved. return true; } //===----------------------------------------------------------------------===// // getPointerToNamedFunction() implementation. //===----------------------------------------------------------------------===// // AtExitHandlers - List of functions to call when the program exits, // registered with the atexit() library function. static std::vector<void (*)()> AtExitHandlers; /// runAtExitHandlers - Run any functions registered by the program's /// calls to atexit(3), which we intercept and store in /// AtExitHandlers. /// static void runAtExitHandlers() { while (!AtExitHandlers.empty()) { void (*Fn)() = AtExitHandlers.back(); AtExitHandlers.pop_back(); Fn(); } } //===----------------------------------------------------------------------===// // Function stubs that are invoked instead of certain library calls // // Force the following functions to be linked in to anything that uses the // JIT. This is a hack designed to work around the all-too-clever Glibc // strategy of making these functions work differently when inlined vs. when // not inlined, and hiding their real definitions in a separate archive file // that the dynamic linker can't see. For more info, search for // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. #if defined(__linux__) && defined(__GLIBC__) /* stat functions are redirecting to __xstat with a version number. On x86-64 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat' * available as an exported symbol, so we have to add it explicitly. */ namespace { class StatSymbols { public: StatSymbols() { sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat); sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat); sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat); sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64); sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64); sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64); sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64); sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64); sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64); sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit); sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod); } }; } static StatSymbols initStatSymbols; #endif // __linux__ // jit_exit - Used to intercept the "exit" library call. static void jit_exit(int Status) { runAtExitHandlers(); // Run atexit handlers... exit(Status); } // jit_atexit - Used to intercept the "atexit" library call. static int jit_atexit(void (*Fn)()) { AtExitHandlers.push_back(Fn); // Take note of atexit handler... return 0; // Always successful } static int jit_noop() { return 0; } //===----------------------------------------------------------------------===// // /// getPointerToNamedFunction - This method returns the address of the specified /// function by using the dynamic loader interface. As such it is only useful /// for resolving library symbols, not code generated symbols. /// void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure) { // Check to see if this is one of the functions we want to intercept. Note, // we cast to intptr_t here to silence a -pedantic warning that complains // about casting a function pointer to a normal pointer. if (Name == "exit") return (void*)(intptr_t)&jit_exit; if (Name == "atexit") return (void*)(intptr_t)&jit_atexit; // We should not invoke parent's ctors/dtors from generated main()! // On Mingw and Cygwin, the symbol __main is resolved to // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors // (and register wrong callee's dtors with atexit(3)). // We expect ExecutionEngine::runStaticConstructorsDestructors() // is called before ExecutionEngine::runFunctionAsMain() is called. if (Name == "__main") return (void*)(intptr_t)&jit_noop; const char *NameStr = Name.c_str(); // If this is an asm specifier, skip the sentinal. if (NameStr[0] == 1) ++NameStr; // If it's an external function, look it up in the process image... void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); if (Ptr) return Ptr; // If it wasn't found and if it starts with an underscore ('_') character, // try again without the underscore. if (NameStr[0] == '_') { Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); if (Ptr) return Ptr; } // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These // are references to hidden visibility symbols that dlsym cannot resolve. // If we have one of these, strip off $LDBLStub and try again. #if defined(__APPLE__) && defined(__ppc__) if (Name.size() > 9 && Name[Name.size()-9] == '$' && memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) { // First try turning $LDBLStub into $LDBL128. If that fails, strip it off. // This mirrors logic in libSystemStubs.a. std::string Prefix = std::string(Name.begin(), Name.end()-9); if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false)) return Ptr; if (void *Ptr = getPointerToNamedFunction(Prefix, false)) return Ptr; } #endif if (AbortOnFailure) { report_fatal_error("Program used external function '"+Name+ "' which could not be resolved!"); } return nullptr; } JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { return new DefaultJITMemoryManager(); } const size_t DefaultJITMemoryManager::DefaultCodeSlabSize; const size_t DefaultJITMemoryManager::DefaultSlabSize; const size_t DefaultJITMemoryManager::DefaultSizeThreshold;