//===-- ExternalFunctions.cpp - Implement External Functions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains both code to deal with invoking "external" functions, but // also contains code that implements "exported" external functions. // // There are currently two mechanisms for handling external functions in the // Interpreter. The first is to implement lle_* wrapper functions that are // specific to well-known library functions which manually translate the // arguments from GenericValues and make the call. If such a wrapper does // not exist, and libffi is available, then the Interpreter will attempt to // invoke the function using libffi, after finding its address. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/Config/config.h" // Detect libffi #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Module.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include <cmath> #include <csignal> #include <cstdio> #include <cstring> #include <map> #ifdef HAVE_FFI_CALL #ifdef HAVE_FFI_H #include <ffi.h> #define USE_LIBFFI #elif HAVE_FFI_FFI_H #include <ffi/ffi.h> #define USE_LIBFFI #endif #endif using namespace llvm; static ManagedStatic<sys::Mutex> FunctionsLock; typedef GenericValue (*ExFunc)(FunctionType *, const std::vector<GenericValue> &); static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; static std::map<std::string, ExFunc> FuncNames; #ifdef USE_LIBFFI typedef void (*RawFunc)(); static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; #endif static Interpreter *TheInterpreter; static char getTypeID(Type *Ty) { switch (Ty->getTypeID()) { case Type::VoidTyID: return 'V'; case Type::IntegerTyID: switch (cast<IntegerType>(Ty)->getBitWidth()) { case 1: return 'o'; case 8: return 'B'; case 16: return 'S'; case 32: return 'I'; case 64: return 'L'; default: return 'N'; } case Type::FloatTyID: return 'F'; case Type::DoubleTyID: return 'D'; case Type::PointerTyID: return 'P'; case Type::FunctionTyID:return 'M'; case Type::StructTyID: return 'T'; case Type::ArrayTyID: return 'A'; default: return 'U'; } } // Try to find address of external function given a Function object. // Please note, that interpreter doesn't know how to assemble a // real call in general case (this is JIT job), that's why it assumes, // that all external functions has the same (and pretty "general") signature. // The typical example of such functions are "lle_X_" ones. static ExFunc lookupFunction(const Function *F) { // Function not found, look it up... start by figuring out what the // composite function name should be. std::string ExtName = "lle_"; FunctionType *FT = F->getFunctionType(); for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) ExtName += getTypeID(FT->getContainedType(i)); ExtName += "_" + F->getName().str(); sys::ScopedLock Writer(*FunctionsLock); ExFunc FnPtr = FuncNames[ExtName]; if (!FnPtr) FnPtr = FuncNames["lle_X_" + F->getName().str()]; if (!FnPtr) // Try calling a generic function... if it exists... FnPtr = (ExFunc)(intptr_t) sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" + F->getName().str()); if (FnPtr) ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later return FnPtr; } #ifdef USE_LIBFFI static ffi_type *ffiTypeFor(Type *Ty) { switch (Ty->getTypeID()) { case Type::VoidTyID: return &ffi_type_void; case Type::IntegerTyID: switch (cast<IntegerType>(Ty)->getBitWidth()) { case 8: return &ffi_type_sint8; case 16: return &ffi_type_sint16; case 32: return &ffi_type_sint32; case 64: return &ffi_type_sint64; } case Type::FloatTyID: return &ffi_type_float; case Type::DoubleTyID: return &ffi_type_double; case Type::PointerTyID: return &ffi_type_pointer; default: break; } // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. report_fatal_error("Type could not be mapped for use with libffi."); return NULL; } static void *ffiValueFor(Type *Ty, const GenericValue &AV, void *ArgDataPtr) { switch (Ty->getTypeID()) { case Type::IntegerTyID: switch (cast<IntegerType>(Ty)->getBitWidth()) { case 8: { int8_t *I8Ptr = (int8_t *) ArgDataPtr; *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); return ArgDataPtr; } case 16: { int16_t *I16Ptr = (int16_t *) ArgDataPtr; *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); return ArgDataPtr; } case 32: { int32_t *I32Ptr = (int32_t *) ArgDataPtr; *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); return ArgDataPtr; } case 64: { int64_t *I64Ptr = (int64_t *) ArgDataPtr; *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); return ArgDataPtr; } } case Type::FloatTyID: { float *FloatPtr = (float *) ArgDataPtr; *FloatPtr = AV.FloatVal; return ArgDataPtr; } case Type::DoubleTyID: { double *DoublePtr = (double *) ArgDataPtr; *DoublePtr = AV.DoubleVal; return ArgDataPtr; } case Type::PointerTyID: { void **PtrPtr = (void **) ArgDataPtr; *PtrPtr = GVTOP(AV); return ArgDataPtr; } default: break; } // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. report_fatal_error("Type value could not be mapped for use with libffi."); return NULL; } static bool ffiInvoke(RawFunc Fn, Function *F, const std::vector<GenericValue> &ArgVals, const DataLayout *TD, GenericValue &Result) { ffi_cif cif; FunctionType *FTy = F->getFunctionType(); const unsigned NumArgs = F->arg_size(); // TODO: We don't have type information about the remaining arguments, because // this information is never passed into ExecutionEngine::runFunction(). if (ArgVals.size() > NumArgs && F->isVarArg()) { report_fatal_error("Calling external var arg function '" + F->getName() + "' is not supported by the Interpreter."); } unsigned ArgBytes = 0; std::vector<ffi_type*> args(NumArgs); for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; ++A) { const unsigned ArgNo = A->getArgNo(); Type *ArgTy = FTy->getParamType(ArgNo); args[ArgNo] = ffiTypeFor(ArgTy); ArgBytes += TD->getTypeStoreSize(ArgTy); } SmallVector<uint8_t, 128> ArgData; ArgData.resize(ArgBytes); uint8_t *ArgDataPtr = ArgData.data(); SmallVector<void*, 16> values(NumArgs); for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; ++A) { const unsigned ArgNo = A->getArgNo(); Type *ArgTy = FTy->getParamType(ArgNo); values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); ArgDataPtr += TD->getTypeStoreSize(ArgTy); } Type *RetTy = FTy->getReturnType(); ffi_type *rtype = ffiTypeFor(RetTy); if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { SmallVector<uint8_t, 128> ret; if (RetTy->getTypeID() != Type::VoidTyID) ret.resize(TD->getTypeStoreSize(RetTy)); ffi_call(&cif, Fn, ret.data(), values.data()); switch (RetTy->getTypeID()) { case Type::IntegerTyID: switch (cast<IntegerType>(RetTy)->getBitWidth()) { case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; } break; case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; default: break; } return true; } return false; } #endif // USE_LIBFFI GenericValue Interpreter::callExternalFunction(Function *F, const std::vector<GenericValue> &ArgVals) { TheInterpreter = this; FunctionsLock->acquire(); // Do a lookup to see if the function is in our cache... this should just be a // deferred annotation! std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) : FI->second) { FunctionsLock->release(); return Fn(F->getFunctionType(), ArgVals); } #ifdef USE_LIBFFI std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); RawFunc RawFn; if (RF == RawFunctions->end()) { RawFn = (RawFunc)(intptr_t) sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); if (!RawFn) RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); if (RawFn != 0) RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later } else { RawFn = RF->second; } FunctionsLock->release(); GenericValue Result; if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) return Result; #endif // USE_LIBFFI if (F->getName() == "__main") errs() << "Tried to execute an unknown external function: " << *F->getType() << " __main\n"; else report_fatal_error("Tried to execute an unknown external function: " + F->getName()); #ifndef USE_LIBFFI errs() << "Recompiling LLVM with --enable-libffi might help.\n"; #endif return GenericValue(); } //===----------------------------------------------------------------------===// // Functions "exported" to the running application... // // void atexit(Function*) static GenericValue lle_X_atexit(FunctionType *FT, const std::vector<GenericValue> &Args) { assert(Args.size() == 1); TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); GenericValue GV; GV.IntVal = 0; return GV; } // void exit(int) static GenericValue lle_X_exit(FunctionType *FT, const std::vector<GenericValue> &Args) { TheInterpreter->exitCalled(Args[0]); return GenericValue(); } // void abort(void) static GenericValue lle_X_abort(FunctionType *FT, const std::vector<GenericValue> &Args) { //FIXME: should we report or raise here? //report_fatal_error("Interpreted program raised SIGABRT"); raise (SIGABRT); return GenericValue(); } // int sprintf(char *, const char *, ...) - a very rough implementation to make // output useful. static GenericValue lle_X_sprintf(FunctionType *FT, const std::vector<GenericValue> &Args) { char *OutputBuffer = (char *)GVTOP(Args[0]); const char *FmtStr = (const char *)GVTOP(Args[1]); unsigned ArgNo = 2; // printf should return # chars printed. This is completely incorrect, but // close enough for now. GenericValue GV; GV.IntVal = APInt(32, strlen(FmtStr)); while (1) { switch (*FmtStr) { case 0: return GV; // Null terminator... default: // Normal nonspecial character sprintf(OutputBuffer++, "%c", *FmtStr++); break; case '\\': { // Handle escape codes sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); FmtStr += 2; OutputBuffer += 2; break; } case '%': { // Handle format specifiers char FmtBuf[100] = "", Buffer[1000] = ""; char *FB = FmtBuf; *FB++ = *FmtStr++; char Last = *FB++ = *FmtStr++; unsigned HowLong = 0; while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && Last != 'p' && Last != 's' && Last != '%') { if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's Last = *FB++ = *FmtStr++; } *FB = 0; switch (Last) { case '%': memcpy(Buffer, "%", 2); break; case 'c': sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); break; case 'd': case 'i': case 'u': case 'o': case 'x': case 'X': if (HowLong >= 1) { if (HowLong == 1 && TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 && sizeof(long) < sizeof(int64_t)) { // Make sure we use %lld with a 64 bit argument because we might be // compiling LLI on a 32 bit compiler. unsigned Size = strlen(FmtBuf); FmtBuf[Size] = FmtBuf[Size-1]; FmtBuf[Size+1] = 0; FmtBuf[Size-1] = 'l'; } sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); } else sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); break; case 'e': case 'E': case 'g': case 'G': case 'f': sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; case 'p': sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; case 's': sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; default: errs() << "<unknown printf code '" << *FmtStr << "'!>"; ArgNo++; break; } size_t Len = strlen(Buffer); memcpy(OutputBuffer, Buffer, Len + 1); OutputBuffer += Len; } break; } } return GV; } // int printf(const char *, ...) - a very rough implementation to make output // useful. static GenericValue lle_X_printf(FunctionType *FT, const std::vector<GenericValue> &Args) { char Buffer[10000]; std::vector<GenericValue> NewArgs; NewArgs.push_back(PTOGV((void*)&Buffer[0])); NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); GenericValue GV = lle_X_sprintf(FT, NewArgs); outs() << Buffer; return GV; } // int sscanf(const char *format, ...); static GenericValue lle_X_sscanf(FunctionType *FT, const std::vector<GenericValue> &args) { assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); char *Args[10]; for (unsigned i = 0; i < args.size(); ++i) Args[i] = (char*)GVTOP(args[i]); GenericValue GV; GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9])); return GV; } // int scanf(const char *format, ...); static GenericValue lle_X_scanf(FunctionType *FT, const std::vector<GenericValue> &args) { assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); char *Args[10]; for (unsigned i = 0; i < args.size(); ++i) Args[i] = (char*)GVTOP(args[i]); GenericValue GV; GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9])); return GV; } // int fprintf(FILE *, const char *, ...) - a very rough implementation to make // output useful. static GenericValue lle_X_fprintf(FunctionType *FT, const std::vector<GenericValue> &Args) { assert(Args.size() >= 2); char Buffer[10000]; std::vector<GenericValue> NewArgs; NewArgs.push_back(PTOGV(Buffer)); NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); GenericValue GV = lle_X_sprintf(FT, NewArgs); fputs(Buffer, (FILE *) GVTOP(Args[0])); return GV; } static GenericValue lle_X_memset(FunctionType *FT, const std::vector<GenericValue> &Args) { int val = (int)Args[1].IntVal.getSExtValue(); size_t len = (size_t)Args[2].IntVal.getZExtValue(); memset((void *)GVTOP(Args[0]), val, len); // llvm.memset.* returns void, lle_X_* returns GenericValue, // so here we return GenericValue with IntVal set to zero GenericValue GV; GV.IntVal = 0; return GV; } static GenericValue lle_X_memcpy(FunctionType *FT, const std::vector<GenericValue> &Args) { memcpy(GVTOP(Args[0]), GVTOP(Args[1]), (size_t)(Args[2].IntVal.getLimitedValue())); // llvm.memcpy* returns void, lle_X_* returns GenericValue, // so here we return GenericValue with IntVal set to zero GenericValue GV; GV.IntVal = 0; return GV; } void Interpreter::initializeExternalFunctions() { sys::ScopedLock Writer(*FunctionsLock); FuncNames["lle_X_atexit"] = lle_X_atexit; FuncNames["lle_X_exit"] = lle_X_exit; FuncNames["lle_X_abort"] = lle_X_abort; FuncNames["lle_X_printf"] = lle_X_printf; FuncNames["lle_X_sprintf"] = lle_X_sprintf; FuncNames["lle_X_sscanf"] = lle_X_sscanf; FuncNames["lle_X_scanf"] = lle_X_scanf; FuncNames["lle_X_fprintf"] = lle_X_fprintf; FuncNames["lle_X_memset"] = lle_X_memset; FuncNames["lle_X_memcpy"] = lle_X_memcpy; }