//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the VirtRegMap class. // // It also contains implementations of the Spiller interface, which, given a // virtual register map and a machine function, eliminates all virtual // references by replacing them with physical register references - adding spill // code as necessary. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/VirtRegMap.h" #include "LiveDebugVariables.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SparseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumSpillSlots, "Number of spill slots allocated"); STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); //===----------------------------------------------------------------------===// // VirtRegMap implementation //===----------------------------------------------------------------------===// char VirtRegMap::ID = 0; INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { MRI = &mf.getRegInfo(); TII = mf.getTarget().getInstrInfo(); TRI = mf.getTarget().getRegisterInfo(); MF = &mf; Virt2PhysMap.clear(); Virt2StackSlotMap.clear(); Virt2SplitMap.clear(); grow(); return false; } void VirtRegMap::grow() { unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); Virt2PhysMap.resize(NumRegs); Virt2StackSlotMap.resize(NumRegs); Virt2SplitMap.resize(NumRegs); } unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); ++NumSpillSlots; return SS; } bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { unsigned Hint = MRI->getSimpleHint(VirtReg); if (!Hint) return 0; if (TargetRegisterInfo::isVirtualRegister(Hint)) Hint = getPhys(Hint); return getPhys(VirtReg) == Hint; } bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) return true; if (TargetRegisterInfo::isVirtualRegister(Hint.second)) return hasPhys(Hint.second); return false; } int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); } void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); assert((SS >= 0 || (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && "illegal fixed frame index"); Virt2StackSlotMap[virtReg] = SS; } void VirtRegMap::print(raw_ostream &OS, const Module*) const { OS << "********** REGISTER MAP **********\n"; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { OS << '[' << PrintReg(Reg, TRI) << " -> " << PrintReg(Virt2PhysMap[Reg], TRI) << "] " << MRI->getRegClass(Reg)->getName() << "\n"; } } for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] << "] " << MRI->getRegClass(Reg)->getName() << "\n"; } } OS << '\n'; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VirtRegMap::dump() const { print(dbgs()); } #endif //===----------------------------------------------------------------------===// // VirtRegRewriter //===----------------------------------------------------------------------===// // // The VirtRegRewriter is the last of the register allocator passes. // It rewrites virtual registers to physical registers as specified in the // VirtRegMap analysis. It also updates live-in information on basic blocks // according to LiveIntervals. // namespace { class VirtRegRewriter : public MachineFunctionPass { MachineFunction *MF; const TargetMachine *TM; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; MachineRegisterInfo *MRI; SlotIndexes *Indexes; LiveIntervals *LIS; VirtRegMap *VRM; SparseSet<unsigned> PhysRegs; void rewrite(); void addMBBLiveIns(); public: static char ID; VirtRegRewriter() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnMachineFunction(MachineFunction&) override; }; } // end anonymous namespace char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", "Virtual Register Rewriter", false, false) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", "Virtual Register Rewriter", false, false) char VirtRegRewriter::ID = 0; void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<LiveIntervals>(); AU.addRequired<SlotIndexes>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<LiveDebugVariables>(); AU.addRequired<LiveStacks>(); AU.addPreserved<LiveStacks>(); AU.addRequired<VirtRegMap>(); MachineFunctionPass::getAnalysisUsage(AU); } bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { MF = &fn; TM = &MF->getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); MRI = &MF->getRegInfo(); Indexes = &getAnalysis<SlotIndexes>(); LIS = &getAnalysis<LiveIntervals>(); VRM = &getAnalysis<VirtRegMap>(); DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" << "********** Function: " << MF->getName() << '\n'); DEBUG(VRM->dump()); // Add kill flags while we still have virtual registers. LIS->addKillFlags(VRM); // Live-in lists on basic blocks are required for physregs. addMBBLiveIns(); // Rewrite virtual registers. rewrite(); // Write out new DBG_VALUE instructions. getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); // All machine operands and other references to virtual registers have been // replaced. Remove the virtual registers and release all the transient data. VRM->clearAllVirt(); MRI->clearVirtRegs(); return true; } // Compute MBB live-in lists from virtual register live ranges and their // assignments. void VirtRegRewriter::addMBBLiveIns() { SmallVector<MachineBasicBlock*, 16> LiveIn; for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); if (MRI->reg_nodbg_empty(VirtReg)) continue; LiveInterval &LI = LIS->getInterval(VirtReg); if (LI.empty() || LIS->intervalIsInOneMBB(LI)) continue; // This is a virtual register that is live across basic blocks. Its // assigned PhysReg must be marked as live-in to those blocks. unsigned PhysReg = VRM->getPhys(VirtReg); assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); // Scan the segments of LI. for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E; ++I) { if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn)) continue; for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) if (!LiveIn[i]->isLiveIn(PhysReg)) LiveIn[i]->addLiveIn(PhysReg); LiveIn.clear(); } } } void VirtRegRewriter::rewrite() { SmallVector<unsigned, 8> SuperDeads; SmallVector<unsigned, 8> SuperDefs; SmallVector<unsigned, 8> SuperKills; SmallPtrSet<const MachineInstr *, 4> NoReturnInsts; // Here we have a SparseSet to hold which PhysRegs are actually encountered // in the MF we are about to iterate over so that later when we call // setPhysRegUsed, we are only doing it for physRegs that were actually found // in the program and not for all of the possible physRegs for the given // target architecture. If the target has a lot of physRegs, then for a small // program there will be a significant compile time reduction here. PhysRegs.clear(); PhysRegs.setUniverse(TRI->getNumRegs()); // The function with uwtable should guarantee that the stack unwinder // can unwind the stack to the previous frame. Thus, we can't apply the // noreturn optimization if the caller function has uwtable attribute. bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable); for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); MBBI != MBBE; ++MBBI) { DEBUG(MBBI->print(dbgs(), Indexes)); bool IsExitBB = MBBI->succ_empty(); for (MachineBasicBlock::instr_iterator MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { MachineInstr *MI = MII; ++MII; // Check if this instruction is a call to a noreturn function. If this // is a call to noreturn function and we don't need the stack unwinding // functionality (i.e. this function does not have uwtable attribute and // the callee function has the nounwind attribute), then we can ignore // the definitions set by this instruction. if (!HasUWTable && IsExitBB && MI->isCall()) { for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { MachineOperand &MO = *MOI; if (!MO.isGlobal()) continue; const Function *Func = dyn_cast<Function>(MO.getGlobal()); if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) || // We need to keep correct unwind information // even if the function will not return, since the // runtime may need it. !Func->hasFnAttribute(Attribute::NoUnwind)) continue; NoReturnInsts.insert(MI); break; } } for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { MachineOperand &MO = *MOI; // Make sure MRI knows about registers clobbered by regmasks. if (MO.isRegMask()) MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); // If we encounter a VirtReg or PhysReg then get at the PhysReg and add // it to the physreg bitset. Later we use only the PhysRegs that were // actually encountered in the MF to populate the MRI's used physregs. if (MO.isReg() && MO.getReg()) PhysRegs.insert( TargetRegisterInfo::isVirtualRegister(MO.getReg()) ? VRM->getPhys(MO.getReg()) : MO.getReg()); if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; unsigned VirtReg = MO.getReg(); unsigned PhysReg = VRM->getPhys(VirtReg); assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Instruction uses unmapped VirtReg"); assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); // Preserve semantics of sub-register operands. if (MO.getSubReg()) { // A virtual register kill refers to the whole register, so we may // have to add <imp-use,kill> operands for the super-register. A // partial redef always kills and redefines the super-register. if (MO.readsReg() && (MO.isDef() || MO.isKill())) SuperKills.push_back(PhysReg); if (MO.isDef()) { // The <def,undef> flag only makes sense for sub-register defs, and // we are substituting a full physreg. An <imp-use,kill> operand // from the SuperKills list will represent the partial read of the // super-register. MO.setIsUndef(false); // Also add implicit defs for the super-register. if (MO.isDead()) SuperDeads.push_back(PhysReg); else SuperDefs.push_back(PhysReg); } // PhysReg operands cannot have subregister indexes. PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg()); assert(PhysReg && "Invalid SubReg for physical register"); MO.setSubReg(0); } // Rewrite. Note we could have used MachineOperand::substPhysReg(), but // we need the inlining here. MO.setReg(PhysReg); } // Add any missing super-register kills after rewriting the whole // instruction. while (!SuperKills.empty()) MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); while (!SuperDeads.empty()) MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); while (!SuperDefs.empty()) MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); DEBUG(dbgs() << "> " << *MI); // Finally, remove any identity copies. if (MI->isIdentityCopy()) { ++NumIdCopies; if (MI->getNumOperands() == 2) { DEBUG(dbgs() << "Deleting identity copy.\n"); if (Indexes) Indexes->removeMachineInstrFromMaps(MI); // It's safe to erase MI because MII has already been incremented. MI->eraseFromParent(); } else { // Transform identity copy to a KILL to deal with subregisters. MI->setDesc(TII->get(TargetOpcode::KILL)); DEBUG(dbgs() << "Identity copy: " << *MI); } } } } // Tell MRI about physical registers in use. if (NoReturnInsts.empty()) { for (SparseSet<unsigned>::iterator RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI) if (!MRI->reg_nodbg_empty(*RegI)) MRI->setPhysRegUsed(*RegI); } else { for (SparseSet<unsigned>::iterator I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) { unsigned Reg = *I; if (MRI->reg_nodbg_empty(Reg)) continue; // Check if this register has a use that will impact the rest of the // code. Uses in debug and noreturn instructions do not impact the // generated code. for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) { if (!NoReturnInsts.count(&It)) { MRI->setPhysRegUsed(Reg); break; } } } } }