//===- Loads.cpp - Local load analysis ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines simple local analyses for load instructions. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Operator.h" using namespace llvm; /// AreEquivalentAddressValues - Test if A and B will obviously have the same /// value. This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// static bool AreEquivalentAddressValues(const Value *A, const Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come from identical arithmetic instructions. // Use isIdenticalToWhenDefined instead of isIdenticalTo because // this function is only used when one address use dominates the // other, which means that they'll always either have the same // value or one of them will have an undefined value. if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || isa<GetElementPtrInst>(A)) if (const Instruction *BI = dyn_cast<Instruction>(B)) if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, unsigned Align, const DataLayout *TD) { int64_t ByteOffset = 0; Value *Base = V; Base = GetPointerBaseWithConstantOffset(V, ByteOffset, TD); if (ByteOffset < 0) // out of bounds return false; Type *BaseType = nullptr; unsigned BaseAlign = 0; if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { // An alloca is safe to load from as load as it is suitably aligned. BaseType = AI->getAllocatedType(); BaseAlign = AI->getAlignment(); } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { // Global variables are safe to load from but their size cannot be // guaranteed if they are overridden. if (!GV->mayBeOverridden()) { BaseType = GV->getType()->getElementType(); BaseAlign = GV->getAlignment(); } } if (BaseType && BaseType->isSized()) { if (TD && BaseAlign == 0) BaseAlign = TD->getPrefTypeAlignment(BaseType); if (Align <= BaseAlign) { if (!TD) return true; // Loading directly from an alloca or global is OK. // Check if the load is within the bounds of the underlying object. PointerType *AddrTy = cast<PointerType>(V->getType()); uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType()); if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) && (Align == 0 || (ByteOffset % Align) == 0)) return true; } } // Otherwise, be a little bit aggressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; // If we see a free or a call which may write to memory (i.e. which might do // a free) the pointer could be marked invalid. if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && !isa<DbgInfoIntrinsic>(BBI)) return false; if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true; } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true; } } return false; } /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the /// instruction before ScanFrom) checking to see if we have the value at the /// memory address *Ptr locally available within a small number of instructions. /// If the value is available, return it. /// /// If not, return the iterator for the last validated instruction that the /// value would be live through. If we scanned the entire block and didn't find /// something that invalidates *Ptr or provides it, ScanFrom would be left at /// begin() and this returns null. ScanFrom could also be left /// /// MaxInstsToScan specifies the maximum instructions to scan in the block. If /// it is set to 0, it will scan the whole block. You can also optionally /// specify an alias analysis implementation, which makes this more precise. /// /// If TBAATag is non-null and a load or store is found, the TBAA tag from the /// load or store is recorded there. If there is no TBAA tag or if no access /// is found, it is left unmodified. Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AliasAnalysis *AA, MDNode **TBAATag) { if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; // If we're using alias analysis to disambiguate get the size of *Ptr. uint64_t AccessSize = 0; if (AA) { Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType(); AccessSize = AA->getTypeStoreSize(AccessTy); } while (ScanFrom != ScanBB->begin()) { // We must ignore debug info directives when counting (otherwise they // would affect codegen). Instruction *Inst = --ScanFrom; if (isa<DbgInfoIntrinsic>(Inst)) continue; // Restore ScanFrom to expected value in case next test succeeds ScanFrom++; // Don't scan huge blocks. if (MaxInstsToScan-- == 0) return nullptr; --ScanFrom; // If this is a load of Ptr, the loaded value is available. // (This is true even if the load is volatile or atomic, although // those cases are unlikely.) if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) { if (TBAATag) *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); return LI; } if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { // If this is a store through Ptr, the value is available! // (This is true even if the store is volatile or atomic, although // those cases are unlikely.) if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) { if (TBAATag) *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa); return SI->getOperand(0); } // If Ptr is an alloca and this is a store to a different alloca, ignore // the store. This is a trivial form of alias analysis that is important // for reg2mem'd code. if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) && (isa<AllocaInst>(SI->getOperand(1)) || isa<GlobalVariable>(SI->getOperand(1)))) continue; // If we have alias analysis and it says the store won't modify the loaded // value, ignore the store. if (AA && (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) continue; // Otherwise the store that may or may not alias the pointer, bail out. ++ScanFrom; return nullptr; } // If this is some other instruction that may clobber Ptr, bail out. if (Inst->mayWriteToMemory()) { // If alias analysis claims that it really won't modify the load, // ignore it. if (AA && (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) continue; // May modify the pointer, bail out. ++ScanFrom; return nullptr; } } // Got to the start of the block, we didn't find it, but are done for this // block. return nullptr; }