//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements bookkeeping for "interesting" users of expressions // computed from induction variables. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/IVUsers.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "iv-users" char IVUsers::ID = 0; INITIALIZE_PASS_BEGIN(IVUsers, "iv-users", "Induction Variable Users", false, true) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(IVUsers, "iv-users", "Induction Variable Users", false, true) Pass *llvm::createIVUsersPass() { return new IVUsers(); } /// isInteresting - Test whether the given expression is "interesting" when /// used by the given expression, within the context of analyzing the /// given loop. static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, ScalarEvolution *SE, LoopInfo *LI) { // An addrec is interesting if it's affine or if it has an interesting start. if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { // Keep things simple. Don't touch loop-variant strides unless they're // only used outside the loop and we can simplify them. if (AR->getLoop() == L) return AR->isAffine() || (!L->contains(I) && SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); // Otherwise recurse to see if the start value is interesting, and that // the step value is not interesting, since we don't yet know how to // do effective SCEV expansions for addrecs with interesting steps. return isInteresting(AR->getStart(), I, L, SE, LI) && !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); } // An add is interesting if exactly one of its operands is interesting. if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { bool AnyInterestingYet = false; for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); OI != OE; ++OI) if (isInteresting(*OI, I, L, SE, LI)) { if (AnyInterestingYet) return false; AnyInterestingYet = true; } return AnyInterestingYet; } // Nothing else is interesting here. return false; } /// Return true if all loop headers that dominate this block are in simplified /// form. static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, const LoopInfo *LI, SmallPtrSet<Loop*,16> &SimpleLoopNests) { Loop *NearestLoop = nullptr; for (DomTreeNode *Rung = DT->getNode(BB); Rung; Rung = Rung->getIDom()) { BasicBlock *DomBB = Rung->getBlock(); Loop *DomLoop = LI->getLoopFor(DomBB); if (DomLoop && DomLoop->getHeader() == DomBB) { // If the domtree walk reaches a loop with no preheader, return false. if (!DomLoop->isLoopSimplifyForm()) return false; // If we have already checked this loop nest, stop checking. if (SimpleLoopNests.count(DomLoop)) break; // If we have not already checked this loop nest, remember the loop // header nearest to BB. The nearest loop may not contain BB. if (!NearestLoop) NearestLoop = DomLoop; } } if (NearestLoop) SimpleLoopNests.insert(NearestLoop); return true; } /// AddUsersImpl - Inspect the specified instruction. If it is a /// reducible SCEV, recursively add its users to the IVUsesByStride set and /// return true. Otherwise, return false. bool IVUsers::AddUsersImpl(Instruction *I, SmallPtrSet<Loop*,16> &SimpleLoopNests) { // Add this IV user to the Processed set before returning false to ensure that // all IV users are members of the set. See IVUsers::isIVUserOrOperand. if (!Processed.insert(I)) return true; // Instruction already handled. if (!SE->isSCEVable(I->getType())) return false; // Void and FP expressions cannot be reduced. // IVUsers is used by LSR which assumes that all SCEV expressions are safe to // pass to SCEVExpander. Expressions are not safe to expand if they represent // operations that are not safe to speculate, namely integer division. if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I, DL)) return false; // LSR is not APInt clean, do not touch integers bigger than 64-bits. // Also avoid creating IVs of non-native types. For example, we don't want a // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. uint64_t Width = SE->getTypeSizeInBits(I->getType()); if (Width > 64 || (DL && !DL->isLegalInteger(Width))) return false; // Get the symbolic expression for this instruction. const SCEV *ISE = SE->getSCEV(I); // If we've come to an uninteresting expression, stop the traversal and // call this a user. if (!isInteresting(ISE, I, L, SE, LI)) return false; SmallPtrSet<Instruction *, 4> UniqueUsers; for (Use &U : I->uses()) { Instruction *User = cast<Instruction>(U.getUser()); if (!UniqueUsers.insert(User)) continue; // Do not infinitely recurse on PHI nodes. if (isa<PHINode>(User) && Processed.count(User)) continue; // Only consider IVUsers that are dominated by simplified loop // headers. Otherwise, SCEVExpander will crash. BasicBlock *UseBB = User->getParent(); // A phi's use is live out of its predecessor block. if (PHINode *PHI = dyn_cast<PHINode>(User)) { unsigned OperandNo = U.getOperandNo(); unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); UseBB = PHI->getIncomingBlock(ValNo); } if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) return false; // Descend recursively, but not into PHI nodes outside the current loop. // It's important to see the entire expression outside the loop to get // choices that depend on addressing mode use right, although we won't // consider references outside the loop in all cases. // If User is already in Processed, we don't want to recurse into it again, // but do want to record a second reference in the same instruction. bool AddUserToIVUsers = false; if (LI->getLoopFor(User->getParent()) != L) { if (isa<PHINode>(User) || Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' << " OF SCEV: " << *ISE << '\n'); AddUserToIVUsers = true; } } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { DEBUG(dbgs() << "FOUND USER: " << *User << '\n' << " OF SCEV: " << *ISE << '\n'); AddUserToIVUsers = true; } if (AddUserToIVUsers) { // Okay, we found a user that we cannot reduce. IVStrideUse &NewUse = AddUser(User, I); // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. // The regular return value here is discarded; instead of recording // it, we just recompute it when we need it. const SCEV *OriginalISE = ISE; ISE = TransformForPostIncUse(NormalizeAutodetect, ISE, User, I, NewUse.PostIncLoops, *SE, *DT); // PostIncNormalization effectively simplifies the expression under // pre-increment assumptions. Those assumptions (no wrapping) might not // hold for the post-inc value. Catch such cases by making sure the // transformation is invertible. if (OriginalISE != ISE) { const SCEV *DenormalizedISE = TransformForPostIncUse(Denormalize, ISE, User, I, NewUse.PostIncLoops, *SE, *DT); // If we normalized the expression, but denormalization doesn't give the // original one, discard this user. if (OriginalISE != DenormalizedISE) { DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " << *ISE << '\n'); IVUses.pop_back(); return false; } } DEBUG(if (SE->getSCEV(I) != ISE) dbgs() << " NORMALIZED TO: " << *ISE << '\n'); } } return true; } bool IVUsers::AddUsersIfInteresting(Instruction *I) { // SCEVExpander can only handle users that are dominated by simplified loop // entries. Keep track of all loops that are only dominated by other simple // loops so we don't traverse the domtree for each user. SmallPtrSet<Loop*,16> SimpleLoopNests; return AddUsersImpl(I, SimpleLoopNests); } IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { IVUses.push_back(new IVStrideUse(this, User, Operand)); return IVUses.back(); } IVUsers::IVUsers() : LoopPass(ID) { initializeIVUsersPass(*PassRegistry::getPassRegistry()); } void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<LoopInfo>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<ScalarEvolution>(); AU.setPreservesAll(); } bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) { L = l; LI = &getAnalysis<LoopInfo>(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); SE = &getAnalysis<ScalarEvolution>(); DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); DL = DLP ? &DLP->getDataLayout() : nullptr; // Find all uses of induction variables in this loop, and categorize // them by stride. Start by finding all of the PHI nodes in the header for // this loop. If they are induction variables, inspect their uses. for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) (void)AddUsersIfInteresting(I); return false; } void IVUsers::print(raw_ostream &OS, const Module *M) const { OS << "IV Users for loop "; L->getHeader()->printAsOperand(OS, false); if (SE->hasLoopInvariantBackedgeTakenCount(L)) { OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); } OS << ":\n"; for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(), E = IVUses.end(); UI != E; ++UI) { OS << " "; UI->getOperandValToReplace()->printAsOperand(OS, false); OS << " = " << *getReplacementExpr(*UI); for (PostIncLoopSet::const_iterator I = UI->PostIncLoops.begin(), E = UI->PostIncLoops.end(); I != E; ++I) { OS << " (post-inc with loop "; (*I)->getHeader()->printAsOperand(OS, false); OS << ")"; } OS << " in "; if (UI->getUser()) UI->getUser()->print(OS); else OS << "Printing <null> User"; OS << '\n'; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void IVUsers::dump() const { print(dbgs()); } #endif void IVUsers::releaseMemory() { Processed.clear(); IVUses.clear(); } /// getReplacementExpr - Return a SCEV expression which computes the /// value of the OperandValToReplace. const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { return SE->getSCEV(IU.getOperandValToReplace()); } /// getExpr - Return the expression for the use. const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { return TransformForPostIncUse(Normalize, getReplacementExpr(IU), IU.getUser(), IU.getOperandValToReplace(), const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), *SE, *DT); } static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { if (AR->getLoop() == L) return AR; return findAddRecForLoop(AR->getStart(), L); } if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); I != E; ++I) if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) return AR; return nullptr; } return nullptr; } const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) return AR->getStepRecurrence(*SE); return nullptr; } void IVStrideUse::transformToPostInc(const Loop *L) { PostIncLoops.insert(L); } void IVStrideUse::deleted() { // Remove this user from the list. Parent->Processed.erase(this->getUser()); Parent->IVUses.erase(this); // this now dangles! }