//===- CallGraphSCCPass.cpp - Pass that operates BU on call graph ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CallGraphSCCPass class, which is used for passes // which are implemented as bottom-up traversals on the call graph. Because // there may be cycles in the call graph, passes of this type operate on the // call-graph in SCC order: that is, they process function bottom-up, except for // recursive functions, which they process all at once. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/IR/Function.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LegacyPassManagers.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "cgscc-passmgr" static cl::opt<unsigned> MaxIterations("max-cg-scc-iterations", cl::ReallyHidden, cl::init(4)); STATISTIC(MaxSCCIterations, "Maximum CGSCCPassMgr iterations on one SCC"); //===----------------------------------------------------------------------===// // CGPassManager // /// CGPassManager manages FPPassManagers and CallGraphSCCPasses. namespace { class CGPassManager : public ModulePass, public PMDataManager { public: static char ID; explicit CGPassManager() : ModulePass(ID), PMDataManager() { } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnModule(Module &M) override; using ModulePass::doInitialization; using ModulePass::doFinalization; bool doInitialization(CallGraph &CG); bool doFinalization(CallGraph &CG); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const override { // CGPassManager walks SCC and it needs CallGraph. Info.addRequired<CallGraphWrapperPass>(); Info.setPreservesAll(); } const char *getPassName() const override { return "CallGraph Pass Manager"; } PMDataManager *getAsPMDataManager() override { return this; } Pass *getAsPass() override { return this; } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) override { errs().indent(Offset*2) << "Call Graph SCC Pass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); P->dumpPassStructure(Offset + 1); dumpLastUses(P, Offset+1); } } Pass *getContainedPass(unsigned N) { assert(N < PassVector.size() && "Pass number out of range!"); return static_cast<Pass *>(PassVector[N]); } PassManagerType getPassManagerType() const override { return PMT_CallGraphPassManager; } private: bool RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG, bool &DevirtualizedCall); bool RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC, CallGraph &CG, bool &CallGraphUpToDate, bool &DevirtualizedCall); bool RefreshCallGraph(CallGraphSCC &CurSCC, CallGraph &CG, bool IsCheckingMode); }; } // end anonymous namespace. char CGPassManager::ID = 0; bool CGPassManager::RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC, CallGraph &CG, bool &CallGraphUpToDate, bool &DevirtualizedCall) { bool Changed = false; PMDataManager *PM = P->getAsPMDataManager(); if (!PM) { CallGraphSCCPass *CGSP = (CallGraphSCCPass*)P; if (!CallGraphUpToDate) { DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false); CallGraphUpToDate = true; } { TimeRegion PassTimer(getPassTimer(CGSP)); Changed = CGSP->runOnSCC(CurSCC); } // After the CGSCCPass is done, when assertions are enabled, use // RefreshCallGraph to verify that the callgraph was correctly updated. #ifndef NDEBUG if (Changed) RefreshCallGraph(CurSCC, CG, true); #endif return Changed; } assert(PM->getPassManagerType() == PMT_FunctionPassManager && "Invalid CGPassManager member"); FPPassManager *FPP = (FPPassManager*)P; // Run pass P on all functions in the current SCC. for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); I != E; ++I) { if (Function *F = (*I)->getFunction()) { dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getName()); { TimeRegion PassTimer(getPassTimer(FPP)); Changed |= FPP->runOnFunction(*F); } F->getContext().yield(); } } // The function pass(es) modified the IR, they may have clobbered the // callgraph. if (Changed && CallGraphUpToDate) { DEBUG(dbgs() << "CGSCCPASSMGR: Pass Dirtied SCC: " << P->getPassName() << '\n'); CallGraphUpToDate = false; } return Changed; } /// RefreshCallGraph - Scan the functions in the specified CFG and resync the /// callgraph with the call sites found in it. This is used after /// FunctionPasses have potentially munged the callgraph, and can be used after /// CallGraphSCC passes to verify that they correctly updated the callgraph. /// /// This function returns true if it devirtualized an existing function call, /// meaning it turned an indirect call into a direct call. This happens when /// a function pass like GVN optimizes away stuff feeding the indirect call. /// This never happens in checking mode. /// bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC, CallGraph &CG, bool CheckingMode) { DenseMap<Value*, CallGraphNode*> CallSites; DEBUG(dbgs() << "CGSCCPASSMGR: Refreshing SCC with " << CurSCC.size() << " nodes:\n"; for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); I != E; ++I) (*I)->dump(); ); bool MadeChange = false; bool DevirtualizedCall = false; // Scan all functions in the SCC. unsigned FunctionNo = 0; for (CallGraphSCC::iterator SCCIdx = CurSCC.begin(), E = CurSCC.end(); SCCIdx != E; ++SCCIdx, ++FunctionNo) { CallGraphNode *CGN = *SCCIdx; Function *F = CGN->getFunction(); if (!F || F->isDeclaration()) continue; // Walk the function body looking for call sites. Sync up the call sites in // CGN with those actually in the function. // Keep track of the number of direct and indirect calls that were // invalidated and removed. unsigned NumDirectRemoved = 0, NumIndirectRemoved = 0; // Get the set of call sites currently in the function. for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) { // If this call site is null, then the function pass deleted the call // entirely and the WeakVH nulled it out. if (!I->first || // If we've already seen this call site, then the FunctionPass RAUW'd // one call with another, which resulted in two "uses" in the edge // list of the same call. CallSites.count(I->first) || // If the call edge is not from a call or invoke, then the function // pass RAUW'd a call with another value. This can happen when // constant folding happens of well known functions etc. !CallSite(I->first)) { assert(!CheckingMode && "CallGraphSCCPass did not update the CallGraph correctly!"); // If this was an indirect call site, count it. if (!I->second->getFunction()) ++NumIndirectRemoved; else ++NumDirectRemoved; // Just remove the edge from the set of callees, keep track of whether // I points to the last element of the vector. bool WasLast = I + 1 == E; CGN->removeCallEdge(I); // If I pointed to the last element of the vector, we have to bail out: // iterator checking rejects comparisons of the resultant pointer with // end. if (WasLast) break; E = CGN->end(); continue; } assert(!CallSites.count(I->first) && "Call site occurs in node multiple times"); CallSites.insert(std::make_pair(I->first, I->second)); ++I; } // Loop over all of the instructions in the function, getting the callsites. // Keep track of the number of direct/indirect calls added. unsigned NumDirectAdded = 0, NumIndirectAdded = 0; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { CallSite CS(cast<Value>(I)); if (!CS) continue; Function *Callee = CS.getCalledFunction(); if (Callee && Callee->isIntrinsic()) continue; // If this call site already existed in the callgraph, just verify it // matches up to expectations and remove it from CallSites. DenseMap<Value*, CallGraphNode*>::iterator ExistingIt = CallSites.find(CS.getInstruction()); if (ExistingIt != CallSites.end()) { CallGraphNode *ExistingNode = ExistingIt->second; // Remove from CallSites since we have now seen it. CallSites.erase(ExistingIt); // Verify that the callee is right. if (ExistingNode->getFunction() == CS.getCalledFunction()) continue; // If we are in checking mode, we are not allowed to actually mutate // the callgraph. If this is a case where we can infer that the // callgraph is less precise than it could be (e.g. an indirect call // site could be turned direct), don't reject it in checking mode, and // don't tweak it to be more precise. if (CheckingMode && CS.getCalledFunction() && ExistingNode->getFunction() == nullptr) continue; assert(!CheckingMode && "CallGraphSCCPass did not update the CallGraph correctly!"); // If not, we either went from a direct call to indirect, indirect to // direct, or direct to different direct. CallGraphNode *CalleeNode; if (Function *Callee = CS.getCalledFunction()) { CalleeNode = CG.getOrInsertFunction(Callee); // Keep track of whether we turned an indirect call into a direct // one. if (!ExistingNode->getFunction()) { DevirtualizedCall = true; DEBUG(dbgs() << " CGSCCPASSMGR: Devirtualized call to '" << Callee->getName() << "'\n"); } } else { CalleeNode = CG.getCallsExternalNode(); } // Update the edge target in CGN. CGN->replaceCallEdge(CS, CS, CalleeNode); MadeChange = true; continue; } assert(!CheckingMode && "CallGraphSCCPass did not update the CallGraph correctly!"); // If the call site didn't exist in the CGN yet, add it. CallGraphNode *CalleeNode; if (Function *Callee = CS.getCalledFunction()) { CalleeNode = CG.getOrInsertFunction(Callee); ++NumDirectAdded; } else { CalleeNode = CG.getCallsExternalNode(); ++NumIndirectAdded; } CGN->addCalledFunction(CS, CalleeNode); MadeChange = true; } // We scanned the old callgraph node, removing invalidated call sites and // then added back newly found call sites. One thing that can happen is // that an old indirect call site was deleted and replaced with a new direct // call. In this case, we have devirtualized a call, and CGSCCPM would like // to iteratively optimize the new code. Unfortunately, we don't really // have a great way to detect when this happens. As an approximation, we // just look at whether the number of indirect calls is reduced and the // number of direct calls is increased. There are tons of ways to fool this // (e.g. DCE'ing an indirect call and duplicating an unrelated block with a // direct call) but this is close enough. if (NumIndirectRemoved > NumIndirectAdded && NumDirectRemoved < NumDirectAdded) DevirtualizedCall = true; // After scanning this function, if we still have entries in callsites, then // they are dangling pointers. WeakVH should save us for this, so abort if // this happens. assert(CallSites.empty() && "Dangling pointers found in call sites map"); // Periodically do an explicit clear to remove tombstones when processing // large scc's. if ((FunctionNo & 15) == 15) CallSites.clear(); } DEBUG(if (MadeChange) { dbgs() << "CGSCCPASSMGR: Refreshed SCC is now:\n"; for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); I != E; ++I) (*I)->dump(); if (DevirtualizedCall) dbgs() << "CGSCCPASSMGR: Refresh devirtualized a call!\n"; } else { dbgs() << "CGSCCPASSMGR: SCC Refresh didn't change call graph.\n"; } ); (void)MadeChange; return DevirtualizedCall; } /// RunAllPassesOnSCC - Execute the body of the entire pass manager on the /// specified SCC. This keeps track of whether a function pass devirtualizes /// any calls and returns it in DevirtualizedCall. bool CGPassManager::RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG, bool &DevirtualizedCall) { bool Changed = false; // CallGraphUpToDate - Keep track of whether the callgraph is known to be // up-to-date or not. The CGSSC pass manager runs two types of passes: // CallGraphSCC Passes and other random function passes. Because other // random function passes are not CallGraph aware, they may clobber the // call graph by introducing new calls or deleting other ones. This flag // is set to false when we run a function pass so that we know to clean up // the callgraph when we need to run a CGSCCPass again. bool CallGraphUpToDate = true; // Run all passes on current SCC. for (unsigned PassNo = 0, e = getNumContainedPasses(); PassNo != e; ++PassNo) { Pass *P = getContainedPass(PassNo); // If we're in -debug-pass=Executions mode, construct the SCC node list, // otherwise avoid constructing this string as it is expensive. if (isPassDebuggingExecutionsOrMore()) { std::string Functions; #ifndef NDEBUG raw_string_ostream OS(Functions); for (CallGraphSCC::iterator I = CurSCC.begin(), E = CurSCC.end(); I != E; ++I) { if (I != CurSCC.begin()) OS << ", "; (*I)->print(OS); } OS.flush(); #endif dumpPassInfo(P, EXECUTION_MSG, ON_CG_MSG, Functions); } dumpRequiredSet(P); initializeAnalysisImpl(P); // Actually run this pass on the current SCC. Changed |= RunPassOnSCC(P, CurSCC, CG, CallGraphUpToDate, DevirtualizedCall); if (Changed) dumpPassInfo(P, MODIFICATION_MSG, ON_CG_MSG, ""); dumpPreservedSet(P); verifyPreservedAnalysis(P); removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P, "", ON_CG_MSG); } // If the callgraph was left out of date (because the last pass run was a // functionpass), refresh it before we move on to the next SCC. if (!CallGraphUpToDate) DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false); return Changed; } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool CGPassManager::runOnModule(Module &M) { CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); bool Changed = doInitialization(CG); // Walk the callgraph in bottom-up SCC order. scc_iterator<CallGraph*> CGI = scc_begin(&CG); CallGraphSCC CurSCC(&CGI); while (!CGI.isAtEnd()) { // Copy the current SCC and increment past it so that the pass can hack // on the SCC if it wants to without invalidating our iterator. const std::vector<CallGraphNode *> &NodeVec = *CGI; CurSCC.initialize(NodeVec.data(), NodeVec.data() + NodeVec.size()); ++CGI; // At the top level, we run all the passes in this pass manager on the // functions in this SCC. However, we support iterative compilation in the // case where a function pass devirtualizes a call to a function. For // example, it is very common for a function pass (often GVN or instcombine) // to eliminate the addressing that feeds into a call. With that improved // information, we would like the call to be an inline candidate, infer // mod-ref information etc. // // Because of this, we allow iteration up to a specified iteration count. // This only happens in the case of a devirtualized call, so we only burn // compile time in the case that we're making progress. We also have a hard // iteration count limit in case there is crazy code. unsigned Iteration = 0; bool DevirtualizedCall = false; do { DEBUG(if (Iteration) dbgs() << " SCCPASSMGR: Re-visiting SCC, iteration #" << Iteration << '\n'); DevirtualizedCall = false; Changed |= RunAllPassesOnSCC(CurSCC, CG, DevirtualizedCall); } while (Iteration++ < MaxIterations && DevirtualizedCall); if (DevirtualizedCall) DEBUG(dbgs() << " CGSCCPASSMGR: Stopped iteration after " << Iteration << " times, due to -max-cg-scc-iterations\n"); if (Iteration > MaxSCCIterations) MaxSCCIterations = Iteration; } Changed |= doFinalization(CG); return Changed; } /// Initialize CG bool CGPassManager::doInitialization(CallGraph &CG) { bool Changed = false; for (unsigned i = 0, e = getNumContainedPasses(); i != e; ++i) { if (PMDataManager *PM = getContainedPass(i)->getAsPMDataManager()) { assert(PM->getPassManagerType() == PMT_FunctionPassManager && "Invalid CGPassManager member"); Changed |= ((FPPassManager*)PM)->doInitialization(CG.getModule()); } else { Changed |= ((CallGraphSCCPass*)getContainedPass(i))->doInitialization(CG); } } return Changed; } /// Finalize CG bool CGPassManager::doFinalization(CallGraph &CG) { bool Changed = false; for (unsigned i = 0, e = getNumContainedPasses(); i != e; ++i) { if (PMDataManager *PM = getContainedPass(i)->getAsPMDataManager()) { assert(PM->getPassManagerType() == PMT_FunctionPassManager && "Invalid CGPassManager member"); Changed |= ((FPPassManager*)PM)->doFinalization(CG.getModule()); } else { Changed |= ((CallGraphSCCPass*)getContainedPass(i))->doFinalization(CG); } } return Changed; } //===----------------------------------------------------------------------===// // CallGraphSCC Implementation //===----------------------------------------------------------------------===// /// ReplaceNode - This informs the SCC and the pass manager that the specified /// Old node has been deleted, and New is to be used in its place. void CallGraphSCC::ReplaceNode(CallGraphNode *Old, CallGraphNode *New) { assert(Old != New && "Should not replace node with self"); for (unsigned i = 0; ; ++i) { assert(i != Nodes.size() && "Node not in SCC"); if (Nodes[i] != Old) continue; Nodes[i] = New; break; } // Update the active scc_iterator so that it doesn't contain dangling // pointers to the old CallGraphNode. scc_iterator<CallGraph*> *CGI = (scc_iterator<CallGraph*>*)Context; CGI->ReplaceNode(Old, New); } //===----------------------------------------------------------------------===// // CallGraphSCCPass Implementation //===----------------------------------------------------------------------===// /// Assign pass manager to manage this pass. void CallGraphSCCPass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find CGPassManager while (!PMS.empty() && PMS.top()->getPassManagerType() > PMT_CallGraphPassManager) PMS.pop(); assert(!PMS.empty() && "Unable to handle Call Graph Pass"); CGPassManager *CGP; if (PMS.top()->getPassManagerType() == PMT_CallGraphPassManager) CGP = (CGPassManager*)PMS.top(); else { // Create new Call Graph SCC Pass Manager if it does not exist. assert(!PMS.empty() && "Unable to create Call Graph Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Call Graph Pass Manager CGP = new CGPassManager(); // [2] Set up new manager's top level manager PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(CGP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS Pass *P = CGP; TPM->schedulePass(P); // [4] Push new manager into PMS PMS.push(CGP); } CGP->add(this); } /// getAnalysisUsage - For this class, we declare that we require and preserve /// the call graph. If the derived class implements this method, it should /// always explicitly call the implementation here. void CallGraphSCCPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<CallGraphWrapperPass>(); AU.addPreserved<CallGraphWrapperPass>(); } //===----------------------------------------------------------------------===// // PrintCallGraphPass Implementation //===----------------------------------------------------------------------===// namespace { /// PrintCallGraphPass - Print a Module corresponding to a call graph. /// class PrintCallGraphPass : public CallGraphSCCPass { std::string Banner; raw_ostream &Out; // raw_ostream to print on. public: static char ID; PrintCallGraphPass(const std::string &B, raw_ostream &o) : CallGraphSCCPass(ID), Banner(B), Out(o) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } bool runOnSCC(CallGraphSCC &SCC) override { Out << Banner; for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { if ((*I)->getFunction()) (*I)->getFunction()->print(Out); else Out << "\nPrinting <null> Function\n"; } return false; } }; } // end anonymous namespace. char PrintCallGraphPass::ID = 0; Pass *CallGraphSCCPass::createPrinterPass(raw_ostream &O, const std::string &Banner) const { return new PrintCallGraphPass(Banner, O); }