//===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/DataBufferHeap.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/Error.h" #include "lldb/Core/Log.h" #include "lldb/Core/Scalar.h" #include "lldb/Expression/IRMemoryMap.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" using namespace lldb_private; IRMemoryMap::IRMemoryMap (lldb::TargetSP target_sp) : m_target_wp(target_sp) { if (target_sp) m_process_wp = target_sp->GetProcessSP(); } IRMemoryMap::~IRMemoryMap () { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { AllocationMap::iterator iter; Error err; while ((iter = m_allocations.begin()) != m_allocations.end()) { err.Clear(); if (iter->second.m_leak) m_allocations.erase(iter); else Free(iter->first, err); } } } lldb::addr_t IRMemoryMap::FindSpace (size_t size) { lldb::TargetSP target_sp = m_target_wp.lock(); lldb::ProcessSP process_sp = m_process_wp.lock(); lldb::addr_t ret = LLDB_INVALID_ADDRESS; if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { Error alloc_error; ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable | lldb::ePermissionsWritable, alloc_error); if (!alloc_error.Success()) return LLDB_INVALID_ADDRESS; else return ret; } for (int iterations = 0; iterations < 16; ++iterations) { lldb::addr_t candidate = LLDB_INVALID_ADDRESS; switch (target_sp->GetArchitecture().GetAddressByteSize()) { case 4: { uint32_t random_data = random(); candidate = random_data; candidate &= ~0xfffull; break; } case 8: { uint32_t random_low = random(); uint32_t random_high = random(); candidate = random_high; candidate <<= 32ull; candidate |= random_low; candidate &= ~0xfffull; break; } } if (IntersectsAllocation(candidate, size)) continue; ret = candidate; return ret; } return ret; } IRMemoryMap::AllocationMap::iterator IRMemoryMap::FindAllocation (lldb::addr_t addr, size_t size) { if (addr == LLDB_INVALID_ADDRESS) return m_allocations.end(); AllocationMap::iterator iter = m_allocations.lower_bound (addr); if (iter == m_allocations.end() || iter->first > addr) { if (iter == m_allocations.begin()) return m_allocations.end(); iter--; } if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) return iter; return m_allocations.end(); } bool IRMemoryMap::IntersectsAllocation (lldb::addr_t addr, size_t size) { if (addr == LLDB_INVALID_ADDRESS) return false; AllocationMap::iterator iter = m_allocations.lower_bound (addr); if (iter == m_allocations.end() || iter->first > addr) { if (iter == m_allocations.begin()) return false; iter--; } while (iter != m_allocations.end() && iter->second.m_process_alloc < addr + size) { if (iter->second.m_process_start + iter->second.m_size > addr) return true; ++iter; } return false; } lldb::ByteOrder IRMemoryMap::GetByteOrder() { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) return process_sp->GetByteOrder(); lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) return target_sp->GetArchitecture().GetByteOrder(); return lldb::eByteOrderInvalid; } uint32_t IRMemoryMap::GetAddressByteSize() { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) return process_sp->GetAddressByteSize(); lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) return target_sp->GetArchitecture().GetAddressByteSize(); return UINT32_MAX; } ExecutionContextScope * IRMemoryMap::GetBestExecutionContextScope() { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) return process_sp.get(); lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) return target_sp.get(); return NULL; } IRMemoryMap::Allocation::Allocation (lldb::addr_t process_alloc, lldb::addr_t process_start, size_t size, uint32_t permissions, uint8_t alignment, AllocationPolicy policy) : m_process_alloc (process_alloc), m_process_start (process_start), m_size (size), m_permissions (permissions), m_alignment (alignment), m_policy (policy), m_leak (false) { switch (policy) { default: assert (0 && "We cannot reach this!"); case eAllocationPolicyHostOnly: m_data.SetByteSize(size); memset(m_data.GetBytes(), 0, size); break; case eAllocationPolicyProcessOnly: break; case eAllocationPolicyMirror: m_data.SetByteSize(size); memset(m_data.GetBytes(), 0, size); break; } } lldb::addr_t IRMemoryMap::Malloc (size_t size, uint8_t alignment, uint32_t permissions, AllocationPolicy policy, Error &error) { error.Clear(); lldb::ProcessSP process_sp; lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; size_t alignment_mask = alignment - 1; size_t allocation_size; if (size == 0) allocation_size = alignment; else allocation_size = (size & alignment_mask) ? ((size + alignment) & (~alignment_mask)) : size; switch (policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: invalid allocation policy"); return LLDB_INVALID_ADDRESS; case eAllocationPolicyHostOnly: allocation_address = FindSpace(allocation_size); if (allocation_address == LLDB_INVALID_ADDRESS) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: address space is full"); return LLDB_INVALID_ADDRESS; } break; case eAllocationPolicyMirror: process_sp = m_process_wp.lock(); if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { allocation_address = process_sp->AllocateMemory(allocation_size, permissions, error); if (!error.Success()) return LLDB_INVALID_ADDRESS; } else { policy = eAllocationPolicyHostOnly; allocation_address = FindSpace(allocation_size); if (allocation_address == LLDB_INVALID_ADDRESS) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: address space is full"); return LLDB_INVALID_ADDRESS; } } break; case eAllocationPolicyProcessOnly: process_sp = m_process_wp.lock(); if (process_sp) { if (process_sp->CanJIT() && process_sp->IsAlive()) { allocation_address = process_sp->AllocateMemory(allocation_size, permissions, error); if (!error.Success()) return LLDB_INVALID_ADDRESS; } else { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: process doesn't support allocating memory"); return LLDB_INVALID_ADDRESS; } } else { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: process doesn't exist, and this memory must be in the process"); return LLDB_INVALID_ADDRESS; } break; } lldb::addr_t mask = alignment - 1; aligned_address = (allocation_address + mask) & (~mask); m_allocations[aligned_address] = Allocation(allocation_address, aligned_address, allocation_size, permissions, alignment, policy); if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)) { const char * policy_string; switch (policy) { default: policy_string = "<invalid policy>"; break; case eAllocationPolicyHostOnly: policy_string = "eAllocationPolicyHostOnly"; break; case eAllocationPolicyProcessOnly: policy_string = "eAllocationPolicyProcessOnly"; break; case eAllocationPolicyMirror: policy_string = "eAllocationPolicyMirror"; break; } log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 ", %s) -> 0x%" PRIx64, (uint64_t)allocation_size, (uint64_t)alignment, (uint64_t)permissions, policy_string, aligned_address); } return aligned_address; } void IRMemoryMap::Leak (lldb::addr_t process_address, Error &error) { error.Clear(); AllocationMap::iterator iter = m_allocations.find(process_address); if (iter == m_allocations.end()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't leak: allocation doesn't exist"); return; } Allocation &allocation = iter->second; allocation.m_leak = true; } void IRMemoryMap::Free (lldb::addr_t process_address, Error &error) { error.Clear(); AllocationMap::iterator iter = m_allocations.find(process_address); if (iter == m_allocations.end()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't free: allocation doesn't exist"); return; } Allocation &allocation = iter->second; switch (allocation.m_policy) { default: case eAllocationPolicyHostOnly: { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { if (process_sp->CanJIT() && process_sp->IsAlive()) process_sp->DeallocateMemory(allocation.m_process_alloc); // FindSpace allocated this for real } break; } case eAllocationPolicyMirror: case eAllocationPolicyProcessOnly: { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) process_sp->DeallocateMemory(allocation.m_process_alloc); } } if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)) { log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 "..0x%" PRIx64 ")", (uint64_t)process_address, iter->second.m_process_start, iter->second.m_process_start + iter->second.m_size); } m_allocations.erase(iter); } void IRMemoryMap::WriteMemory (lldb::addr_t process_address, const uint8_t *bytes, size_t size, Error &error) { error.Clear(); AllocationMap::iterator iter = FindAllocation(process_address, size); if (iter == m_allocations.end()) { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { process_sp->WriteMemory(process_address, bytes, size, error); return; } error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: no allocation contains the target range and the process doesn't exist"); return; } Allocation &allocation = iter->second; uint64_t offset = process_address - allocation.m_process_start; lldb::ProcessSP process_sp; switch (allocation.m_policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: invalid allocation policy"); return; case eAllocationPolicyHostOnly: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: data buffer is empty"); return; } ::memcpy (allocation.m_data.GetBytes() + offset, bytes, size); break; case eAllocationPolicyMirror: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: data buffer is empty"); return; } ::memcpy (allocation.m_data.GetBytes() + offset, bytes, size); process_sp = m_process_wp.lock(); if (process_sp) { process_sp->WriteMemory(process_address, bytes, size, error); if (!error.Success()) return; } break; case eAllocationPolicyProcessOnly: process_sp = m_process_wp.lock(); if (process_sp) { process_sp->WriteMemory(process_address, bytes, size, error); if (!error.Success()) return; } break; } if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)) { log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")", (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, (uint64_t)allocation.m_process_start, (uint64_t)allocation.m_process_start + (uint64_t)allocation.m_size); } } void IRMemoryMap::WriteScalarToMemory (lldb::addr_t process_address, Scalar &scalar, size_t size, Error &error) { error.Clear(); if (size == UINT32_MAX) size = scalar.GetByteSize(); if (size > 0) { uint8_t buf[32]; const size_t mem_size = scalar.GetAsMemoryData (buf, size, GetByteOrder(), error); if (mem_size > 0) { return WriteMemory(process_address, buf, mem_size, error); } else { error.SetErrorToGenericError(); error.SetErrorString ("Couldn't write scalar: failed to get scalar as memory data"); } } else { error.SetErrorToGenericError(); error.SetErrorString ("Couldn't write scalar: its size was zero"); } return; } void IRMemoryMap::WritePointerToMemory (lldb::addr_t process_address, lldb::addr_t address, Error &error) { error.Clear(); Scalar scalar(address); WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error); } void IRMemoryMap::ReadMemory (uint8_t *bytes, lldb::addr_t process_address, size_t size, Error &error) { error.Clear(); AllocationMap::iterator iter = FindAllocation(process_address, size); if (iter == m_allocations.end()) { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { process_sp->ReadMemory(process_address, bytes, size, error); return; } lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) { Address absolute_address(process_address); target_sp->ReadMemory(absolute_address, false, bytes, size, error); return; } error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: no allocation contains the target range, and neither the process nor the target exist"); return; } Allocation &allocation = iter->second; uint64_t offset = process_address - allocation.m_process_start; lldb::ProcessSP process_sp; switch (allocation.m_policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: invalid allocation policy"); return; case eAllocationPolicyHostOnly: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: data buffer is empty"); return; } ::memcpy (bytes, allocation.m_data.GetBytes() + offset, size); break; case eAllocationPolicyMirror: process_sp = m_process_wp.lock(); if (process_sp) { process_sp->ReadMemory(process_address, bytes, size, error); if (!error.Success()) return; } else { if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: data buffer is empty"); return; } ::memcpy (bytes, allocation.m_data.GetBytes() + offset, size); } break; case eAllocationPolicyProcessOnly: process_sp = m_process_wp.lock(); if (process_sp) { process_sp->ReadMemory(process_address, bytes, size, error); if (!error.Success()) return; } break; } if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)) { log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")", (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, (uint64_t)allocation.m_process_start, (uint64_t)allocation.m_process_start + (uint64_t)allocation.m_size); } } void IRMemoryMap::ReadScalarFromMemory (Scalar &scalar, lldb::addr_t process_address, size_t size, Error &error) { error.Clear(); if (size > 0) { DataBufferHeap buf(size, 0); ReadMemory(buf.GetBytes(), process_address, size, error); if (!error.Success()) return; DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), GetAddressByteSize()); lldb::offset_t offset = 0; switch (size) { default: error.SetErrorToGenericError(); error.SetErrorStringWithFormat("Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); return; case 1: scalar = extractor.GetU8(&offset); break; case 2: scalar = extractor.GetU16(&offset); break; case 4: scalar = extractor.GetU32(&offset); break; case 8: scalar = extractor.GetU64(&offset); break; } } else { error.SetErrorToGenericError(); error.SetErrorString ("Couldn't read scalar: its size was zero"); } return; } void IRMemoryMap::ReadPointerFromMemory (lldb::addr_t *address, lldb::addr_t process_address, Error &error) { error.Clear(); Scalar pointer_scalar; ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(), error); if (!error.Success()) return; *address = pointer_scalar.ULongLong(); return; } void IRMemoryMap::GetMemoryData (DataExtractor &extractor, lldb::addr_t process_address, size_t size, Error &error) { error.Clear(); if (size > 0) { AllocationMap::iterator iter = FindAllocation(process_address, size); if (iter == m_allocations.end()) { error.SetErrorToGenericError(); error.SetErrorStringWithFormat("Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 ")", process_address, process_address + size); return; } Allocation &allocation = iter->second; switch (allocation.m_policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: invalid allocation policy"); return; case eAllocationPolicyProcessOnly: error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: memory is only in the target"); return; case eAllocationPolicyMirror: { lldb::ProcessSP process_sp = m_process_wp.lock(); if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: data buffer is empty"); return; } if (process_sp) { process_sp->ReadMemory(allocation.m_process_start, allocation.m_data.GetBytes(), allocation.m_data.GetByteSize(), error); if (!error.Success()) return; uint64_t offset = process_address - allocation.m_process_start; extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, GetByteOrder(), GetAddressByteSize()); return; } } case eAllocationPolicyHostOnly: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: data buffer is empty"); return; } uint64_t offset = process_address - allocation.m_process_start; extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, GetByteOrder(), GetAddressByteSize()); return; } } else { error.SetErrorToGenericError(); error.SetErrorString ("Couldn't get memory data: its size was zero"); return; } }