//===-- Disassembler.cpp ----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/lldb-python.h" #include "lldb/Core/Disassembler.h" // C Includes // C++ Includes // Other libraries and framework includes // Project includes #include "lldb/lldb-private.h" #include "lldb/Core/Error.h" #include "lldb/Core/DataBufferHeap.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/EmulateInstruction.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/Timer.h" #include "lldb/Interpreter/OptionValue.h" #include "lldb/Interpreter/OptionValueArray.h" #include "lldb/Interpreter/OptionValueDictionary.h" #include "lldb/Interpreter/OptionValueString.h" #include "lldb/Interpreter/OptionValueUInt64.h" #include "lldb/Symbol/ClangNamespaceDecl.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #define DEFAULT_DISASM_BYTE_SIZE 32 using namespace lldb; using namespace lldb_private; DisassemblerSP Disassembler::FindPlugin (const ArchSpec &arch, const char *flavor, const char *plugin_name) { Timer scoped_timer (__PRETTY_FUNCTION__, "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", arch.GetArchitectureName(), plugin_name); DisassemblerCreateInstance create_callback = NULL; if (plugin_name) { ConstString const_plugin_name (plugin_name); create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName (const_plugin_name); if (create_callback) { DisassemblerSP disassembler_sp(create_callback(arch, flavor)); if (disassembler_sp.get()) return disassembler_sp; } } else { for (uint32_t idx = 0; (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(idx)) != NULL; ++idx) { DisassemblerSP disassembler_sp(create_callback(arch, flavor)); if (disassembler_sp.get()) return disassembler_sp; } } return DisassemblerSP(); } DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, const ArchSpec &arch, const char *flavor, const char *plugin_name) { if (target_sp && flavor == NULL) { // FIXME - we don't have the mechanism in place to do per-architecture settings. But since we know that for now // we only support flavors on x86 & x86_64, if (arch.GetTriple().getArch() == llvm::Triple::x86 || arch.GetTriple().getArch() == llvm::Triple::x86_64) flavor = target_sp->GetDisassemblyFlavor(); } return FindPlugin(arch, flavor, plugin_name); } static void ResolveAddress (const ExecutionContext &exe_ctx, const Address &addr, Address &resolved_addr) { if (!addr.IsSectionOffset()) { // If we weren't passed in a section offset address range, // try and resolve it to something Target *target = exe_ctx.GetTargetPtr(); if (target) { if (target->GetSectionLoadList().IsEmpty()) { target->GetImages().ResolveFileAddress (addr.GetOffset(), resolved_addr); } else { target->GetSectionLoadList().ResolveLoadAddress (addr.GetOffset(), resolved_addr); } // We weren't able to resolve the address, just treat it as a // raw address if (resolved_addr.IsValid()) return; } } resolved_addr = addr; } size_t Disassembler::Disassemble ( Debugger &debugger, const ArchSpec &arch, const char *plugin_name, const char *flavor, const ExecutionContext &exe_ctx, SymbolContextList &sc_list, uint32_t num_instructions, uint32_t num_mixed_context_lines, uint32_t options, Stream &strm ) { size_t success_count = 0; const size_t count = sc_list.GetSize(); SymbolContext sc; AddressRange range; const uint32_t scope = eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol; const bool use_inline_block_range = true; for (size_t i=0; i<count; ++i) { if (sc_list.GetContextAtIndex(i, sc) == false) break; for (uint32_t range_idx = 0; sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); ++range_idx) { if (Disassemble (debugger, arch, plugin_name, flavor, exe_ctx, range, num_instructions, num_mixed_context_lines, options, strm)) { ++success_count; strm.EOL(); } } } return success_count; } bool Disassembler::Disassemble ( Debugger &debugger, const ArchSpec &arch, const char *plugin_name, const char *flavor, const ExecutionContext &exe_ctx, const ConstString &name, Module *module, uint32_t num_instructions, uint32_t num_mixed_context_lines, uint32_t options, Stream &strm ) { SymbolContextList sc_list; if (name) { const bool include_symbols = true; const bool include_inlines = true; if (module) { module->FindFunctions (name, NULL, eFunctionNameTypeAuto, include_symbols, include_inlines, true, sc_list); } else if (exe_ctx.GetTargetPtr()) { exe_ctx.GetTargetPtr()->GetImages().FindFunctions (name, eFunctionNameTypeAuto, include_symbols, include_inlines, false, sc_list); } } if (sc_list.GetSize ()) { return Disassemble (debugger, arch, plugin_name, flavor, exe_ctx, sc_list, num_instructions, num_mixed_context_lines, options, strm); } return false; } lldb::DisassemblerSP Disassembler::DisassembleRange ( const ArchSpec &arch, const char *plugin_name, const char *flavor, const ExecutionContext &exe_ctx, const AddressRange &range ) { lldb::DisassemblerSP disasm_sp; if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid()) { disasm_sp = Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, flavor, plugin_name); if (disasm_sp) { const bool prefer_file_cache = false; size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, range, NULL, prefer_file_cache); if (bytes_disassembled == 0) disasm_sp.reset(); } } return disasm_sp; } lldb::DisassemblerSP Disassembler::DisassembleBytes (const ArchSpec &arch, const char *plugin_name, const char *flavor, const Address &start, const void *src, size_t src_len, uint32_t num_instructions, bool data_from_file) { lldb::DisassemblerSP disasm_sp; if (src) { disasm_sp = Disassembler::FindPlugin(arch, flavor, plugin_name); if (disasm_sp) { DataExtractor data(src, src_len, arch.GetByteOrder(), arch.GetAddressByteSize()); (void)disasm_sp->DecodeInstructions (start, data, 0, num_instructions, false, data_from_file); } } return disasm_sp; } bool Disassembler::Disassemble ( Debugger &debugger, const ArchSpec &arch, const char *plugin_name, const char *flavor, const ExecutionContext &exe_ctx, const AddressRange &disasm_range, uint32_t num_instructions, uint32_t num_mixed_context_lines, uint32_t options, Stream &strm ) { if (disasm_range.GetByteSize()) { lldb::DisassemblerSP disasm_sp (Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); if (disasm_sp.get()) { AddressRange range; ResolveAddress (exe_ctx, disasm_range.GetBaseAddress(), range.GetBaseAddress()); range.SetByteSize (disasm_range.GetByteSize()); const bool prefer_file_cache = false; size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, range, &strm, prefer_file_cache); if (bytes_disassembled == 0) return false; bool result = PrintInstructions (disasm_sp.get(), debugger, arch, exe_ctx, num_instructions, num_mixed_context_lines, options, strm); // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions. // I'll fix that but for now, just clear the list and it will go away nicely. disasm_sp->GetInstructionList().Clear(); return result; } } return false; } bool Disassembler::Disassemble ( Debugger &debugger, const ArchSpec &arch, const char *plugin_name, const char *flavor, const ExecutionContext &exe_ctx, const Address &start_address, uint32_t num_instructions, uint32_t num_mixed_context_lines, uint32_t options, Stream &strm ) { if (num_instructions > 0) { lldb::DisassemblerSP disasm_sp (Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); if (disasm_sp.get()) { Address addr; ResolveAddress (exe_ctx, start_address, addr); const bool prefer_file_cache = false; size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, addr, num_instructions, prefer_file_cache); if (bytes_disassembled == 0) return false; bool result = PrintInstructions (disasm_sp.get(), debugger, arch, exe_ctx, num_instructions, num_mixed_context_lines, options, strm); // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions. // I'll fix that but for now, just clear the list and it will go away nicely. disasm_sp->GetInstructionList().Clear(); return result; } } return false; } bool Disassembler::PrintInstructions ( Disassembler *disasm_ptr, Debugger &debugger, const ArchSpec &arch, const ExecutionContext &exe_ctx, uint32_t num_instructions, uint32_t num_mixed_context_lines, uint32_t options, Stream &strm ) { // We got some things disassembled... size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize(); if (num_instructions > 0 && num_instructions < num_instructions_found) num_instructions_found = num_instructions; const uint32_t max_opcode_byte_size = disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize (); uint32_t offset = 0; SymbolContext sc; SymbolContext prev_sc; AddressRange sc_range; const Address *pc_addr_ptr = NULL; ExecutionContextScope *exe_scope = exe_ctx.GetBestExecutionContextScope(); StackFrame *frame = exe_ctx.GetFramePtr(); TargetSP target_sp (exe_ctx.GetTargetSP()); SourceManager &source_manager = target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); if (frame) pc_addr_ptr = &frame->GetFrameCodeAddress(); const uint32_t scope = eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; const bool use_inline_block_range = false; for (size_t i=0; i<num_instructions_found; ++i) { Instruction *inst = disasm_ptr->GetInstructionList().GetInstructionAtIndex (i).get(); if (inst) { const Address &addr = inst->GetAddress(); const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; prev_sc = sc; ModuleSP module_sp (addr.GetModule()); if (module_sp) { uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(addr, eSymbolContextEverything, sc); if (resolved_mask) { if (num_mixed_context_lines) { if (!sc_range.ContainsFileAddress (addr)) { sc.GetAddressRange (scope, 0, use_inline_block_range, sc_range); if (sc != prev_sc) { if (offset != 0) strm.EOL(); sc.DumpStopContext(&strm, exe_ctx.GetProcessPtr(), addr, false, true, false); strm.EOL(); if (sc.comp_unit && sc.line_entry.IsValid()) { source_manager.DisplaySourceLinesWithLineNumbers (sc.line_entry.file, sc.line_entry.line, num_mixed_context_lines, num_mixed_context_lines, ((inst_is_at_pc && (options & eOptionMarkPCSourceLine)) ? "->" : ""), &strm); } } } } else if ((sc.function || sc.symbol) && (sc.function != prev_sc.function || sc.symbol != prev_sc.symbol)) { if (prev_sc.function || prev_sc.symbol) strm.EOL(); bool show_fullpaths = false; bool show_module = true; bool show_inlined_frames = true; sc.DumpStopContext (&strm, exe_scope, addr, show_fullpaths, show_module, show_inlined_frames); strm << ":\n"; } } else { sc.Clear(true); } } if ((options & eOptionMarkPCAddress) && pc_addr_ptr) { strm.PutCString(inst_is_at_pc ? "-> " : " "); } const bool show_bytes = (options & eOptionShowBytes) != 0; inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx); strm.EOL(); } else { break; } } return true; } bool Disassembler::Disassemble ( Debugger &debugger, const ArchSpec &arch, const char *plugin_name, const char *flavor, const ExecutionContext &exe_ctx, uint32_t num_instructions, uint32_t num_mixed_context_lines, uint32_t options, Stream &strm ) { AddressRange range; StackFrame *frame = exe_ctx.GetFramePtr(); if (frame) { SymbolContext sc(frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); if (sc.function) { range = sc.function->GetAddressRange(); } else if (sc.symbol && sc.symbol->ValueIsAddress()) { range.GetBaseAddress() = sc.symbol->GetAddress(); range.SetByteSize (sc.symbol->GetByteSize()); } else { range.GetBaseAddress() = frame->GetFrameCodeAddress(); } if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) range.SetByteSize (DEFAULT_DISASM_BYTE_SIZE); } return Disassemble (debugger, arch, plugin_name, flavor, exe_ctx, range, num_instructions, num_mixed_context_lines, options, strm); } Instruction::Instruction(const Address &address, AddressClass addr_class) : m_address (address), m_address_class (addr_class), m_opcode(), m_calculated_strings(false) { } Instruction::~Instruction() { } AddressClass Instruction::GetAddressClass () { if (m_address_class == eAddressClassInvalid) m_address_class = m_address.GetAddressClass(); return m_address_class; } void Instruction::Dump (lldb_private::Stream *s, uint32_t max_opcode_byte_size, bool show_address, bool show_bytes, const ExecutionContext* exe_ctx) { size_t opcode_column_width = 7; const size_t operand_column_width = 25; CalculateMnemonicOperandsAndCommentIfNeeded (exe_ctx); StreamString ss; if (show_address) { m_address.Dump(&ss, exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL, Address::DumpStyleLoadAddress, Address::DumpStyleModuleWithFileAddress, 0); ss.PutCString(": "); } if (show_bytes) { if (m_opcode.GetType() == Opcode::eTypeBytes) { // x86_64 and i386 are the only ones that use bytes right now so // pad out the byte dump to be able to always show 15 bytes (3 chars each) // plus a space if (max_opcode_byte_size > 0) m_opcode.Dump (&ss, max_opcode_byte_size * 3 + 1); else m_opcode.Dump (&ss, 15 * 3 + 1); } else { // Else, we have ARM which can show up to a uint32_t 0x00000000 (10 spaces) // plus two for padding... if (max_opcode_byte_size > 0) m_opcode.Dump (&ss, max_opcode_byte_size * 3 + 1); else m_opcode.Dump (&ss, 12); } } const size_t opcode_pos = ss.GetSize(); // The default opcode size of 7 characters is plenty for most architectures // but some like arm can pull out the occasional vqrshrun.s16. We won't get // consistent column spacing in these cases, unfortunately. if (m_opcode_name.length() >= opcode_column_width) { opcode_column_width = m_opcode_name.length() + 1; } ss.PutCString (m_opcode_name.c_str()); ss.FillLastLineToColumn (opcode_pos + opcode_column_width, ' '); ss.PutCString (m_mnemonics.c_str()); if (!m_comment.empty()) { ss.FillLastLineToColumn (opcode_pos + opcode_column_width + operand_column_width, ' '); ss.PutCString (" ; "); ss.PutCString (m_comment.c_str()); } s->Write (ss.GetData(), ss.GetSize()); } bool Instruction::DumpEmulation (const ArchSpec &arch) { std::unique_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL)); if (insn_emulator_ap.get()) { insn_emulator_ap->SetInstruction (GetOpcode(), GetAddress(), NULL); return insn_emulator_ap->EvaluateInstruction (0); } return false; } OptionValueSP Instruction::ReadArray (FILE *in_file, Stream *out_stream, OptionValue::Type data_type) { bool done = false; char buffer[1024]; OptionValueSP option_value_sp (new OptionValueArray (1u << data_type)); int idx = 0; while (!done) { if (!fgets (buffer, 1023, in_file)) { out_stream->Printf ("Instruction::ReadArray: Error reading file (fgets).\n"); option_value_sp.reset (); return option_value_sp; } std::string line (buffer); size_t len = line.size(); if (line[len-1] == '\n') { line[len-1] = '\0'; line.resize (len-1); } if ((line.size() == 1) && line[0] == ']') { done = true; line.clear(); } if (line.size() > 0) { std::string value; static RegularExpression g_reg_exp ("^[ \t]*([^ \t]+)[ \t]*$"); RegularExpression::Match regex_match(1); bool reg_exp_success = g_reg_exp.Execute (line.c_str(), ®ex_match); if (reg_exp_success) regex_match.GetMatchAtIndex (line.c_str(), 1, value); else value = line; OptionValueSP data_value_sp; switch (data_type) { case OptionValue::eTypeUInt64: data_value_sp.reset (new OptionValueUInt64 (0, 0)); data_value_sp->SetValueFromCString (value.c_str()); break; // Other types can be added later as needed. default: data_value_sp.reset (new OptionValueString (value.c_str(), "")); break; } option_value_sp->GetAsArray()->InsertValue (idx, data_value_sp); ++idx; } } return option_value_sp; } OptionValueSP Instruction::ReadDictionary (FILE *in_file, Stream *out_stream) { bool done = false; char buffer[1024]; OptionValueSP option_value_sp (new OptionValueDictionary()); static ConstString encoding_key ("data_encoding"); OptionValue::Type data_type = OptionValue::eTypeInvalid; while (!done) { // Read the next line in the file if (!fgets (buffer, 1023, in_file)) { out_stream->Printf ("Instruction::ReadDictionary: Error reading file (fgets).\n"); option_value_sp.reset (); return option_value_sp; } // Check to see if the line contains the end-of-dictionary marker ("}") std::string line (buffer); size_t len = line.size(); if (line[len-1] == '\n') { line[len-1] = '\0'; line.resize (len-1); } if ((line.size() == 1) && (line[0] == '}')) { done = true; line.clear(); } // Try to find a key-value pair in the current line and add it to the dictionary. if (line.size() > 0) { static RegularExpression g_reg_exp ("^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$"); RegularExpression::Match regex_match(2); bool reg_exp_success = g_reg_exp.Execute (line.c_str(), ®ex_match); std::string key; std::string value; if (reg_exp_success) { regex_match.GetMatchAtIndex (line.c_str(), 1, key); regex_match.GetMatchAtIndex (line.c_str(), 2, value); } else { out_stream->Printf ("Instruction::ReadDictionary: Failure executing regular expression.\n"); option_value_sp.reset(); return option_value_sp; } ConstString const_key (key.c_str()); // Check value to see if it's the start of an array or dictionary. lldb::OptionValueSP value_sp; assert (value.empty() == false); assert (key.empty() == false); if (value[0] == '{') { assert (value.size() == 1); // value is a dictionary value_sp = ReadDictionary (in_file, out_stream); if (value_sp.get() == NULL) { option_value_sp.reset (); return option_value_sp; } } else if (value[0] == '[') { assert (value.size() == 1); // value is an array value_sp = ReadArray (in_file, out_stream, data_type); if (value_sp.get() == NULL) { option_value_sp.reset (); return option_value_sp; } // We've used the data_type to read an array; re-set the type to Invalid data_type = OptionValue::eTypeInvalid; } else if ((value[0] == '0') && (value[1] == 'x')) { value_sp.reset (new OptionValueUInt64 (0, 0)); value_sp->SetValueFromCString (value.c_str()); } else { size_t len = value.size(); if ((value[0] == '"') && (value[len-1] == '"')) value = value.substr (1, len-2); value_sp.reset (new OptionValueString (value.c_str(), "")); } if (const_key == encoding_key) { // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data indicating the // data type of an upcoming array (usually the next bit of data to be read in). if (strcmp (value.c_str(), "uint32_t") == 0) data_type = OptionValue::eTypeUInt64; } else option_value_sp->GetAsDictionary()->SetValueForKey (const_key, value_sp, false); } } return option_value_sp; } bool Instruction::TestEmulation (Stream *out_stream, const char *file_name) { if (!out_stream) return false; if (!file_name) { out_stream->Printf ("Instruction::TestEmulation: Missing file_name."); return false; } FILE *test_file = fopen (file_name, "r"); if (!test_file) { out_stream->Printf ("Instruction::TestEmulation: Attempt to open test file failed."); return false; } char buffer[256]; if (!fgets (buffer, 255, test_file)) { out_stream->Printf ("Instruction::TestEmulation: Error reading first line of test file.\n"); fclose (test_file); return false; } if (strncmp (buffer, "InstructionEmulationState={", 27) != 0) { out_stream->Printf ("Instructin::TestEmulation: Test file does not contain emulation state dictionary\n"); fclose (test_file); return false; } // Read all the test information from the test file into an OptionValueDictionary. OptionValueSP data_dictionary_sp (ReadDictionary (test_file, out_stream)); if (data_dictionary_sp.get() == NULL) { out_stream->Printf ("Instruction::TestEmulation: Error reading Dictionary Object.\n"); fclose (test_file); return false; } fclose (test_file); OptionValueDictionary *data_dictionary = data_dictionary_sp->GetAsDictionary(); static ConstString description_key ("assembly_string"); static ConstString triple_key ("triple"); OptionValueSP value_sp = data_dictionary->GetValueForKey (description_key); if (value_sp.get() == NULL) { out_stream->Printf ("Instruction::TestEmulation: Test file does not contain description string.\n"); return false; } SetDescription (value_sp->GetStringValue()); value_sp = data_dictionary->GetValueForKey (triple_key); if (value_sp.get() == NULL) { out_stream->Printf ("Instruction::TestEmulation: Test file does not contain triple.\n"); return false; } ArchSpec arch; arch.SetTriple (llvm::Triple (value_sp->GetStringValue())); bool success = false; std::unique_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL)); if (insn_emulator_ap.get()) success = insn_emulator_ap->TestEmulation (out_stream, arch, data_dictionary); if (success) out_stream->Printf ("Emulation test succeeded."); else out_stream->Printf ("Emulation test failed."); return success; } bool Instruction::Emulate (const ArchSpec &arch, uint32_t evaluate_options, void *baton, EmulateInstruction::ReadMemoryCallback read_mem_callback, EmulateInstruction::WriteMemoryCallback write_mem_callback, EmulateInstruction::ReadRegisterCallback read_reg_callback, EmulateInstruction::WriteRegisterCallback write_reg_callback) { std::unique_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL)); if (insn_emulator_ap.get()) { insn_emulator_ap->SetBaton (baton); insn_emulator_ap->SetCallbacks (read_mem_callback, write_mem_callback, read_reg_callback, write_reg_callback); insn_emulator_ap->SetInstruction (GetOpcode(), GetAddress(), NULL); return insn_emulator_ap->EvaluateInstruction (evaluate_options); } return false; } uint32_t Instruction::GetData (DataExtractor &data) { return m_opcode.GetData(data); } InstructionList::InstructionList() : m_instructions() { } InstructionList::~InstructionList() { } size_t InstructionList::GetSize() const { return m_instructions.size(); } uint32_t InstructionList::GetMaxOpcocdeByteSize () const { uint32_t max_inst_size = 0; collection::const_iterator pos, end; for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; ++pos) { uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); if (max_inst_size < inst_size) max_inst_size = inst_size; } return max_inst_size; } InstructionSP InstructionList::GetInstructionAtIndex (size_t idx) const { InstructionSP inst_sp; if (idx < m_instructions.size()) inst_sp = m_instructions[idx]; return inst_sp; } void InstructionList::Dump (Stream *s, bool show_address, bool show_bytes, const ExecutionContext* exe_ctx) { const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); collection::const_iterator pos, begin, end; for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; pos != end; ++pos) { if (pos != begin) s->EOL(); (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx); } } void InstructionList::Clear() { m_instructions.clear(); } void InstructionList::Append (lldb::InstructionSP &inst_sp) { if (inst_sp) m_instructions.push_back(inst_sp); } uint32_t InstructionList::GetIndexOfNextBranchInstruction(uint32_t start) const { size_t num_instructions = m_instructions.size(); uint32_t next_branch = UINT32_MAX; for (size_t i = start; i < num_instructions; i++) { if (m_instructions[i]->DoesBranch()) { next_branch = i; break; } } return next_branch; } uint32_t InstructionList::GetIndexOfInstructionAtLoadAddress (lldb::addr_t load_addr, Target &target) { Address address; address.SetLoadAddress(load_addr, &target); size_t num_instructions = m_instructions.size(); uint32_t index = UINT32_MAX; for (size_t i = 0; i < num_instructions; i++) { if (m_instructions[i]->GetAddress() == address) { index = i; break; } } return index; } size_t Disassembler::ParseInstructions (const ExecutionContext *exe_ctx, const AddressRange &range, Stream *error_strm_ptr, bool prefer_file_cache) { if (exe_ctx) { Target *target = exe_ctx->GetTargetPtr(); const addr_t byte_size = range.GetByteSize(); if (target == NULL || byte_size == 0 || !range.GetBaseAddress().IsValid()) return 0; DataBufferHeap *heap_buffer = new DataBufferHeap (byte_size, '\0'); DataBufferSP data_sp(heap_buffer); Error error; lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; const size_t bytes_read = target->ReadMemory (range.GetBaseAddress(), prefer_file_cache, heap_buffer->GetBytes(), heap_buffer->GetByteSize(), error, &load_addr); if (bytes_read > 0) { if (bytes_read != heap_buffer->GetByteSize()) heap_buffer->SetByteSize (bytes_read); DataExtractor data (data_sp, m_arch.GetByteOrder(), m_arch.GetAddressByteSize()); const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; return DecodeInstructions (range.GetBaseAddress(), data, 0, UINT32_MAX, false, data_from_file); } else if (error_strm_ptr) { const char *error_cstr = error.AsCString(); if (error_cstr) { error_strm_ptr->Printf("error: %s\n", error_cstr); } } } else if (error_strm_ptr) { error_strm_ptr->PutCString("error: invalid execution context\n"); } return 0; } size_t Disassembler::ParseInstructions (const ExecutionContext *exe_ctx, const Address &start, uint32_t num_instructions, bool prefer_file_cache) { m_instruction_list.Clear(); if (exe_ctx == NULL || num_instructions == 0 || !start.IsValid()) return 0; Target *target = exe_ctx->GetTargetPtr(); // Calculate the max buffer size we will need in order to disassemble const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); if (target == NULL || byte_size == 0) return 0; DataBufferHeap *heap_buffer = new DataBufferHeap (byte_size, '\0'); DataBufferSP data_sp (heap_buffer); Error error; lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; const size_t bytes_read = target->ReadMemory (start, prefer_file_cache, heap_buffer->GetBytes(), byte_size, error, &load_addr); const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; if (bytes_read == 0) return 0; DataExtractor data (data_sp, m_arch.GetByteOrder(), m_arch.GetAddressByteSize()); const bool append_instructions = true; DecodeInstructions (start, data, 0, num_instructions, append_instructions, data_from_file); return m_instruction_list.GetSize(); } //---------------------------------------------------------------------- // Disassembler copy constructor //---------------------------------------------------------------------- Disassembler::Disassembler(const ArchSpec& arch, const char *flavor) : m_arch (arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), m_flavor () { if (flavor == NULL) m_flavor.assign("default"); else m_flavor.assign(flavor); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- Disassembler::~Disassembler() { } InstructionList & Disassembler::GetInstructionList () { return m_instruction_list; } const InstructionList & Disassembler::GetInstructionList () const { return m_instruction_list; } //---------------------------------------------------------------------- // Class PseudoInstruction //---------------------------------------------------------------------- PseudoInstruction::PseudoInstruction () : Instruction (Address(), eAddressClassUnknown), m_description () { } PseudoInstruction::~PseudoInstruction () { } bool PseudoInstruction::DoesBranch () { // This is NOT a valid question for a pseudo instruction. return false; } size_t PseudoInstruction::Decode (const lldb_private::Disassembler &disassembler, const lldb_private::DataExtractor &data, lldb::offset_t data_offset) { return m_opcode.GetByteSize(); } void PseudoInstruction::SetOpcode (size_t opcode_size, void *opcode_data) { if (!opcode_data) return; switch (opcode_size) { case 8: { uint8_t value8 = *((uint8_t *) opcode_data); m_opcode.SetOpcode8 (value8); break; } case 16: { uint16_t value16 = *((uint16_t *) opcode_data); m_opcode.SetOpcode16 (value16); break; } case 32: { uint32_t value32 = *((uint32_t *) opcode_data); m_opcode.SetOpcode32 (value32); break; } case 64: { uint64_t value64 = *((uint64_t *) opcode_data); m_opcode.SetOpcode64 (value64); break; } default: break; } } void PseudoInstruction::SetDescription (const char *description) { if (description && strlen (description) > 0) m_description = description; }