/*- * pngstest.c * * Copyright (c) 2013 John Cunningham Bowler * * Last changed in libpng 1.6.8 [December 19, 2013] * * This code is released under the libpng license. * For conditions of distribution and use, see the disclaimer * and license in png.h * * Test for the PNG 'simplified' APIs. */ #define _ISOC90_SOURCE 1 #define MALLOC_CHECK_ 2/*glibc facility: turn on debugging*/ #include <stddef.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <errno.h> #include <ctype.h> #include <math.h> #if defined(HAVE_CONFIG_H) && !defined(PNG_NO_CONFIG_H) # include <config.h> #endif /* Define the following to use this test against your installed libpng, rather * than the one being built here: */ #ifdef PNG_FREESTANDING_TESTS # include <png.h> #else # include "../../png.h" #endif #ifdef PNG_SIMPLIFIED_READ_SUPPORTED /* Else nothing can be done */ #include "../tools/sRGB.h" /* KNOWN ISSUES * * These defines switch on alternate algorithms for format conversions to match * the current libpng implementation; they are set to allow pngstest to pass * even though libpng is producing answers that are not as correct as they * should be. */ #define ALLOW_UNUSED_GPC 0 /* If true include unused static GPC functions and declare an external array * of them to hide the fact that they are unused. This is for development * use while testing the correct function to use to take into account libpng * misbehavior, such as using a simple power law to correct sRGB to linear. */ /* The following is to support direct compilation of this file as C++ */ #ifdef __cplusplus # define voidcast(type, value) static_cast<type>(value) # define aligncastconst(type, value) \ static_cast<type>(static_cast<const void*>(value)) #else # define voidcast(type, value) (value) # define aligncastconst(type, value) ((const void*)(value)) #endif /* __cplusplus */ /* During parallel runs of pngstest each temporary file needs a unique name, * this is used to permit uniqueness using a command line argument which can be * up to 22 characters long. */ static char tmpf[23] = "TMP"; /* Generate random bytes. This uses a boring repeatable algorithm and it * is implemented here so that it gives the same set of numbers on every * architecture. It's a linear congruential generator (Knuth or Sedgewick * "Algorithms") but it comes from the 'feedback taps' table in Horowitz and * Hill, "The Art of Electronics". */ static void make_random_bytes(png_uint_32* seed, void* pv, size_t size) { png_uint_32 u0 = seed[0], u1 = seed[1]; png_bytep bytes = voidcast(png_bytep, pv); /* There are thirty three bits, the next bit in the sequence is bit-33 XOR * bit-20. The top 1 bit is in u1, the bottom 32 are in u0. */ size_t i; for (i=0; i<size; ++i) { /* First generate 8 new bits then shift them in at the end. */ png_uint_32 u = ((u0 >> (20-8)) ^ ((u1 << 7) | (u0 >> (32-7)))) & 0xff; u1 <<= 8; u1 |= u0 >> 24; u0 <<= 8; u0 |= u; *bytes++ = (png_byte)u; } seed[0] = u0; seed[1] = u1; } static void random_color(png_colorp color) { static png_uint_32 color_seed[2] = { 0x12345678, 0x9abcdef }; make_random_bytes(color_seed, color, sizeof *color); } /* Math support - neither Cygwin nor Visual Studio have C99 support and we need * a predictable rounding function, so make one here: */ static double closestinteger(double x) { return floor(x + .5); } /* Cast support: remove GCC whines. */ static png_byte u8d(double d) { d = closestinteger(d); return (png_byte)d; } static png_uint_16 u16d(double d) { d = closestinteger(d); return (png_uint_16)d; } /* sRGB support: use exact calculations rounded to the nearest int, see the * fesetround() call in main(). sRGB_to_d optimizes the 8 to 16-bit conversion. */ static double sRGB_to_d[256]; static double g22_to_d[256]; static void init_sRGB_to_d(void) { int i; sRGB_to_d[0] = 0; for (i=1; i<255; ++i) sRGB_to_d[i] = linear_from_sRGB(i/255.); sRGB_to_d[255] = 1; g22_to_d[0] = 0; for (i=1; i<255; ++i) g22_to_d[i] = pow(i/255., 1/.45455); g22_to_d[255] = 1; } static png_byte sRGB(double linear /*range 0.0 .. 1.0*/) { return u8d(255 * sRGB_from_linear(linear)); } static png_byte isRGB(int fixed_linear) { return sRGB(fixed_linear / 65535.); } #if 0 /* not used */ static png_byte unpremultiply(int component, int alpha) { if (alpha <= component) return 255; /* Arbitrary, but consistent with the libpng code */ else if (alpha >= 65535) return isRGB(component); else return sRGB((double)component / alpha); } #endif static png_uint_16 ilinear(int fixed_srgb) { return u16d(65535 * sRGB_to_d[fixed_srgb]); } static png_uint_16 ilineara(int fixed_srgb, int alpha) { return u16d((257 * alpha) * sRGB_to_d[fixed_srgb]); } static png_uint_16 ilinear_g22(int fixed_srgb) { return u16d(65535 * g22_to_d[fixed_srgb]); } #if ALLOW_UNUSED_GPC static png_uint_16 ilineara_g22(int fixed_srgb, int alpha) { return u16d((257 * alpha) * g22_to_d[fixed_srgb]); } #endif static double YfromRGBint(int ir, int ig, int ib) { double r = ir; double g = ig; double b = ib; return YfromRGB(r, g, b); } #if 0 /* unused */ /* The error that results from using a 2.2 power law in place of the correct * sRGB transform, given an 8-bit value which might be either sRGB or power-law. */ static int power_law_error8(int value) { if (value > 0 && value < 255) { double vd = value / 255.; double e = fabs( pow(sRGB_to_d[value], 1/2.2) - sRGB_from_linear(pow(vd, 2.2))); /* Always allow an extra 1 here for rounding errors */ e = 1+floor(255 * e); return (int)e; } return 0; } static int error_in_sRGB_roundtrip = 56; /* by experiment */ static int power_law_error16(int value) { if (value > 0 && value < 65535) { /* Round trip the value through an 8-bit representation but using * non-matching to/from conversions. */ double vd = value / 65535.; double e = fabs( pow(sRGB_from_linear(vd), 2.2) - linear_from_sRGB(pow(vd, 1/2.2))); /* Always allow an extra 1 here for rounding errors */ e = error_in_sRGB_roundtrip+floor(65535 * e); return (int)e; } return 0; } static int compare_8bit(int v1, int v2, int error_limit, int multiple_algorithms) { int e = abs(v1-v2); int ev1, ev2; if (e <= error_limit) return 1; if (!multiple_algorithms) return 0; ev1 = power_law_error8(v1); if (e <= ev1) return 1; ev2 = power_law_error8(v2); if (e <= ev2) return 1; return 0; } static int compare_16bit(int v1, int v2, int error_limit, int multiple_algorithms) { int e = abs(v1-v2); int ev1, ev2; if (e <= error_limit) return 1; /* "multiple_algorithms" in this case means that a color-map has been * involved somewhere, so we can deduce that the values were forced to 8-bit * (like the via_linear case for 8-bit.) */ if (!multiple_algorithms) return 0; ev1 = power_law_error16(v1); if (e <= ev1) return 1; ev2 = power_law_error16(v2); if (e <= ev2) return 1; return 0; } #endif /* unused */ #define READ_FILE 1 /* else memory */ #define USE_STDIO 2 /* else use file name */ #define STRICT 4 /* fail on warnings too */ #define VERBOSE 8 #define KEEP_TMPFILES 16 /* else delete temporary files */ #define KEEP_GOING 32 #define ACCUMULATE 64 #define FAST_WRITE 128 #define sRGB_16BIT 256 static void print_opts(png_uint_32 opts) { if (opts & READ_FILE) printf(" --file"); if (opts & USE_STDIO) printf(" --stdio"); if (opts & STRICT) printf(" --strict"); if (opts & VERBOSE) printf(" --verbose"); if (opts & KEEP_TMPFILES) printf(" --preserve"); if (opts & KEEP_GOING) printf(" --keep-going"); if (opts & ACCUMULATE) printf(" --accumulate"); if (!(opts & FAST_WRITE)) /* --fast is currently the default */ printf(" --slow"); if (opts & sRGB_16BIT) printf(" --sRGB-16bit"); } #define FORMAT_NO_CHANGE 0x80000000 /* additional flag */ /* A name table for all the formats - defines the format of the '+' arguments to * pngstest. */ #define FORMAT_COUNT 64 #define FORMAT_MASK 0x3f static PNG_CONST char * PNG_CONST format_names[FORMAT_COUNT] = { "sRGB-gray", "sRGB-gray+alpha", "sRGB-rgb", "sRGB-rgb+alpha", "linear-gray", "linear-gray+alpha", "linear-rgb", "linear-rgb+alpha", "color-mapped-sRGB-gray", "color-mapped-sRGB-gray+alpha", "color-mapped-sRGB-rgb", "color-mapped-sRGB-rgb+alpha", "color-mapped-linear-gray", "color-mapped-linear-gray+alpha", "color-mapped-linear-rgb", "color-mapped-linear-rgb+alpha", "sRGB-gray", "sRGB-gray+alpha", "sRGB-bgr", "sRGB-bgr+alpha", "linear-gray", "linear-gray+alpha", "linear-bgr", "linear-bgr+alpha", "color-mapped-sRGB-gray", "color-mapped-sRGB-gray+alpha", "color-mapped-sRGB-bgr", "color-mapped-sRGB-bgr+alpha", "color-mapped-linear-gray", "color-mapped-linear-gray+alpha", "color-mapped-linear-bgr", "color-mapped-linear-bgr+alpha", "sRGB-gray", "alpha+sRGB-gray", "sRGB-rgb", "alpha+sRGB-rgb", "linear-gray", "alpha+linear-gray", "linear-rgb", "alpha+linear-rgb", "color-mapped-sRGB-gray", "color-mapped-alpha+sRGB-gray", "color-mapped-sRGB-rgb", "color-mapped-alpha+sRGB-rgb", "color-mapped-linear-gray", "color-mapped-alpha+linear-gray", "color-mapped-linear-rgb", "color-mapped-alpha+linear-rgb", "sRGB-gray", "alpha+sRGB-gray", "sRGB-bgr", "alpha+sRGB-bgr", "linear-gray", "alpha+linear-gray", "linear-bgr", "alpha+linear-bgr", "color-mapped-sRGB-gray", "color-mapped-alpha+sRGB-gray", "color-mapped-sRGB-bgr", "color-mapped-alpha+sRGB-bgr", "color-mapped-linear-gray", "color-mapped-alpha+linear-gray", "color-mapped-linear-bgr", "color-mapped-alpha+linear-bgr", }; /* Decode an argument to a format number. */ static png_uint_32 formatof(const char *arg) { char *ep; unsigned long format = strtoul(arg, &ep, 0); if (ep > arg && *ep == 0 && format < FORMAT_COUNT) return (png_uint_32)format; else for (format=0; format < FORMAT_COUNT; ++format) { if (strcmp(format_names[format], arg) == 0) return (png_uint_32)format; } fprintf(stderr, "pngstest: format name '%s' invalid\n", arg); return FORMAT_COUNT; } /* Bitset/test functions for formats */ #define FORMAT_SET_COUNT (FORMAT_COUNT / 32) typedef struct { png_uint_32 bits[FORMAT_SET_COUNT]; } format_list; static void format_init(format_list *pf) { int i; for (i=0; i<FORMAT_SET_COUNT; ++i) pf->bits[i] = 0; /* All off */ } #if 0 /* currently unused */ static void format_clear(format_list *pf) { int i; for (i=0; i<FORMAT_SET_COUNT; ++i) pf->bits[i] = 0; } #endif static int format_is_initial(format_list *pf) { int i; for (i=0; i<FORMAT_SET_COUNT; ++i) if (pf->bits[i] != 0) return 0; return 1; } static int format_set(format_list *pf, png_uint_32 format) { if (format < FORMAT_COUNT) return pf->bits[format >> 5] |= ((png_uint_32)1) << (format & 31); return 0; } #if 0 /* currently unused */ static int format_unset(format_list *pf, png_uint_32 format) { if (format < FORMAT_COUNT) return pf->bits[format >> 5] &= ~((png_uint_32)1) << (format & 31); return 0; } #endif static int format_isset(format_list *pf, png_uint_32 format) { return format < FORMAT_COUNT && (pf->bits[format >> 5] & (((png_uint_32)1) << (format & 31))) != 0; } static void format_default(format_list *pf, int redundant) { if (redundant) { int i; /* set everything, including flags that are pointless */ for (i=0; i<FORMAT_SET_COUNT; ++i) pf->bits[i] = ~(png_uint_32)0; } else { png_uint_32 f; for (f=0; f<FORMAT_COUNT; ++f) { /* Eliminate redundant and unsupported settings. */ # ifdef PNG_FORMAT_BGR_SUPPORTED /* BGR is meaningless if no color: */ if ((f & PNG_FORMAT_FLAG_COLOR) == 0 && (f & PNG_FORMAT_FLAG_BGR) != 0) # else if ((f & 0x10U/*HACK: fixed value*/) != 0) # endif continue; /* AFIRST is meaningless if no alpha: */ # ifdef PNG_FORMAT_AFIRST_SUPPORTED if ((f & PNG_FORMAT_FLAG_ALPHA) == 0 && (f & PNG_FORMAT_FLAG_AFIRST) != 0) # else if ((f & 0x20U/*HACK: fixed value*/) != 0) # endif continue; format_set(pf, f); } } } /* THE Image STRUCTURE */ /* The super-class of a png_image, contains the decoded image plus the input * data necessary to re-read the file with a different format. */ typedef struct { png_image image; png_uint_32 opts; const char *file_name; int stride_extra; FILE *input_file; png_voidp input_memory; png_size_t input_memory_size; png_bytep buffer; ptrdiff_t stride; png_size_t bufsize; png_size_t allocsize; char tmpfile_name[32]; png_uint_16 colormap[256*4]; } Image; /* Initializer: also sets the permitted error limit for 16-bit operations. */ static void newimage(Image *image) { memset(image, 0, sizeof *image); } /* Reset the image to be read again - only needs to rewind the FILE* at present. */ static void resetimage(Image *image) { if (image->input_file != NULL) rewind(image->input_file); } /* Free the image buffer; the buffer is re-used on a re-read, this is just for * cleanup. */ static void freebuffer(Image *image) { if (image->buffer) free(image->buffer); image->buffer = NULL; image->bufsize = 0; image->allocsize = 0; } /* Delete function; cleans out all the allocated data and the temporary file in * the image. */ static void freeimage(Image *image) { freebuffer(image); png_image_free(&image->image); if (image->input_file != NULL) { fclose(image->input_file); image->input_file = NULL; } if (image->input_memory != NULL) { free(image->input_memory); image->input_memory = NULL; image->input_memory_size = 0; } if (image->tmpfile_name[0] != 0 && (image->opts & KEEP_TMPFILES) == 0) { remove(image->tmpfile_name); image->tmpfile_name[0] = 0; } } /* This is actually a re-initializer; allows an image structure to be re-used by * freeing everything that relates to an old image. */ static void initimage(Image *image, png_uint_32 opts, const char *file_name, int stride_extra) { freeimage(image); memset(&image->image, 0, sizeof image->image); image->opts = opts; image->file_name = file_name; image->stride_extra = stride_extra; } /* Make sure the image buffer is big enough; allows re-use of the buffer if the * image is re-read. */ #define BUFFER_INIT8 73 static void allocbuffer(Image *image) { png_size_t size = PNG_IMAGE_BUFFER_SIZE(image->image, image->stride); if (size+32 > image->bufsize) { freebuffer(image); image->buffer = voidcast(png_bytep, malloc(size+32)); if (image->buffer == NULL) { fflush(stdout); fprintf(stderr, "simpletest: out of memory allocating %lu(+32) byte buffer\n", (unsigned long)size); exit(1); } image->bufsize = size+32; } memset(image->buffer, 95, image->bufsize); memset(image->buffer+16, BUFFER_INIT8, size); image->allocsize = size; } /* Make sure 16 bytes match the given byte. */ static int check16(png_const_bytep bp, int b) { int i = 16; do if (*bp != b) return 1; while (--i); return 0; } /* Check for overwrite in the image buffer. */ static void checkbuffer(Image *image, const char *arg) { if (check16(image->buffer, 95)) { fflush(stdout); fprintf(stderr, "%s: overwrite at start of image buffer\n", arg); exit(1); } if (check16(image->buffer+16+image->allocsize, 95)) { fflush(stdout); fprintf(stderr, "%s: overwrite at end of image buffer\n", arg); exit(1); } } /* ERROR HANDLING */ /* Log a terminal error, also frees the libpng part of the image if necessary. */ static int logerror(Image *image, const char *a1, const char *a2, const char *a3) { fflush(stdout); if (image->image.warning_or_error) fprintf(stderr, "%s%s%s: %s\n", a1, a2, a3, image->image.message); else fprintf(stderr, "%s%s%s\n", a1, a2, a3); if (image->image.opaque != NULL) { fprintf(stderr, "%s: image opaque pointer non-NULL on error\n", image->file_name); png_image_free(&image->image); } return 0; } /* Log an error and close a file (just a utility to do both things in one * function call.) */ static int logclose(Image *image, FILE *f, const char *name, const char *operation) { int e = errno; fclose(f); return logerror(image, name, operation, strerror(e)); } /* Make sure the png_image has been freed - validates that libpng is doing what * the spec says and freeing the image. */ static int checkopaque(Image *image) { if (image->image.opaque != NULL) { png_image_free(&image->image); return logerror(image, image->file_name, ": opaque not NULL", ""); } else if (image->image.warning_or_error != 0 && (image->opts & STRICT) != 0) return logerror(image, image->file_name, " --strict", ""); else return 1; } /* IMAGE COMPARISON/CHECKING */ /* Compare the pixels of two images, which should be the same but aren't. The * images must have been checked for a size match. */ typedef struct { /* The components, for grayscale images the gray value is in 'g' and if alpha * is not present 'a' is set to 255 or 65535 according to format. */ int r, g, b, a; } Pixel; typedef struct { /* The background as the original sRGB 8-bit value converted to the final * integer format and as a double precision linear value in the range 0..1 * for with partially transparent pixels. */ int ir, ig, ib; double dr, dg, db; /* linear r,g,b scaled to 0..1 */ } Background; /* Basic image formats; control the data but not the layout thereof. */ #define BASE_FORMATS\ (PNG_FORMAT_FLAG_ALPHA|PNG_FORMAT_FLAG_COLOR|PNG_FORMAT_FLAG_LINEAR) /* Read a Pixel from a buffer. The code below stores the correct routine for * the format in a function pointer, these are the routines: */ static void gp_g8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = p->g = p->b = pp[0]; p->a = 255; } static void gp_ga8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = p->g = p->b = pp[0]; p->a = pp[1]; } #ifdef PNG_FORMAT_AFIRST_SUPPORTED static void gp_ag8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = p->g = p->b = pp[1]; p->a = pp[0]; } #endif static void gp_rgb8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = pp[0]; p->g = pp[1]; p->b = pp[2]; p->a = 255; } #ifdef PNG_FORMAT_BGR_SUPPORTED static void gp_bgr8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = pp[2]; p->g = pp[1]; p->b = pp[0]; p->a = 255; } #endif static void gp_rgba8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = pp[0]; p->g = pp[1]; p->b = pp[2]; p->a = pp[3]; } #ifdef PNG_FORMAT_BGR_SUPPORTED static void gp_bgra8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = pp[2]; p->g = pp[1]; p->b = pp[0]; p->a = pp[3]; } #endif #ifdef PNG_FORMAT_AFIRST_SUPPORTED static void gp_argb8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = pp[1]; p->g = pp[2]; p->b = pp[3]; p->a = pp[0]; } #endif #if defined(PNG_FORMAT_AFIRST_SUPPORTED) && defined(PNG_FORMAT_BGR_SUPPORTED) static void gp_abgr8(Pixel *p, png_const_voidp pb) { png_const_bytep pp = voidcast(png_const_bytep, pb); p->r = pp[3]; p->g = pp[2]; p->b = pp[1]; p->a = pp[0]; } #endif static void gp_g16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = p->g = p->b = pp[0]; p->a = 65535; } static void gp_ga16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = p->g = p->b = pp[0]; p->a = pp[1]; } #ifdef PNG_FORMAT_AFIRST_SUPPORTED static void gp_ag16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = p->g = p->b = pp[1]; p->a = pp[0]; } #endif static void gp_rgb16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = pp[0]; p->g = pp[1]; p->b = pp[2]; p->a = 65535; } #ifdef PNG_FORMAT_BGR_SUPPORTED static void gp_bgr16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = pp[2]; p->g = pp[1]; p->b = pp[0]; p->a = 65535; } #endif static void gp_rgba16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = pp[0]; p->g = pp[1]; p->b = pp[2]; p->a = pp[3]; } #ifdef PNG_FORMAT_BGR_SUPPORTED static void gp_bgra16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = pp[2]; p->g = pp[1]; p->b = pp[0]; p->a = pp[3]; } #endif #ifdef PNG_FORMAT_AFIRST_SUPPORTED static void gp_argb16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = pp[1]; p->g = pp[2]; p->b = pp[3]; p->a = pp[0]; } #endif #if defined(PNG_FORMAT_AFIRST_SUPPORTED) && defined(PNG_FORMAT_BGR_SUPPORTED) static void gp_abgr16(Pixel *p, png_const_voidp pb) { png_const_uint_16p pp = voidcast(png_const_uint_16p, pb); p->r = pp[3]; p->g = pp[2]; p->b = pp[1]; p->a = pp[0]; } #endif /* Given a format, return the correct one of the above functions. */ static void (* get_pixel(png_uint_32 format))(Pixel *p, png_const_voidp pb) { /* The color-map flag is irrelevant here - the caller of the function * returned must either pass the buffer or, for a color-mapped image, the * correct entry in the color-map. */ if (format & PNG_FORMAT_FLAG_LINEAR) { if (format & PNG_FORMAT_FLAG_COLOR) { # ifdef PNG_FORMAT_BGR_SUPPORTED if (format & PNG_FORMAT_FLAG_BGR) { if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) return gp_abgr16; else # endif return gp_bgra16; } else return gp_bgr16; } else # endif { if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) return gp_argb16; else # endif return gp_rgba16; } else return gp_rgb16; } } else { if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) return gp_ag16; else # endif return gp_ga16; } else return gp_g16; } } else { if (format & PNG_FORMAT_FLAG_COLOR) { # ifdef PNG_FORMAT_BGR_SUPPORTED if (format & PNG_FORMAT_FLAG_BGR) { if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) return gp_abgr8; else # endif return gp_bgra8; } else return gp_bgr8; } else # endif { if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) return gp_argb8; else # endif return gp_rgba8; } else return gp_rgb8; } } else { if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) return gp_ag8; else # endif return gp_ga8; } else return gp_g8; } } } /* Convertion between pixel formats. The code above effectively eliminates the * component ordering changes leaving three basic changes: * * 1) Remove an alpha channel by pre-multiplication or compositing on a * background color. (Adding an alpha channel is a no-op.) * * 2) Remove color by mapping to grayscale. (Grayscale to color is a no-op.) * * 3) Convert between 8-bit and 16-bit components. (Both directtions are * relevant.) * * This gives the following base format conversion matrix: * * OUT: ----- 8-bit ----- ----- 16-bit ----- * IN G GA RGB RGBA G GA RGB RGBA * 8 G . . . . lin lin lin lin * 8 GA bckg . bckc . pre' pre pre' pre * 8 RGB g8 g8 . . glin glin lin lin * 8 RGBA g8b g8 bckc . gpr' gpre pre' pre * 16 G sRGB sRGB sRGB sRGB . . . . * 16 GA b16g unpg b16c unpc A . A . * 16 RGB sG sG sRGB sRGB g16 g16 . . * 16 RGBA gb16 sGp cb16 sCp g16 g16' A . * * 8-bit to 8-bit: * bckg: composite on gray background * bckc: composite on color background * g8: convert sRGB components to sRGB grayscale * g8b: convert sRGB components to grayscale and composite on gray background * * 8-bit to 16-bit: * lin: make sRGB components linear, alpha := 65535 * pre: make sRGB components linear and premultiply by alpha (scale alpha) * pre': as 'pre' but alpha := 65535 * glin: make sRGB components linear, convert to grayscale, alpha := 65535 * gpre: make sRGB components grayscale and linear and premultiply by alpha * gpr': as 'gpre' but alpha := 65535 * * 16-bit to 8-bit: * sRGB: convert linear components to sRGB, alpha := 255 * unpg: unpremultiply gray component and convert to sRGB (scale alpha) * unpc: unpremultiply color components and convert to sRGB (scale alpha) * b16g: composite linear onto gray background and convert the result to sRGB * b16c: composite linear onto color background and convert the result to sRGB * sG: convert linear RGB to sRGB grayscale * sGp: unpremultiply RGB then convert to sRGB grayscale * sCp: unpremultiply RGB then convert to sRGB * gb16: composite linear onto background and convert to sRGB grayscale * (order doesn't matter, the composite and grayscale operations permute) * cb16: composite linear onto background and convert to sRGB * * 16-bit to 16-bit: * A: set alpha to 65535 * g16: convert linear RGB to linear grayscale (alpha := 65535) * g16': as 'g16' but alpha is unchanged */ /* Simple copy: */ static void gpc_noop(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = in->r; out->g = in->g; out->b = in->b; out->a = in->a; } #if ALLOW_UNUSED_GPC static void gpc_nop8(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->a == 0) out->r = out->g = out->b = 255; else { out->r = in->r; out->g = in->g; out->b = in->b; } out->a = in->a; } #endif #if ALLOW_UNUSED_GPC static void gpc_nop6(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->a == 0) out->r = out->g = out->b = 65535; else { out->r = in->r; out->g = in->g; out->b = in->b; } out->a = in->a; } #endif /* 8-bit to 8-bit conversions */ /* bckg: composite on gray background */ static void gpc_bckg(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) out->r = out->g = out->b = back->ig; else if (in->a >= 255) out->r = out->g = out->b = in->g; else { double a = in->a / 255.; out->r = out->g = out->b = sRGB(sRGB_to_d[in->g] * a + back->dg * (1-a)); } out->a = 255; } /* bckc: composite on color background */ static void gpc_bckc(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) { out->r = back->ir; out->g = back->ig; out->b = back->ib; } else if (in->a >= 255) { out->r = in->r; out->g = in->g; out->b = in->b; } else { double a = in->a / 255.; out->r = sRGB(sRGB_to_d[in->r] * a + back->dr * (1-a)); out->g = sRGB(sRGB_to_d[in->g] * a + back->dg * (1-a)); out->b = sRGB(sRGB_to_d[in->b] * a + back->db * (1-a)); } out->a = 255; } /* g8: convert sRGB components to sRGB grayscale */ static void gpc_g8(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = in->g; else out->r = out->g = out->b = sRGB(YfromRGB(sRGB_to_d[in->r], sRGB_to_d[in->g], sRGB_to_d[in->b])); out->a = in->a; } /* g8b: convert sRGB components to grayscale and composite on gray background */ static void gpc_g8b(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) out->r = out->g = out->b = back->ig; else if (in->a >= 255) { if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = in->g; else out->r = out->g = out->b = sRGB(YfromRGB( sRGB_to_d[in->r], sRGB_to_d[in->g], sRGB_to_d[in->b])); } else { double a = in->a/255.; out->r = out->g = out->b = sRGB(a * YfromRGB(sRGB_to_d[in->r], sRGB_to_d[in->g], sRGB_to_d[in->b]) + back->dg * (1-a)); } out->a = 255; } /* 8-bit to 16-bit conversions */ /* lin: make sRGB components linear, alpha := 65535 */ static void gpc_lin(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = ilinear(in->r); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = ilinear(in->b); } else { out->g = ilinear(in->g); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = ilinear(in->b); } out->a = 65535; } /* pre: make sRGB components linear and premultiply by alpha (scale alpha) */ static void gpc_pre(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = ilineara(in->r, in->a); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = ilineara(in->b, in->a); } else { out->g = ilineara(in->g, in->a); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = ilineara(in->b, in->a); } out->a = in->a * 257; } /* pre': as 'pre' but alpha := 65535 */ static void gpc_preq(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = ilineara(in->r, in->a); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = ilineara(in->b, in->a); } else { out->g = ilineara(in->g, in->a); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = ilineara(in->b, in->a); } out->a = 65535; } /* glin: make sRGB components linear, convert to grayscale, alpha := 65535 */ static void gpc_glin(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = ilinear(in->g); else out->r = out->g = out->b = u16d(65535 * YfromRGB(sRGB_to_d[in->r], sRGB_to_d[in->g], sRGB_to_d[in->b])); out->a = 65535; } /* gpre: make sRGB components grayscale and linear and premultiply by alpha */ static void gpc_gpre(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = ilineara(in->g, in->a); else out->r = out->g = out->b = u16d(in->a * 257 * YfromRGB(sRGB_to_d[in->r], sRGB_to_d[in->g], sRGB_to_d[in->b])); out->a = 257 * in->a; } /* gpr': as 'gpre' but alpha := 65535 */ static void gpc_gprq(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = ilineara(in->g, in->a); else out->r = out->g = out->b = u16d(in->a * 257 * YfromRGB(sRGB_to_d[in->r], sRGB_to_d[in->g], sRGB_to_d[in->b])); out->a = 65535; } /* 8-bit to 16-bit conversions for gAMA 45455 encoded values */ /* Lin: make gAMA 45455 components linear, alpha := 65535 */ static void gpc_Lin(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = ilinear_g22(in->r); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = ilinear_g22(in->b); } else { out->g = ilinear_g22(in->g); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = ilinear_g22(in->b); } out->a = 65535; } #if ALLOW_UNUSED_GPC /* Pre: make gAMA 45455 components linear and premultiply by alpha (scale alpha) */ static void gpc_Pre(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = ilineara_g22(in->r, in->a); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = ilineara_g22(in->b, in->a); } else { out->g = ilineara_g22(in->g, in->a); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = ilineara_g22(in->b, in->a); } out->a = in->a * 257; } #endif #if ALLOW_UNUSED_GPC /* Pre': as 'Pre' but alpha := 65535 */ static void gpc_Preq(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = ilineara_g22(in->r, in->a); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = ilineara_g22(in->b, in->a); } else { out->g = ilineara_g22(in->g, in->a); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = ilineara_g22(in->b, in->a); } out->a = 65535; } #endif #if ALLOW_UNUSED_GPC /* Glin: make gAMA 45455 components linear, convert to grayscale, alpha := 65535 */ static void gpc_Glin(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = ilinear_g22(in->g); else out->r = out->g = out->b = u16d(65535 * YfromRGB(g22_to_d[in->r], g22_to_d[in->g], g22_to_d[in->b])); out->a = 65535; } #endif #if ALLOW_UNUSED_GPC /* Gpre: make gAMA 45455 components grayscale and linear and premultiply by * alpha. */ static void gpc_Gpre(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = ilineara_g22(in->g, in->a); else out->r = out->g = out->b = u16d(in->a * 257 * YfromRGB(g22_to_d[in->r], g22_to_d[in->g], g22_to_d[in->b])); out->a = 257 * in->a; } #endif #if ALLOW_UNUSED_GPC /* Gpr': as 'Gpre' but alpha := 65535 */ static void gpc_Gprq(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->r == in->g && in->g == in->b) out->r = out->g = out->b = ilineara_g22(in->g, in->a); else out->r = out->g = out->b = u16d(in->a * 257 * YfromRGB(g22_to_d[in->r], g22_to_d[in->g], g22_to_d[in->b])); out->a = 65535; } #endif /* 16-bit to 8-bit conversions */ /* sRGB: convert linear components to sRGB, alpha := 255 */ static void gpc_sRGB(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = isRGB(in->r); if (in->g == in->r) { out->g = out->r; if (in->b == in->r) out->b = out->r; else out->b = isRGB(in->b); } else { out->g = isRGB(in->g); if (in->b == in->r) out->b = out->r; else if (in->b == in->g) out->b = out->g; else out->b = isRGB(in->b); } out->a = 255; } /* unpg: unpremultiply gray component and convert to sRGB (scale alpha) */ static void gpc_unpg(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->a <= 128) { out->r = out->g = out->b = 255; out->a = 0; } else { out->r = out->g = out->b = sRGB((double)in->g / in->a); out->a = u8d(in->a / 257.); } } /* unpc: unpremultiply color components and convert to sRGB (scale alpha) */ static void gpc_unpc(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->a <= 128) { out->r = out->g = out->b = 255; out->a = 0; } else { out->r = sRGB((double)in->r / in->a); out->g = sRGB((double)in->g / in->a); out->b = sRGB((double)in->b / in->a); out->a = u8d(in->a / 257.); } } /* b16g: composite linear onto gray background and convert the result to sRGB */ static void gpc_b16g(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) out->r = out->g = out->b = back->ig; else { double a = in->a/65535.; double a1 = 1-a; a /= 65535; out->r = out->g = out->b = sRGB(in->g * a + back->dg * a1); } out->a = 255; } /* b16c: composite linear onto color background and convert the result to sRGB*/ static void gpc_b16c(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) { out->r = back->ir; out->g = back->ig; out->b = back->ib; } else { double a = in->a/65535.; double a1 = 1-a; a /= 65535; out->r = sRGB(in->r * a + back->dr * a1); out->g = sRGB(in->g * a + back->dg * a1); out->b = sRGB(in->b * a + back->db * a1); } out->a = 255; } /* sG: convert linear RGB to sRGB grayscale */ static void gpc_sG(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = out->g = out->b = sRGB(YfromRGBint(in->r, in->g, in->b)/65535); out->a = 255; } /* sGp: unpremultiply RGB then convert to sRGB grayscale */ static void gpc_sGp(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->a <= 128) { out->r = out->g = out->b = 255; out->a = 0; } else { out->r = out->g = out->b = sRGB(YfromRGBint(in->r, in->g, in->b)/in->a); out->a = u8d(in->a / 257.); } } /* sCp: unpremultiply RGB then convert to sRGB */ static void gpc_sCp(Pixel *out, const Pixel *in, const Background *back) { (void)back; if (in->a <= 128) { out->r = out->g = out->b = 255; out->a = 0; } else { out->r = sRGB((double)in->r / in->a); out->g = sRGB((double)in->g / in->a); out->b = sRGB((double)in->b / in->a); out->a = u8d(in->a / 257.); } } /* gb16: composite linear onto background and convert to sRGB grayscale */ /* (order doesn't matter, the composite and grayscale operations permute) */ static void gpc_gb16(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) out->r = out->g = out->b = back->ig; else if (in->a >= 65535) out->r = out->g = out->b = isRGB(in->g); else { double a = in->a / 65535.; double a1 = 1-a; a /= 65535; out->r = out->g = out->b = sRGB(in->g * a + back->dg * a1); } out->a = 255; } /* cb16: composite linear onto background and convert to sRGB */ static void gpc_cb16(Pixel *out, const Pixel *in, const Background *back) { if (in->a <= 0) { out->r = back->ir; out->g = back->ig; out->b = back->ib; } else if (in->a >= 65535) { out->r = isRGB(in->r); out->g = isRGB(in->g); out->b = isRGB(in->b); } else { double a = in->a / 65535.; double a1 = 1-a; a /= 65535; out->r = sRGB(in->r * a + back->dr * a1); out->g = sRGB(in->g * a + back->dg * a1); out->b = sRGB(in->b * a + back->db * a1); } out->a = 255; } /* 16-bit to 16-bit conversions */ /* A: set alpha to 65535 */ static void gpc_A(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = in->r; out->g = in->g; out->b = in->b; out->a = 65535; } /* g16: convert linear RGB to linear grayscale (alpha := 65535) */ static void gpc_g16(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = out->g = out->b = u16d(YfromRGBint(in->r, in->g, in->b)); out->a = 65535; } /* g16': as 'g16' but alpha is unchanged */ static void gpc_g16q(Pixel *out, const Pixel *in, const Background *back) { (void)back; out->r = out->g = out->b = u16d(YfromRGBint(in->r, in->g, in->b)); out->a = in->a; } #if ALLOW_UNUSED_GPC /* Unused functions (to hide them from GCC unused function warnings) */ void (* const gpc_unused[]) (Pixel *out, const Pixel *in, const Background *back) = { gpc_Pre, gpc_Preq, gpc_Glin, gpc_Gpre, gpc_Gprq, gpc_nop8, gpc_nop6 }; #endif /* OUT: ----- 8-bit ----- ----- 16-bit ----- * IN G GA RGB RGBA G GA RGB RGBA * 8 G . . . . lin lin lin lin * 8 GA bckg . bckc . pre' pre pre' pre * 8 RGB g8 g8 . . glin glin lin lin * 8 RGBA g8b g8 bckc . gpr' gpre pre' pre * 16 G sRGB sRGB sRGB sRGB . . . . * 16 GA b16g unpg b16c unpc A . A . * 16 RGB sG sG sRGB sRGB g16 g16 . . * 16 RGBA gb16 sGp cb16 sCp g16 g16' A . * * The matrix is held in an array indexed thus: * * gpc_fn[out_format & BASE_FORMATS][in_format & BASE_FORMATS]; */ /* This will produce a compile time error if the FORMAT_FLAG values don't * match the above matrix! */ #if PNG_FORMAT_FLAG_ALPHA == 1 && PNG_FORMAT_FLAG_COLOR == 2 &&\ PNG_FORMAT_FLAG_LINEAR == 4 static void (* const gpc_fn[8/*in*/][8/*out*/]) (Pixel *out, const Pixel *in, const Background *back) = { /*out: G-8 GA-8 RGB-8 RGBA-8 G-16 GA-16 RGB-16 RGBA-16 */ {gpc_noop,gpc_noop,gpc_noop,gpc_noop, gpc_Lin, gpc_Lin, gpc_Lin, gpc_Lin }, {gpc_bckg,gpc_noop,gpc_bckc,gpc_noop, gpc_preq,gpc_pre, gpc_preq,gpc_pre }, {gpc_g8, gpc_g8, gpc_noop,gpc_noop, gpc_glin,gpc_glin,gpc_lin, gpc_lin }, {gpc_g8b, gpc_g8, gpc_bckc,gpc_noop, gpc_gprq,gpc_gpre,gpc_preq,gpc_pre }, {gpc_sRGB,gpc_sRGB,gpc_sRGB,gpc_sRGB, gpc_noop,gpc_noop,gpc_noop,gpc_noop}, {gpc_b16g,gpc_unpg,gpc_b16c,gpc_unpc, gpc_A, gpc_noop,gpc_A, gpc_noop}, {gpc_sG, gpc_sG, gpc_sRGB,gpc_sRGB, gpc_g16, gpc_g16, gpc_noop,gpc_noop}, {gpc_gb16,gpc_sGp, gpc_cb16,gpc_sCp, gpc_g16, gpc_g16q,gpc_A, gpc_noop} }; /* The array is repeated for the cases where both the input and output are color * mapped because then different algorithms are used. */ static void (* const gpc_fn_colormapped[8/*in*/][8/*out*/]) (Pixel *out, const Pixel *in, const Background *back) = { /*out: G-8 GA-8 RGB-8 RGBA-8 G-16 GA-16 RGB-16 RGBA-16 */ {gpc_noop,gpc_noop,gpc_noop,gpc_noop, gpc_lin, gpc_lin, gpc_lin, gpc_lin }, {gpc_bckg,gpc_noop,gpc_bckc,gpc_noop, gpc_preq,gpc_pre, gpc_preq,gpc_pre }, {gpc_g8, gpc_g8, gpc_noop,gpc_noop, gpc_glin,gpc_glin,gpc_lin, gpc_lin }, {gpc_g8b, gpc_g8, gpc_bckc,gpc_noop, gpc_gprq,gpc_gpre,gpc_preq,gpc_pre }, {gpc_sRGB,gpc_sRGB,gpc_sRGB,gpc_sRGB, gpc_noop,gpc_noop,gpc_noop,gpc_noop}, {gpc_b16g,gpc_unpg,gpc_b16c,gpc_unpc, gpc_A, gpc_noop,gpc_A, gpc_noop}, {gpc_sG, gpc_sG, gpc_sRGB,gpc_sRGB, gpc_g16, gpc_g16, gpc_noop,gpc_noop}, {gpc_gb16,gpc_sGp, gpc_cb16,gpc_sCp, gpc_g16, gpc_g16q,gpc_A, gpc_noop} }; /* The error arrays record the error in the same matrix; 64 entries, however * the different algorithms used in libpng for colormap and direct conversions * mean that four separate matrices are used (for each combination of * colormapped and direct.) * * In some cases the conversion between sRGB formats goes via a linear * intermediate; an sRGB to linear conversion (as above) is followed by a simple * linear to sRGB step with no other conversions. This is done by a separate * error array from an arbitrary 'in' format to one of the four basic outputs * (since final output is always sRGB not colormapped). * * These arrays may be modified if the --accumulate flag is set during the run; * then instead of logging errors they are simply added in. * * The three entries are currently for transparent, partially transparent and * opaque input pixel values. Notice that alpha should be exact in each case. * * Errors in alpha should only occur when converting from a direct format * to a colormapped format, when alpha is effectively smashed (so large * errors can occur.) There should be no error in the '0' and 'opaque' * values. The fourth entry in the array is used for the alpha error (and it * should always be zero for the 'via linear' case since this is never color * mapped.) * * Mapping to a colormap smashes the colors, it is necessary to have separate * values for these cases because they are much larger; it is very much * impossible to obtain a reasonable result, these are held in * gpc_error_to_colormap. */ #if PNG_FORMAT_FLAG_COLORMAP == 8 /* extra check also required */ /* START MACHINE GENERATED */ static png_uint_16 gpc_error[16/*in*/][16/*out*/][4/*a*/] = { { /* input: sRGB-gray */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 372, 0 }, { 0, 0, 372, 0 }, { 0, 0, 372, 0 }, { 0, 0, 372, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: sRGB-gray+alpha */ { 0, 18, 0, 0 }, { 0, 0, 0, 0 }, { 0, 20, 0, 0 }, { 0, 0, 0, 0 }, { 0, 897, 788, 0 }, { 0, 897, 788, 0 }, { 0, 897, 788, 0 }, { 0, 897, 788, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: sRGB-rgb */ { 0, 0, 19, 0 }, { 0, 0, 19, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 893, 0 }, { 0, 0, 893, 0 }, { 0, 0, 811, 0 }, { 0, 0, 811, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: sRGB-rgb+alpha */ { 0, 4, 13, 0 }, { 0, 14, 13, 0 }, { 0, 19, 0, 0 }, { 0, 0, 0, 0 }, { 0, 832, 764, 0 }, { 0, 832, 764, 0 }, { 0, 897, 788, 0 }, { 0, 897, 788, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: linear-gray */ { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: linear-gray+alpha */ { 0, 74, 9, 0 }, { 0, 20, 9, 0 }, { 0, 74, 9, 0 }, { 0, 20, 9, 0 }, { 0, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: linear-rgb */ { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 4, 0 }, { 0, 0, 4, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: linear-rgb+alpha */ { 0, 126, 143, 0 }, { 0, 9, 7, 0 }, { 0, 74, 9, 0 }, { 0, 16, 9, 0 }, { 0, 4, 4, 0 }, { 0, 5, 4, 0 }, { 0, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-sRGB-gray */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-sRGB-gray+alpha */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-sRGB-rgb */ { 0, 0, 13, 0 }, { 0, 0, 13, 0 }, { 0, 0, 8, 0 }, { 0, 0, 8, 0 }, { 0, 0, 673, 0 }, { 0, 0, 673, 0 }, { 0, 0, 674, 0 }, { 0, 0, 674, 0 }, { 0, 0, 1, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 460, 0 }, { 0, 0, 460, 0 }, { 0, 0, 263, 0 }, { 0, 0, 263, 0 } }, { /* input: color-mapped-sRGB-rgb+alpha */ { 0, 6, 8, 0 }, { 0, 7, 8, 0 }, { 0, 75, 8, 0 }, { 0, 9, 8, 0 }, { 0, 585, 427, 0 }, { 0, 585, 427, 0 }, { 0, 717, 409, 0 }, { 0, 717, 409, 0 }, { 0, 1, 1, 0 }, { 0, 1, 1, 0 }, { 0, 1, 0, 0 }, { 0, 0, 0, 0 }, { 0, 13323, 460, 0 }, { 0, 334, 460, 0 }, { 0, 16480, 263, 0 }, { 0, 243, 263, 0 } }, { /* input: color-mapped-linear-gray */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 282, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-linear-gray+alpha */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 253, 282, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-linear-rgb */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 265, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-linear-rgb+alpha */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 243, 265, 0 } } }; static png_uint_16 gpc_error_via_linear[16][4/*out*/][4] = { { /* input: sRGB-gray */ { 0, 0, 7, 0 }, { 0, 0, 7, 0 }, { 0, 0, 7, 0 }, { 0, 0, 7, 0 } }, { /* input: sRGB-gray+alpha */ { 0, 15, 15, 0 }, { 0, 186, 15, 0 }, { 0, 15, 15, 0 }, { 0, 186, 15, 0 } }, { /* input: sRGB-rgb */ { 0, 0, 19, 0 }, { 0, 0, 19, 0 }, { 0, 0, 15, 0 }, { 0, 0, 15, 0 } }, { /* input: sRGB-rgb+alpha */ { 0, 12, 14, 0 }, { 0, 180, 14, 0 }, { 0, 14, 15, 0 }, { 0, 186, 15, 0 } }, { /* input: linear-gray */ { 0, 0, 1, 0 }, { 0, 0, 1, 0 }, { 0, 0, 1, 0 }, { 0, 0, 1, 0 } }, { /* input: linear-gray+alpha */ { 0, 1, 1, 0 }, { 0, 1, 1, 0 }, { 0, 1, 1, 0 }, { 0, 1, 1, 0 } }, { /* input: linear-rgb */ { 0, 0, 1, 0 }, { 0, 0, 1, 0 }, { 0, 0, 1, 0 }, { 0, 0, 1, 0 } }, { /* input: linear-rgb+alpha */ { 0, 1, 1, 0 }, { 0, 8, 1, 0 }, { 0, 1, 1, 0 }, { 0, 1, 1, 0 } }, { /* input: color-mapped-sRGB-gray */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-sRGB-gray+alpha */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-sRGB-rgb */ { 0, 0, 13, 0 }, { 0, 0, 13, 0 }, { 0, 0, 14, 0 }, { 0, 0, 14, 0 } }, { /* input: color-mapped-sRGB-rgb+alpha */ { 0, 4, 8, 0 }, { 0, 9, 8, 0 }, { 0, 8, 3, 0 }, { 0, 32, 3, 0 } }, { /* input: color-mapped-linear-gray */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-linear-gray+alpha */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-linear-rgb */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }, { /* input: color-mapped-linear-rgb+alpha */ { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } } }; static png_uint_16 gpc_error_to_colormap[8/*i*/][8/*o*/][4] = { { /* input: sRGB-gray */ { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 9, 0 }, { 0, 0, 560, 0 }, { 0, 0, 560, 0 }, { 0, 0, 560, 0 }, { 0, 0, 560, 0 } }, { /* input: sRGB-gray+alpha */ { 0, 19, 2, 0 }, { 0, 255, 2, 25 }, { 0, 88, 2, 0 }, { 0, 255, 2, 25 }, { 0, 1012, 745, 0 }, { 0, 16026, 745, 6425 }, { 0, 1012, 745, 0 }, { 0, 16026, 745, 6425 } }, { /* input: sRGB-rgb */ { 0, 0, 19, 0 }, { 0, 0, 19, 0 }, { 0, 0, 25, 0 }, { 0, 0, 25, 0 }, { 0, 0, 937, 0 }, { 0, 0, 937, 0 }, { 0, 0, 13677, 0 }, { 0, 0, 13677, 0 } }, { /* input: sRGB-rgb+alpha */ { 0, 63, 77, 0 }, { 0, 255, 19, 25 }, { 0, 220, 25, 0 }, { 0, 255, 25, 67 }, { 0, 17534, 18491, 0 }, { 0, 15614, 2824, 6425 }, { 0, 14019, 13677, 0 }, { 0, 48573, 13677, 17219 } }, { /* input: linear-gray */ { 0, 0, 73, 0 }, { 0, 0, 73, 0 }, { 0, 0, 73, 0 }, { 0, 0, 73, 0 }, { 0, 0, 18817, 0 }, { 0, 0, 18817, 0 }, { 0, 0, 18817, 0 }, { 0, 0, 18817, 0 } }, { /* input: linear-gray+alpha */ { 0, 74, 74, 0 }, { 0, 255, 74, 25 }, { 0, 97, 74, 0 }, { 0, 255, 74, 25 }, { 0, 18919, 18907, 0 }, { 0, 24549, 18907, 6552 }, { 0, 18919, 18907, 0 }, { 0, 24549, 18907, 6552 } }, { /* input: linear-rgb */ { 0, 0, 73, 0 }, { 0, 0, 73, 0 }, { 0, 0, 98, 0 }, { 0, 0, 98, 0 }, { 0, 0, 18664, 0 }, { 0, 0, 18664, 0 }, { 0, 0, 24998, 0 }, { 0, 0, 24998, 0 } }, { /* input: linear-rgb+alpha */ { 0, 181, 196, 0 }, { 0, 255, 61, 25 }, { 206, 187, 98, 0 }, { 0, 255, 98, 67 }, { 0, 18141, 18137, 0 }, { 0, 17494, 17504, 6553 }, { 0, 24979, 24992, 0 }, { 0, 46509, 24992, 17347 } } }; /* END MACHINE GENERATED */ #endif /* COLORMAP flag check */ #endif /* flag checks */ typedef struct { /* Basic pixel information: */ Image* in_image; /* Input image */ const Image* out_image; /* Output image */ /* 'background' is the value passed to the gpc_ routines, it may be NULL if * it should not be used (*this* program has an error if it crashes as a * result!) */ Background background_color; const Background* background; /* Precalculated values: */ int in_opaque; /* Value of input alpha that is opaque */ int is_palette; /* Sample values come from the palette */ int accumulate; /* Accumlate component errors (don't log) */ int output_8bit; /* Output is 8 bit (else 16 bit) */ void (*in_gp)(Pixel*, png_const_voidp); void (*out_gp)(Pixel*, png_const_voidp); void (*transform)(Pixel *out, const Pixel *in, const Background *back); /* A function to perform the required transform */ void (*from_linear)(Pixel *out, const Pixel *in, const Background *back); /* For 'via_linear' transforms the final, from linear, step, else NULL */ png_uint_16 error[4]; /* Three error values for transparent, partially transparent and opaque * input pixels (in turn). */ png_uint_16 *error_ptr; /* Where these are stored in the static array (for 'accumulate') */ } Transform; /* Return a 'transform' as above for the given format conversion. */ static void transform_from_formats(Transform *result, Image *in_image, const Image *out_image, png_const_colorp background, int via_linear) { png_uint_32 in_format, out_format; png_uint_32 in_base, out_base; memset(result, 0, sizeof *result); /* Store the original images for error messages */ result->in_image = in_image; result->out_image = out_image; in_format = in_image->image.format; out_format = out_image->image.format; if (in_format & PNG_FORMAT_FLAG_LINEAR) result->in_opaque = 65535; else result->in_opaque = 255; result->output_8bit = (out_format & PNG_FORMAT_FLAG_LINEAR) == 0; result->is_palette = 0; /* set by caller if required */ result->accumulate = (in_image->opts & ACCUMULATE) != 0; /* The loaders (which need the ordering information) */ result->in_gp = get_pixel(in_format); result->out_gp = get_pixel(out_format); /* Remove the ordering information: */ in_format &= BASE_FORMATS | PNG_FORMAT_FLAG_COLORMAP; in_base = in_format & BASE_FORMATS; out_format &= BASE_FORMATS | PNG_FORMAT_FLAG_COLORMAP; out_base = out_format & BASE_FORMATS; if (via_linear) { /* Check for an error in this program: */ if (out_format & (PNG_FORMAT_FLAG_LINEAR|PNG_FORMAT_FLAG_COLORMAP)) { fprintf(stderr, "internal transform via linear error 0x%x->0x%x\n", in_format, out_format); exit(1); } result->transform = gpc_fn[in_base][out_base | PNG_FORMAT_FLAG_LINEAR]; result->from_linear = gpc_fn[out_base | PNG_FORMAT_FLAG_LINEAR][out_base]; result->error_ptr = gpc_error_via_linear[in_format][out_format]; } else if (~in_format & out_format & PNG_FORMAT_FLAG_COLORMAP) { /* The input is not colormapped but the output is, the errors will * typically be large (only the grayscale-no-alpha case permits preserving * even 8-bit values.) */ result->transform = gpc_fn[in_base][out_base]; result->from_linear = NULL; result->error_ptr = gpc_error_to_colormap[in_base][out_base]; } else { /* The caller handles the colormap->pixel value conversion, so the * transform function just gets a pixel value, however because libpng * currently contains a different implementation for mapping a colormap if * both input and output are colormapped we need different conversion * functions to deal with errors in the libpng implementation. */ if (in_format & out_format & PNG_FORMAT_FLAG_COLORMAP) result->transform = gpc_fn_colormapped[in_base][out_base]; else result->transform = gpc_fn[in_base][out_base]; result->from_linear = NULL; result->error_ptr = gpc_error[in_format][out_format]; } /* Follow the libpng simplified API rules to work out what to pass to the gpc * routines as a background value, if one is not required pass NULL so that * this program crashes in the even of a programming error. */ result->background = NULL; /* default: not required */ /* Rule 1: background only need be supplied if alpha is to be removed */ if (in_format & ~out_format & PNG_FORMAT_FLAG_ALPHA) { /* The input value is 'NULL' to use the background and (otherwise) an sRGB * background color (to use a solid color). The code above uses a fixed * byte value, BUFFER_INIT8, for buffer even for 16-bit output. For * linear (16-bit) output the sRGB background color is ignored; the * composition is always on the background (so BUFFER_INIT8 * 257), except * that for the colormap (i.e. linear colormapped output) black is used. */ result->background = &result->background_color; if (out_format & PNG_FORMAT_FLAG_LINEAR || via_linear) { if (out_format & PNG_FORMAT_FLAG_COLORMAP) { result->background_color.ir = result->background_color.ig = result->background_color.ib = 0; result->background_color.dr = result->background_color.dg = result->background_color.db = 0; } else { result->background_color.ir = result->background_color.ig = result->background_color.ib = BUFFER_INIT8 * 257; result->background_color.dr = result->background_color.dg = result->background_color.db = 0; } } else /* sRGB output */ { if (background != NULL) { if (out_format & PNG_FORMAT_FLAG_COLOR) { result->background_color.ir = background->red; result->background_color.ig = background->green; result->background_color.ib = background->blue; /* TODO: sometimes libpng uses the power law conversion here, how * to handle this? */ result->background_color.dr = sRGB_to_d[background->red]; result->background_color.dg = sRGB_to_d[background->green]; result->background_color.db = sRGB_to_d[background->blue]; } else /* grayscale: libpng only looks at 'g' */ { result->background_color.ir = result->background_color.ig = result->background_color.ib = background->green; /* TODO: sometimes libpng uses the power law conversion here, how * to handle this? */ result->background_color.dr = result->background_color.dg = result->background_color.db = sRGB_to_d[background->green]; } } else if ((out_format & PNG_FORMAT_FLAG_COLORMAP) == 0) { result->background_color.ir = result->background_color.ig = result->background_color.ib = BUFFER_INIT8; /* TODO: sometimes libpng uses the power law conversion here, how * to handle this? */ result->background_color.dr = result->background_color.dg = result->background_color.db = sRGB_to_d[BUFFER_INIT8]; } /* Else the output is colormapped and a background color must be * provided; if pngstest crashes then that is a bug in this program * (though libpng should png_error as well.) */ else result->background = NULL; } } if (result->background == NULL) { result->background_color.ir = result->background_color.ig = result->background_color.ib = -1; /* not used */ result->background_color.dr = result->background_color.dg = result->background_color.db = 1E30; /* not used */ } /* Copy the error values into the Transform: */ result->error[0] = result->error_ptr[0]; result->error[1] = result->error_ptr[1]; result->error[2] = result->error_ptr[2]; result->error[3] = result->error_ptr[3]; } /* Compare two pixels. * * OLD error values: static int error_to_linear = 811; * by experiment * static int error_to_linear_grayscale = 424; * by experiment * static int error_to_sRGB = 6; * by experiment * static int error_to_sRGB_grayscale = 17; * libpng error by calculation + 2 by experiment * static int error_in_compose = 2; * by experiment * static int error_in_premultiply = 1; * * The following is *just* the result of a round trip from 8-bit sRGB to linear * then back to 8-bit sRGB when it is done by libpng. There are two problems: * * 1) libpng currently uses a 2.2 power law with no linear segment, this results * in instability in the low values and even with 16-bit precision sRGB(1) ends * up mapping to sRGB(0) as a result of rounding in the 16-bit representation. * This gives an error of 1 in the handling of value 1 only. * * 2) libpng currently uses an intermediate 8-bit linear value in gamma * correction of 8-bit values. This results in many more errors, the worse of * which is mapping sRGB(14) to sRGB(0). * * The general 'error_via_linear' is more complex because of pre-multiplication, * this compounds the 8-bit errors according to the alpha value of the pixel. * As a result 256 values are pre-calculated for error_via_linear. */ #if 0 static int error_in_libpng_gamma; static int error_via_linear[256]; /* Indexed by 8-bit alpha */ static void init_error_via_linear(void) { int alpha; error_via_linear[0] = 255; /* transparent pixel */ for (alpha=1; alpha<=255; ++alpha) { /* 16-bit values less than 128.5 get rounded to 8-bit 0 and so the worst * case error arises with 16-bit 128.5, work out what sRGB * (non-associated) value generates 128.5; any value less than this is * going to map to 0, so the worst error is floor(value). * * Note that errors are considerably higher (more than a factor of 2) * because libpng uses a simple power law for sRGB data at present. * * Add .1 for arithmetic errors inside libpng. */ double v = floor(255*pow(.5/*(128.5 * 255 / 65535)*/ / alpha, 1/2.2)+.1); error_via_linear[alpha] = (int)v; } /* This is actually 14.99, but, despite the closeness to 15, 14 seems to work * ok in this case. */ error_in_libpng_gamma = 14; } #endif static void print_pixel(char string[64], const Pixel *pixel, png_uint_32 format) { switch (format & (PNG_FORMAT_FLAG_ALPHA|PNG_FORMAT_FLAG_COLOR)) { case 0: sprintf(string, "%s(%d)", format_names[format], pixel->g); break; case PNG_FORMAT_FLAG_ALPHA: sprintf(string, "%s(%d,%d)", format_names[format], pixel->g, pixel->a); break; case PNG_FORMAT_FLAG_COLOR: sprintf(string, "%s(%d,%d,%d)", format_names[format], pixel->r, pixel->g, pixel->b); break; case PNG_FORMAT_FLAG_COLOR|PNG_FORMAT_FLAG_ALPHA: sprintf(string, "%s(%d,%d,%d,%d)", format_names[format], pixel->r, pixel->g, pixel->b, pixel->a); break; default: sprintf(string, "invalid-format"); break; } } static int logpixel(const Transform *transform, png_uint_32 x, png_uint_32 y, const Pixel *in, const Pixel *calc, const Pixel *out, const char *reason) { const png_uint_32 in_format = transform->in_image->image.format; const png_uint_32 out_format = transform->out_image->image.format; png_uint_32 back_format = out_format & ~PNG_FORMAT_FLAG_ALPHA; const char *via_linear = ""; char pixel_in[64], pixel_calc[64], pixel_out[64], pixel_loc[64]; char background_info[100]; print_pixel(pixel_in, in, in_format); print_pixel(pixel_calc, calc, out_format); print_pixel(pixel_out, out, out_format); if (transform->is_palette) sprintf(pixel_loc, "palette: %lu", (unsigned long)y); else sprintf(pixel_loc, "%lu,%lu", (unsigned long)x, (unsigned long)y); if (transform->from_linear != NULL) { via_linear = " (via linear)"; /* And as a result the *read* format which did any background processing * was itself linear, so the background color information is also * linear. */ back_format |= PNG_FORMAT_FLAG_LINEAR; } if (transform->background != NULL) { Pixel back; char pixel_back[64]; back.r = transform->background->ir; back.g = transform->background->ig; back.b = transform->background->ib; back.a = -1; /* not used */ print_pixel(pixel_back, &back, back_format); sprintf(background_info, " on background %s", pixel_back); } else background_info[0] = 0; if (transform->in_image->file_name != transform->out_image->file_name) { char error_buffer[512]; sprintf(error_buffer, "(%s) %s error%s:\n %s%s ->\n %s\n not: %s.\n" "Use --preserve and examine: ", pixel_loc, reason, via_linear, pixel_in, background_info, pixel_out, pixel_calc); return logerror(transform->in_image, transform->in_image->file_name, error_buffer, transform->out_image->file_name); } else { char error_buffer[512]; sprintf(error_buffer, "(%s) %s error%s:\n %s%s ->\n %s\n not: %s.\n" " The error happened when reading the original file with this format.", pixel_loc, reason, via_linear, pixel_in, background_info, pixel_out, pixel_calc); return logerror(transform->in_image, transform->in_image->file_name, error_buffer, ""); } } static int cmppixel(Transform *transform, png_const_voidp in, png_const_voidp out, png_uint_32 x, png_uint_32 y/*or palette index*/) { int maxerr; png_const_charp errmsg; Pixel pixel_in, pixel_calc, pixel_out; transform->in_gp(&pixel_in, in); if (transform->from_linear == NULL) transform->transform(&pixel_calc, &pixel_in, transform->background); else { transform->transform(&pixel_out, &pixel_in, transform->background); transform->from_linear(&pixel_calc, &pixel_out, NULL); } transform->out_gp(&pixel_out, out); /* Eliminate the case where the input and output values match exactly. */ if (pixel_calc.a == pixel_out.a && pixel_calc.r == pixel_out.r && pixel_calc.g == pixel_out.g && pixel_calc.b == pixel_out.b) return 1; /* Eliminate the case where the output pixel is transparent and the output * is 8-bit - any component values are valid. Don't check the input alpha * here to also skip the 16-bit small alpha cases. */ if (transform->output_8bit && pixel_calc.a == 0 && pixel_out.a == 0) return 1; /* Check for alpha errors first; an alpha error can damage the components too * so avoid spurious checks on components if one is found. */ errmsg = NULL; { int err_a = abs(pixel_calc.a-pixel_out.a); if (err_a > transform->error[3]) { /* If accumulating check the components too */ if (transform->accumulate) transform->error[3] = (png_uint_16)err_a; else errmsg = "alpha"; } } /* Now if *either* of the output alphas are 0 but alpha is within tolerance * eliminate the 8-bit component comparison. */ if (errmsg == NULL && transform->output_8bit && (pixel_calc.a == 0 || pixel_out.a == 0)) return 1; if (errmsg == NULL) /* else just signal an alpha error */ { int err_r = abs(pixel_calc.r - pixel_out.r); int err_g = abs(pixel_calc.g - pixel_out.g); int err_b = abs(pixel_calc.b - pixel_out.b); int limit; if ((err_r | err_g | err_b) == 0) return 1; /* exact match */ /* Mismatch on a component, check the input alpha */ if (pixel_in.a >= transform->in_opaque) { errmsg = "opaque component"; limit = 2; /* opaque */ } else if (pixel_in.a > 0) { errmsg = "alpha component"; limit = 1; /* partially transparent */ } else { errmsg = "transparent component (background)"; limit = 0; /* transparent */ } maxerr = err_r; if (maxerr < err_g) maxerr = err_g; if (maxerr < err_b) maxerr = err_b; if (maxerr <= transform->error[limit]) return 1; /* within the error limits */ /* Handle a component mis-match; log it, just return an error code, or * accumulate it. */ if (transform->accumulate) { transform->error[limit] = (png_uint_16)maxerr; return 1; /* to cause the caller to keep going */ } } /* Failure to match and not accumulating, so the error must be logged. */ return logpixel(transform, x, y, &pixel_in, &pixel_calc, &pixel_out, errmsg); } static png_byte component_loc(png_byte loc[4], png_uint_32 format) { /* Given a format return the number of channels and the location of * each channel. * * The mask 'loc' contains the component offset of the channels in the * following order. Note that if 'format' is grayscale the entries 1-3 must * all contain the location of the gray channel. * * 0: alpha * 1: red or gray * 2: green or gray * 3: blue or gray */ png_byte channels; if (format & PNG_FORMAT_FLAG_COLOR) { channels = 3; loc[2] = 1; # ifdef PNG_FORMAT_BGR_SUPPORTED if (format & PNG_FORMAT_FLAG_BGR) { loc[1] = 2; loc[3] = 0; } else # endif { loc[1] = 0; loc[3] = 2; } } else { channels = 1; loc[1] = loc[2] = loc[3] = 0; } if (format & PNG_FORMAT_FLAG_ALPHA) { # ifdef PNG_FORMAT_AFIRST_SUPPORTED if (format & PNG_FORMAT_FLAG_AFIRST) { loc[0] = 0; ++loc[1]; ++loc[2]; ++loc[3]; } else # endif loc[0] = channels; ++channels; } else loc[0] = 4; /* not present */ return channels; } /* Compare two images, the original 'a', which was written out then read back in * to * give image 'b'. The formats may have been changed. */ static int compare_two_images(Image *a, Image *b, int via_linear, png_const_colorp background) { ptrdiff_t stridea = a->stride; ptrdiff_t strideb = b->stride; png_const_bytep rowa = a->buffer+16; png_const_bytep rowb = b->buffer+16; const png_uint_32 width = a->image.width; const png_uint_32 height = a->image.height; const png_uint_32 formata = a->image.format; const png_uint_32 formatb = b->image.format; const unsigned int a_sample = PNG_IMAGE_SAMPLE_SIZE(formata); const unsigned int b_sample = PNG_IMAGE_SAMPLE_SIZE(formatb); int alpha_added, alpha_removed; int bchannels; int btoa[4]; png_uint_32 y; Transform tr; /* This should never happen: */ if (width != b->image.width || height != b->image.height) return logerror(a, a->file_name, ": width x height changed: ", b->file_name); /* Set up the background and the transform */ transform_from_formats(&tr, a, b, background, via_linear); /* Find the first row and inter-row space. */ if (!(formata & PNG_FORMAT_FLAG_COLORMAP) && (formata & PNG_FORMAT_FLAG_LINEAR)) stridea *= 2; if (!(formatb & PNG_FORMAT_FLAG_COLORMAP) && (formatb & PNG_FORMAT_FLAG_LINEAR)) strideb *= 2; if (stridea < 0) rowa += (height-1) * (-stridea); if (strideb < 0) rowb += (height-1) * (-strideb); /* First shortcut the two colormap case by comparing the image data; if it * matches then we expect the colormaps to match, although this is not * absolutely necessary for an image match. If the colormaps fail to match * then there is a problem in libpng. */ if (formata & formatb & PNG_FORMAT_FLAG_COLORMAP) { /* Only check colormap entries that actually exist; */ png_const_bytep ppa, ppb; int match; png_byte in_use[256], amax = 0, bmax = 0; memset(in_use, 0, sizeof in_use); ppa = rowa; ppb = rowb; /* Do this the slow way to accumulate the 'in_use' flags, don't break out * of the loop until the end; this validates the color-mapped data to * ensure all pixels are valid color-map indexes. */ for (y=0, match=1; y<height && match; ++y, ppa += stridea, ppb += strideb) { png_uint_32 x; for (x=0; x<width; ++x) { png_byte bval = ppb[x]; png_byte aval = ppa[x]; if (bval > bmax) bmax = bval; if (bval != aval) match = 0; in_use[aval] = 1; if (aval > amax) amax = aval; } } /* If the buffers match then the colormaps must too. */ if (match) { /* Do the color-maps match, entry by entry? Only check the 'in_use' * entries. An error here should be logged as a color-map error. */ png_const_bytep a_cmap = (png_const_bytep)a->colormap; png_const_bytep b_cmap = (png_const_bytep)b->colormap; int result = 1; /* match by default */ /* This is used in logpixel to get the error message correct. */ tr.is_palette = 1; for (y=0; y<256; ++y, a_cmap += a_sample, b_cmap += b_sample) if (in_use[y]) { /* The colormap entries should be valid, but because libpng doesn't * do any checking at present the original image may contain invalid * pixel values. These cause an error here (at present) unless * accumulating errors in which case the program just ignores them. */ if (y >= a->image.colormap_entries) { if ((a->opts & ACCUMULATE) == 0) { char pindex[9]; sprintf(pindex, "%lu[%lu]", (unsigned long)y, (unsigned long)a->image.colormap_entries); logerror(a, a->file_name, ": bad pixel index: ", pindex); } result = 0; } else if (y >= b->image.colormap_entries) { if ((a->opts & ACCUMULATE) == 0) { char pindex[9]; sprintf(pindex, "%lu[%lu]", (unsigned long)y, (unsigned long)b->image.colormap_entries); logerror(b, b->file_name, ": bad pixel index: ", pindex); } result = 0; } /* All the mismatches are logged here; there can only be 256! */ else if (!cmppixel(&tr, a_cmap, b_cmap, 0, y)) result = 0; } /* If reqested copy the error values back from the Transform. */ if (a->opts & ACCUMULATE) { tr.error_ptr[0] = tr.error[0]; tr.error_ptr[1] = tr.error[1]; tr.error_ptr[2] = tr.error[2]; tr.error_ptr[3] = tr.error[3]; result = 1; /* force a continue */ } return result; } /* else the image buffers don't match pixel-wise so compare sample values * instead, but first validate that the pixel indexes are in range (but * only if not accumulating, when the error is ignored.) */ else if ((a->opts & ACCUMULATE) == 0) { /* Check the original image first, * TODO: deal with input images with bad pixel values? */ if (amax >= a->image.colormap_entries) { char pindex[9]; sprintf(pindex, "%d[%lu]", amax, (unsigned long)a->image.colormap_entries); return logerror(a, a->file_name, ": bad pixel index: ", pindex); } else if (bmax >= b->image.colormap_entries) { char pindex[9]; sprintf(pindex, "%d[%lu]", bmax, (unsigned long)b->image.colormap_entries); return logerror(b, b->file_name, ": bad pixel index: ", pindex); } } } /* We can directly compare pixel values without the need to use the read * or transform support (i.e. a memory compare) if: * * 1) The bit depth has not changed. * 2) RGB to grayscale has not been done (the reverse is ok; we just compare * the three RGB values to the original grayscale.) * 3) An alpha channel has not been removed from an 8-bit format, or the * 8-bit alpha value of the pixel was 255 (opaque). * * If an alpha channel has been *added* then it must have the relevant opaque * value (255 or 65535). * * The fist two the tests (in the order given above) (using the boolean * equivalence !a && !b == !(a || b)) */ if (!(((formata ^ formatb) & PNG_FORMAT_FLAG_LINEAR) | (formata & (formatb ^ PNG_FORMAT_FLAG_COLOR) & PNG_FORMAT_FLAG_COLOR))) { /* Was an alpha channel changed? */ const png_uint_32 alpha_changed = (formata ^ formatb) & PNG_FORMAT_FLAG_ALPHA; /* Was an alpha channel removed? (The third test.) If so the direct * comparison is only possible if the input alpha is opaque. */ alpha_removed = (formata & alpha_changed) != 0; /* Was an alpha channel added? */ alpha_added = (formatb & alpha_changed) != 0; /* The channels may have been moved between input and output, this finds * out how, recording the result in the btoa array, which says where in * 'a' to find each channel of 'b'. If alpha was added then btoa[alpha] * ends up as 4 (and is not used.) */ { int i; png_byte aloc[4]; png_byte bloc[4]; /* The following are used only if the formats match, except that * 'bchannels' is a flag for matching formats. btoa[x] says, for each * channel in b, where to find the corresponding value in a, for the * bchannels. achannels may be different for a gray to rgb transform * (a will be 1 or 2, b will be 3 or 4 channels.) */ (void)component_loc(aloc, formata); bchannels = component_loc(bloc, formatb); /* Hence the btoa array. */ for (i=0; i<4; ++i) if (bloc[i] < 4) btoa[bloc[i]] = aloc[i]; /* may be '4' for alpha */ if (alpha_added) alpha_added = bloc[0]; /* location of alpha channel in image b */ else alpha_added = 4; /* Won't match an image b channel */ if (alpha_removed) alpha_removed = aloc[0]; /* location of alpha channel in image a */ else alpha_removed = 4; } } else { /* Direct compare is not possible, cancel out all the corresponding local * variables. */ bchannels = 0; alpha_removed = alpha_added = 4; btoa[3] = btoa[2] = btoa[1] = btoa[0] = 4; /* 4 == not present */ } for (y=0; y<height; ++y, rowa += stridea, rowb += strideb) { png_const_bytep ppa, ppb; png_uint_32 x; for (x=0, ppa=rowa, ppb=rowb; x<width; ++x) { png_const_bytep psa, psb; if (formata & PNG_FORMAT_FLAG_COLORMAP) psa = (png_const_bytep)a->colormap + a_sample * *ppa++; else psa = ppa, ppa += a_sample; if (formatb & PNG_FORMAT_FLAG_COLORMAP) psb = (png_const_bytep)b->colormap + b_sample * *ppb++; else psb = ppb, ppb += b_sample; /* Do the fast test if possible. */ if (bchannels) { /* Check each 'b' channel against either the corresponding 'a' * channel or the opaque alpha value, as appropriate. If * alpha_removed value is set (not 4) then also do this only if the * 'a' alpha channel (alpha_removed) is opaque; only relevant for * the 8-bit case. */ if (formatb & PNG_FORMAT_FLAG_LINEAR) /* 16-bit checks */ { png_const_uint_16p pua = aligncastconst(png_const_uint_16p, psa); png_const_uint_16p pub = aligncastconst(png_const_uint_16p, psb); switch (bchannels) { case 4: if (pua[btoa[3]] != pub[3]) break; case 3: if (pua[btoa[2]] != pub[2]) break; case 2: if (pua[btoa[1]] != pub[1]) break; case 1: if (pua[btoa[0]] != pub[0]) break; if (alpha_added != 4 && pub[alpha_added] != 65535) break; continue; /* x loop */ default: break; /* impossible */ } } else if (alpha_removed == 4 || psa[alpha_removed] == 255) { switch (bchannels) { case 4: if (psa[btoa[3]] != psb[3]) break; case 3: if (psa[btoa[2]] != psb[2]) break; case 2: if (psa[btoa[1]] != psb[1]) break; case 1: if (psa[btoa[0]] != psb[0]) break; if (alpha_added != 4 && psb[alpha_added] != 255) break; continue; /* x loop */ default: break; /* impossible */ } } } /* If we get to here the fast match failed; do the slow match for this * pixel. */ if (!cmppixel(&tr, psa, psb, x, y) && (a->opts & KEEP_GOING) == 0) return 0; /* error case */ } } /* If reqested copy the error values back from the Transform. */ if (a->opts & ACCUMULATE) { tr.error_ptr[0] = tr.error[0]; tr.error_ptr[1] = tr.error[1]; tr.error_ptr[2] = tr.error[2]; tr.error_ptr[3] = tr.error[3]; } return 1; } /* Read the file; how the read gets done depends on which of input_file and * input_memory have been set. */ static int read_file(Image *image, png_uint_32 format, png_const_colorp background) { memset(&image->image, 0, sizeof image->image); image->image.version = PNG_IMAGE_VERSION; if (image->input_memory != NULL) { if (!png_image_begin_read_from_memory(&image->image, image->input_memory, image->input_memory_size)) return logerror(image, "memory init: ", image->file_name, ""); } # ifdef PNG_STDIO_SUPPORTED else if (image->input_file != NULL) { if (!png_image_begin_read_from_stdio(&image->image, image->input_file)) return logerror(image, "stdio init: ", image->file_name, ""); } else { if (!png_image_begin_read_from_file(&image->image, image->file_name)) return logerror(image, "file init: ", image->file_name, ""); } # else else { return logerror(image, "unsupported file/stdio init: ", image->file_name, ""); } # endif /* This must be set after the begin_read call: */ if (image->opts & sRGB_16BIT) image->image.flags |= PNG_IMAGE_FLAG_16BIT_sRGB; /* Have an initialized image with all the data we need plus, maybe, an * allocated file (myfile) or buffer (mybuffer) that need to be freed. */ { int result; png_uint_32 image_format; /* Print both original and output formats. */ image_format = image->image.format; if (image->opts & VERBOSE) { printf("%s %lu x %lu %s -> %s", image->file_name, (unsigned long)image->image.width, (unsigned long)image->image.height, format_names[image_format & FORMAT_MASK], (format & FORMAT_NO_CHANGE) != 0 || image->image.format == format ? "no change" : format_names[format & FORMAT_MASK]); if (background != NULL) printf(" background(%d,%d,%d)\n", background->red, background->green, background->blue); else printf("\n"); fflush(stdout); } /* 'NO_CHANGE' combined with the color-map flag forces the base format * flags to be set on read to ensure that the original representation is * not lost in the pass through a colormap format. */ if ((format & FORMAT_NO_CHANGE) != 0) { if ((format & PNG_FORMAT_FLAG_COLORMAP) != 0 && (image_format & PNG_FORMAT_FLAG_COLORMAP) != 0) format = (image_format & ~BASE_FORMATS) | (format & BASE_FORMATS); else format = image_format; } image->image.format = format; image->stride = PNG_IMAGE_ROW_STRIDE(image->image) + image->stride_extra; allocbuffer(image); result = png_image_finish_read(&image->image, background, image->buffer+16, (png_int_32)image->stride, image->colormap); checkbuffer(image, image->file_name); if (result) return checkopaque(image); else return logerror(image, image->file_name, ": image read failed", ""); } } /* Reads from a filename, which must be in image->file_name, but uses * image->opts to choose the method. The file is always read in its native * format (the one the simplified API suggests). */ static int read_one_file(Image *image) { if (!(image->opts & READ_FILE) || (image->opts & USE_STDIO)) { /* memory or stdio. */ FILE *f = fopen(image->file_name, "rb"); if (f != NULL) { if (image->opts & READ_FILE) image->input_file = f; else /* memory */ { if (fseek(f, 0, SEEK_END) == 0) { long int cb = ftell(f); if (cb > 0 && (unsigned long int)cb < (size_t)~(size_t)0) { png_bytep b = voidcast(png_bytep, malloc((size_t)cb)); if (b != NULL) { rewind(f); if (fread(b, (size_t)cb, 1, f) == 1) { fclose(f); image->input_memory_size = cb; image->input_memory = b; } else { free(b); return logclose(image, f, image->file_name, ": read failed: "); } } else return logclose(image, f, image->file_name, ": out of memory: "); } else if (cb == 0) return logclose(image, f, image->file_name, ": zero length: "); else return logclose(image, f, image->file_name, ": tell failed: "); } else return logclose(image, f, image->file_name, ": seek failed: "); } } else return logerror(image, image->file_name, ": open failed: ", strerror(errno)); } return read_file(image, FORMAT_NO_CHANGE, NULL); } #ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED static int write_one_file(Image *output, Image *image, int convert_to_8bit) { if (image->opts & FAST_WRITE) image->image.flags |= PNG_IMAGE_FLAG_FAST; if (image->opts & USE_STDIO) { FILE *f = tmpfile(); if (f != NULL) { if (png_image_write_to_stdio(&image->image, f, convert_to_8bit, image->buffer+16, (png_int_32)image->stride, image->colormap)) { if (fflush(f) == 0) { rewind(f); initimage(output, image->opts, "tmpfile", image->stride_extra); output->input_file = f; if (!checkopaque(image)) return 0; } else return logclose(image, f, "tmpfile", ": flush: "); } else { fclose(f); return logerror(image, "tmpfile", ": write failed", ""); } } else return logerror(image, "tmpfile", ": open: ", strerror(errno)); } else { static int counter = 0; char name[32]; sprintf(name, "%s%d.png", tmpf, ++counter); if (png_image_write_to_file(&image->image, name, convert_to_8bit, image->buffer+16, (png_int_32)image->stride, image->colormap)) { initimage(output, image->opts, output->tmpfile_name, image->stride_extra); /* Afterwards, or freeimage will delete it! */ strcpy(output->tmpfile_name, name); if (!checkopaque(image)) return 0; } else return logerror(image, name, ": write failed", ""); } /* 'output' has an initialized temporary image, read this back in and compare * this against the original: there should be no change since the original * format was written unmodified unless 'convert_to_8bit' was specified. * However, if the original image was color-mapped, a simple read will zap * the linear, color and maybe alpha flags, this will cause spurious failures * under some circumstances. */ if (read_file(output, image->image.format | FORMAT_NO_CHANGE, NULL)) { png_uint_32 original_format = image->image.format; if (convert_to_8bit) original_format &= ~PNG_FORMAT_FLAG_LINEAR; if ((output->image.format & BASE_FORMATS) != (original_format & BASE_FORMATS)) return logerror(image, image->file_name, ": format changed on read: ", output->file_name); return compare_two_images(image, output, 0/*via linear*/, NULL); } else return logerror(output, output->tmpfile_name, ": read of new file failed", ""); } #endif static int testimage(Image *image, png_uint_32 opts, format_list *pf) { int result; Image copy; /* Copy the original data, stealing it from 'image' */ checkopaque(image); copy = *image; copy.opts = opts; copy.buffer = NULL; copy.bufsize = 0; copy.allocsize = 0; image->input_file = NULL; image->input_memory = NULL; image->input_memory_size = 0; image->tmpfile_name[0] = 0; { png_uint_32 counter; Image output; newimage(&output); result = 1; /* Use the low bit of 'counter' to indicate whether or not to do alpha * removal with a background color or by composting onto the image; this * step gets skipped if it isn't relevant */ for (counter=0; counter<2*FORMAT_COUNT; ++counter) if (format_isset(pf, counter >> 1)) { png_uint_32 format = counter >> 1; png_color background_color; png_colorp background = NULL; /* If there is a format change that removes the alpha channel then * the background is relevant. If the output is 8-bit color-mapped * then a background color *must* be provided, otherwise there are * two tests to do - one with a color, the other with NULL. The * NULL test happens second. */ if ((counter & 1) == 0) { if ((format & PNG_FORMAT_FLAG_ALPHA) == 0 && (image->image.format & PNG_FORMAT_FLAG_ALPHA) != 0) { /* Alpha/transparency will be removed, the background is * relevant: make it a color the first time */ random_color(&background_color); background = &background_color; /* BUT if the output is to a color-mapped 8-bit format then * the background must always be a color, so increment 'counter' * to skip the NULL test. */ if ((format & PNG_FORMAT_FLAG_COLORMAP) != 0 && (format & PNG_FORMAT_FLAG_LINEAR) == 0) ++counter; } /* Otherwise an alpha channel is not being eliminated, just leave * background NULL and skip the (counter & 1) NULL test. */ else ++counter; } /* else just use NULL for background */ resetimage(©); copy.opts = opts; /* in case read_file needs to change it */ result = read_file(©, format, background); if (!result) break; /* Make sure the file just read matches the original file. */ result = compare_two_images(image, ©, 0/*via linear*/, background); if (!result) break; # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED /* Write the *copy* just made to a new file to make sure the write * side works ok. Check the conversion to sRGB if the copy is * linear. */ output.opts = opts; result = write_one_file(&output, ©, 0/*convert to 8bit*/); if (!result) break; /* Validate against the original too; the background is needed here * as well so that compare_two_images knows what color was used. */ result = compare_two_images(image, &output, 0, background); if (!result) break; if ((format & PNG_FORMAT_FLAG_LINEAR) != 0 && (format & PNG_FORMAT_FLAG_COLORMAP) == 0) { /* 'output' is linear, convert to the corresponding sRGB format. */ output.opts = opts; result = write_one_file(&output, ©, 1/*convert to 8bit*/); if (!result) break; /* This may involve a conversion via linear; in the ideal world * this would round-trip correctly, but libpng 1.5.7 is not the * ideal world so allow a drift (error_via_linear). * * 'image' has an alpha channel but 'output' does not then there * will a strip-alpha-channel operation (because 'output' is * linear), handle this by composing on black when doing the * comparison. */ result = compare_two_images(image, &output, 1/*via_linear*/, background); if (!result) break; } # endif /* PNG_SIMPLIFIED_WRITE_SUPPORTED */ } freeimage(&output); } freeimage(©); return result; } static int test_one_file(const char *file_name, format_list *formats, png_uint_32 opts, int stride_extra, int log_pass) { int result; Image image; newimage(&image); initimage(&image, opts, file_name, stride_extra); result = read_one_file(&image); if (result) result = testimage(&image, opts, formats); freeimage(&image); /* Ensure that stderr is flushed into any log file */ fflush(stderr); if (log_pass) { if (result) printf("PASS:"); else printf("FAIL:"); # ifndef PNG_SIMPLIFIED_WRITE_SUPPORTED printf(" (no write)"); # endif print_opts(opts); printf(" %s\n", file_name); /* stdout may not be line-buffered if it is piped to a file, so: */ fflush(stdout); } else if (!result) exit(1); return result; } int main(int argc, char **argv) { png_uint_32 opts = FAST_WRITE; format_list formats; const char *touch = NULL; int log_pass = 0; int redundant = 0; int stride_extra = 0; int retval = 0; int c; init_sRGB_to_d(); #if 0 init_error_via_linear(); #endif format_init(&formats); for (c=1; c<argc; ++c) { const char *arg = argv[c]; if (strcmp(arg, "--log") == 0) log_pass = 1; else if (strcmp(arg, "--fresh") == 0) { memset(gpc_error, 0, sizeof gpc_error); memset(gpc_error_via_linear, 0, sizeof gpc_error_via_linear); } else if (strcmp(arg, "--file") == 0) # ifdef PNG_STDIO_SUPPORTED opts |= READ_FILE; # else return 77; /* skipped: no support */ # endif else if (strcmp(arg, "--memory") == 0) opts &= ~READ_FILE; else if (strcmp(arg, "--stdio") == 0) # ifdef PNG_STDIO_SUPPORTED opts |= USE_STDIO; # else return 77; /* skipped: no support */ # endif else if (strcmp(arg, "--name") == 0) opts &= ~USE_STDIO; else if (strcmp(arg, "--verbose") == 0) opts |= VERBOSE; else if (strcmp(arg, "--quiet") == 0) opts &= ~VERBOSE; else if (strcmp(arg, "--preserve") == 0) opts |= KEEP_TMPFILES; else if (strcmp(arg, "--nopreserve") == 0) opts &= ~KEEP_TMPFILES; else if (strcmp(arg, "--keep-going") == 0) opts |= KEEP_GOING; else if (strcmp(arg, "--fast") == 0) opts |= FAST_WRITE; else if (strcmp(arg, "--slow") == 0) opts &= ~FAST_WRITE; else if (strcmp(arg, "--accumulate") == 0) opts |= ACCUMULATE; else if (strcmp(arg, "--redundant") == 0) redundant = 1; else if (strcmp(arg, "--stop") == 0) opts &= ~KEEP_GOING; else if (strcmp(arg, "--strict") == 0) opts |= STRICT; else if (strcmp(arg, "--sRGB-16bit") == 0) opts |= sRGB_16BIT; else if (strcmp(arg, "--linear-16bit") == 0) opts &= ~sRGB_16BIT; else if (strcmp(arg, "--tmpfile") == 0) { if (c+1 < argc) { if (strlen(argv[++c]) >= sizeof tmpf) { fflush(stdout); fprintf(stderr, "%s: %s is too long for a temp file prefix\n", argv[0], argv[c]); exit(99); } /* Safe: checked above */ strcpy(tmpf, argv[c]); } else { fflush(stdout); fprintf(stderr, "%s: %s requires a temporary file prefix\n", argv[0], arg); exit(99); } } else if (strcmp(arg, "--touch") == 0) { if (c+1 < argc) touch = argv[++c]; else { fflush(stdout); fprintf(stderr, "%s: %s requires a file name argument\n", argv[0], arg); exit(99); } } else if (arg[0] == '+') { png_uint_32 format = formatof(arg+1); if (format > FORMAT_COUNT) exit(99); format_set(&formats, format); } else if (arg[0] == '-' && arg[1] != 0 && (arg[1] != '0' || arg[2] != 0)) { fflush(stdout); fprintf(stderr, "%s: unknown option: %s\n", argv[0], arg); exit(99); } else { if (format_is_initial(&formats)) format_default(&formats, redundant); if (arg[0] == '-') { const int term = (arg[1] == '0' ? 0 : '\n'); unsigned int ich = 0; /* Loop reading files, use a static buffer to simplify this and just * stop if the name gets to long. */ static char buffer[4096]; do { int ch = getchar(); /* Don't allow '\0' in file names, and terminate with '\n' or, * for -0, just '\0' (use -print0 to find to make this work!) */ if (ch == EOF || ch == term || ch == 0) { buffer[ich] = 0; if (ich > 0 && !test_one_file(buffer, &formats, opts, stride_extra, log_pass)) retval = 1; if (ch == EOF) break; ich = 0; --ich; /* so that the increment below sets it to 0 again */ } else buffer[ich] = (char)ch; } while (++ich < sizeof buffer); if (ich) { buffer[32] = 0; buffer[4095] = 0; fprintf(stderr, "%s...%s: file name too long\n", buffer, buffer+(4096-32)); exit(99); } } else if (!test_one_file(arg, &formats, opts, stride_extra, log_pass)) retval = 1; } } if (opts & ACCUMULATE) { unsigned int in; printf("static png_uint_16 gpc_error[16/*in*/][16/*out*/][4/*a*/] =\n"); printf("{\n"); for (in=0; in<16; ++in) { unsigned int out; printf(" { /* input: %s */\n ", format_names[in]); for (out=0; out<16; ++out) { unsigned int alpha; printf(" {"); for (alpha=0; alpha<4; ++alpha) { printf(" %d", gpc_error[in][out][alpha]); if (alpha < 3) putchar(','); } printf(" }"); if (out < 15) { putchar(','); if (out % 4 == 3) printf("\n "); } } printf("\n }"); if (in < 15) putchar(','); else putchar('\n'); } printf("};\n"); printf("static png_uint_16 gpc_error_via_linear[16][4/*out*/][4] =\n"); printf("{\n"); for (in=0; in<16; ++in) { unsigned int out; printf(" { /* input: %s */\n ", format_names[in]); for (out=0; out<4; ++out) { unsigned int alpha; printf(" {"); for (alpha=0; alpha<4; ++alpha) { printf(" %d", gpc_error_via_linear[in][out][alpha]); if (alpha < 3) putchar(','); } printf(" }"); if (out < 3) putchar(','); } printf("\n }"); if (in < 15) putchar(','); else putchar('\n'); } printf("};\n"); printf("static png_uint_16 gpc_error_to_colormap[8/*i*/][8/*o*/][4] =\n"); printf("{\n"); for (in=0; in<8; ++in) { unsigned int out; printf(" { /* input: %s */\n ", format_names[in]); for (out=0; out<8; ++out) { unsigned int alpha; printf(" {"); for (alpha=0; alpha<4; ++alpha) { printf(" %d", gpc_error_to_colormap[in][out][alpha]); if (alpha < 3) putchar(','); } printf(" }"); if (out < 7) { putchar(','); if (out % 4 == 3) printf("\n "); } } printf("\n }"); if (in < 7) putchar(','); else putchar('\n'); } printf("};\n"); } if (retval == 0 && touch != NULL) { FILE *fsuccess = fopen(touch, "wt"); if (fsuccess != NULL) { int error = 0; fprintf(fsuccess, "PNG simple API tests succeeded\n"); fflush(fsuccess); error = ferror(fsuccess); if (fclose(fsuccess) || error) { fflush(stdout); fprintf(stderr, "%s: write failed\n", touch); exit(99); } } else { fflush(stdout); fprintf(stderr, "%s: open failed\n", touch); exit(99); } } return retval; } #else /* !PNG_SIMPLIFIED_READ_SUPPORTED */ int main(void) { fprintf(stderr, "pngstest: no read support in libpng, test skipped\n"); /* So the test is skipped: */ return 77; } #endif /* PNG_SIMPLIFIED_READ_SUPPORTED */