/* ******************************************************************************* * Copyright (C) 2013-2014, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * collationbuilder.h * * created on: 2013may06 * created by: Markus W. Scherer */ #ifndef __COLLATIONBUILDER_H__ #define __COLLATIONBUILDER_H__ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/uniset.h" #include "unicode/unistr.h" #include "collationrootelements.h" #include "collationruleparser.h" #include "uvectr32.h" #include "uvectr64.h" struct UParseError; U_NAMESPACE_BEGIN struct CollationData; struct CollationTailoring; class CEFinalizer; class CollationDataBuilder; class Normalizer2; class Normalizer2Impl; class U_I18N_API CollationBuilder : public CollationRuleParser::Sink { public: CollationBuilder(const CollationTailoring *base, UErrorCode &errorCode); virtual ~CollationBuilder(); void disableFastLatin() { fastLatinEnabled = FALSE; } CollationTailoring *parseAndBuild(const UnicodeString &ruleString, const UVersionInfo rulesVersion, CollationRuleParser::Importer *importer, UParseError *outParseError, UErrorCode &errorCode); const char *getErrorReason() const { return errorReason; } private: friend class CEFinalizer; /** Implements CollationRuleParser::Sink. */ virtual void addReset(int32_t strength, const UnicodeString &str, const char *&errorReason, UErrorCode &errorCode); int64_t getSpecialResetPosition(const UnicodeString &str, const char *&parserErrorReason, UErrorCode &errorCode); /** Implements CollationRuleParser::Sink. */ virtual void addRelation(int32_t strength, const UnicodeString &prefix, const UnicodeString &str, const UnicodeString &extension, const char *&errorReason, UErrorCode &errorCode); /** * Picks one of the current CEs and finds or inserts a node in the graph * for the CE + strength. */ int32_t findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason, UErrorCode &errorCode); int32_t findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode); /** Finds or inserts the node for a root CE's primary weight. */ int32_t findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode); /** Finds or inserts the node for a secondary or tertiary weight. */ int32_t findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode); /** * Makes and inserts a new tailored node into the list, after the one at index. * Skips over nodes of weaker strength to maintain collation order * ("postpone insertion"). * @return the new node's index */ int32_t insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode); /** * Inserts a new node into the list, between list-adjacent items. * The node's previous and next indexes must not be set yet. * @return the new node's index */ int32_t insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node, UErrorCode &errorCode); /** * Finds the node which implies or contains a common=05 weight of the given strength * (secondary or tertiary). * Skips weaker nodes and tailored nodes if the current node is stronger * and is followed by an explicit-common-weight node. * Always returns the input index if that node is no stronger than the given strength. */ int32_t findCommonNode(int32_t index, int32_t strength) const; void setCaseBits(const UnicodeString &nfdString, const char *&parserErrorReason, UErrorCode &errorCode); /** Implements CollationRuleParser::Sink. */ virtual void suppressContractions(const UnicodeSet &set, const char *&parserErrorReason, UErrorCode &errorCode); /** Implements CollationRuleParser::Sink. */ virtual void optimize(const UnicodeSet &set, const char *&parserErrorReason, UErrorCode &errorCode); /** * Adds the mapping and its canonical closure. * Takes ce32=dataBuilder->encodeCEs(...) so that the data builder * need not re-encode the CEs multiple times. */ uint32_t addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, UErrorCode &errorCode); uint32_t addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, UErrorCode &errorCode); void addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, UErrorCode &errorCode); UBool mergeCompositeIntoString(const UnicodeString &nfdString, int32_t indexAfterLastStarter, UChar32 composite, const UnicodeString &decomp, UnicodeString &newNFDString, UnicodeString &newString, UErrorCode &errorCode) const; UBool ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const; UBool ignoreString(const UnicodeString &s, UErrorCode &errorCode) const; UBool isFCD(const UnicodeString &s, UErrorCode &errorCode) const; void closeOverComposites(UErrorCode &errorCode); uint32_t addIfDifferent(const UnicodeString &prefix, const UnicodeString &str, const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, UErrorCode &errorCode); static UBool sameCEs(const int64_t ces1[], int32_t ces1Length, const int64_t ces2[], int32_t ces2Length); /** * Walks the tailoring graph and overwrites tailored nodes with new CEs. * After this, the graph is destroyed. * The nodes array can then be used only as a source of tailored CEs. */ void makeTailoredCEs(UErrorCode &errorCode); /** * Counts the tailored nodes of the given strength up to the next node * which is either stronger or has an explicit weight of this strength. */ static int32_t countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength); /** Replaces temporary CEs with the final CEs they point to. */ void finalizeCEs(UErrorCode &errorCode); /** * Encodes "temporary CE" data into a CE that fits into the CE32 data structure, * with 2-byte primary, 1-byte secondary and 6-bit tertiary, * with valid CE byte values. * * The index must not exceed 20 bits (0xfffff). * The strength must fit into 2 bits (UCOL_PRIMARY..UCOL_QUATERNARY). * * Temporary CEs are distinguished from real CEs by their use of * secondary weights 06..45 which are otherwise reserved for compressed sort keys. * * The case bits are unused and available. */ static inline int64_t tempCEFromIndexAndStrength(int32_t index, int32_t strength) { return // CE byte offsets, to ensure valid CE bytes, and case bits 11 INT64_C(0x4040000006002000) + // index bits 19..13 -> primary byte 1 = CE bits 63..56 (byte values 40..BF) ((int64_t)(index & 0xfe000) << 43) + // index bits 12..6 -> primary byte 2 = CE bits 55..48 (byte values 40..BF) ((int64_t)(index & 0x1fc0) << 42) + // index bits 5..0 -> secondary byte 1 = CE bits 31..24 (byte values 06..45) ((index & 0x3f) << 24) + // strength bits 1..0 -> tertiary byte 1 = CE bits 13..8 (byte values 20..23) (strength << 8); } static inline int32_t indexFromTempCE(int64_t tempCE) { tempCE -= INT64_C(0x4040000006002000); return ((int32_t)(tempCE >> 43) & 0xfe000) | ((int32_t)(tempCE >> 42) & 0x1fc0) | ((int32_t)(tempCE >> 24) & 0x3f); } static inline int32_t strengthFromTempCE(int64_t tempCE) { return ((int32_t)tempCE >> 8) & 3; } static inline UBool isTempCE(int64_t ce) { uint32_t sec = (uint32_t)ce >> 24; return 6 <= sec && sec <= 0x45; } static inline int32_t indexFromTempCE32(uint32_t tempCE32) { tempCE32 -= 0x40400620; return ((int32_t)(tempCE32 >> 11) & 0xfe000) | ((int32_t)(tempCE32 >> 10) & 0x1fc0) | ((int32_t)(tempCE32 >> 8) & 0x3f); } static inline UBool isTempCE32(uint32_t ce32) { return (ce32 & 0xff) >= 2 && // not a long-primary/long-secondary CE32 6 <= ((ce32 >> 8) & 0xff) && ((ce32 >> 8) & 0xff) <= 0x45; } static int32_t ceStrength(int64_t ce); /** The secondary/tertiary lower limit for tailoring before the common weight. */ static const uint32_t BEFORE_WEIGHT16 = Collation::MERGE_SEPARATOR_WEIGHT16; /** At most 1M nodes, limited by the 20 bits in node bit fields. */ static const int32_t MAX_INDEX = 0xfffff; /** * Node bit 6 is set on a primary node if there are tailored nodes * with secondary values below the common secondary weight (05), * from a reset-secondary-before (&[before 2]). */ static const int32_t HAS_BEFORE2 = 0x40; /** * Node bit 5 is set on a primary or secondary node if there are tailored nodes * with tertiary values below the common tertiary weight (05), * from a reset-tertiary-before (&[before 3]). */ static const int32_t HAS_BEFORE3 = 0x20; /** * Node bit 3 distinguishes a tailored node, which has no weight value, * from a node with an explicit (root or default) weight. */ static const int32_t IS_TAILORED = 8; static inline int64_t nodeFromWeight32(uint32_t weight32) { return (int64_t)weight32 << 32; } static inline int64_t nodeFromWeight16(uint32_t weight16) { return (int64_t)weight16 << 48; } static inline int64_t nodeFromPreviousIndex(int32_t previous) { return (int64_t)previous << 28; } static inline int64_t nodeFromNextIndex(int32_t next) { return next << 8; } static inline int64_t nodeFromStrength(int32_t strength) { return strength; } static inline uint32_t weight32FromNode(int64_t node) { return (uint32_t)(node >> 32); } static inline uint32_t weight16FromNode(int64_t node) { return (uint32_t)(node >> 48) & 0xffff; } static inline int32_t previousIndexFromNode(int64_t node) { return (int32_t)(node >> 28) & MAX_INDEX; } static inline int32_t nextIndexFromNode(int64_t node) { return ((int32_t)node >> 8) & MAX_INDEX; } static inline int32_t strengthFromNode(int64_t node) { return (int32_t)node & 3; } static inline UBool nodeHasBefore2(int64_t node) { return (node & HAS_BEFORE2) != 0; } static inline UBool nodeHasBefore3(int64_t node) { return (node & HAS_BEFORE3) != 0; } static inline UBool nodeHasAnyBefore(int64_t node) { return (node & (HAS_BEFORE2 | HAS_BEFORE3)) != 0; } static inline UBool isTailoredNode(int64_t node) { return (node & IS_TAILORED) != 0; } static inline int64_t changeNodePreviousIndex(int64_t node, int32_t previous) { return (node & INT64_C(0xffff00000fffffff)) | nodeFromPreviousIndex(previous); } static inline int64_t changeNodeNextIndex(int64_t node, int32_t next) { return (node & INT64_C(0xfffffffff00000ff)) | nodeFromNextIndex(next); } const Normalizer2 &nfd, &fcd; const Normalizer2Impl &nfcImpl; const CollationTailoring *base; const CollationData *baseData; const CollationRootElements rootElements; uint32_t variableTop; CollationDataBuilder *dataBuilder; UBool fastLatinEnabled; UnicodeSet optimizeSet; const char *errorReason; int64_t ces[Collation::MAX_EXPANSION_LENGTH]; int32_t cesLength; /** * Indexes of nodes with root primary weights, sorted by primary. * Compact form of a TreeMap from root primary to node index. * * This is a performance optimization for finding reset positions. * Without this, we would have to search through the entire nodes list. * It also allows storing root primary weights in list head nodes, * without previous index, leaving room in root primary nodes for 32-bit primary weights. */ UVector32 rootPrimaryIndexes; /** * Data structure for assigning tailored weights and CEs. * Doubly-linked lists of nodes in mostly collation order. * Each list starts with a root primary node and ends with a nextIndex of 0. * * When there are any nodes in the list, then there is always a root primary node at index 0. * This allows some code not to have to check explicitly for nextIndex==0. * * Root primary nodes have 32-bit weights but do not have previous indexes. * All other nodes have at most 16-bit weights and do have previous indexes. * * Nodes with explicit weights store root collator weights, * or default weak weights (e.g., secondary 05) for stronger nodes. * "Tailored" nodes, with the IS_TAILORED bit set, * do not store explicit weights but rather * create a difference of a certain strength from the preceding node. * * A root node is followed by either * - a root/default node of the same strength, or * - a root/default node of the next-weaker strength, or * - a tailored node of the same strength. * * A node of a given strength normally implies "common" weights on weaker levels. * * A node with HAS_BEFORE2 must be immediately followed by * a secondary node with BEFORE_WEIGHT16, then a secondary tailored node, * and later an explicit common-secondary node. * (&[before 2] resets to the BEFORE_WEIGHT16 node so that * the following addRelation(secondary) tailors right after that. * If we did not have this node and instead were to reset on the primary node, * then addRelation(secondary) would skip forward to the the COMMON_WEIGHT16 node.) * * All secondary tailored nodes between these two explicit ones * will be assigned lower-than-common secondary weights. * If the flag is not set, then there are no explicit secondary nodes * with the common or lower weights. * * Same for HAS_BEFORE3 for tertiary nodes and weights. * A node must not have both flags set. * * Tailored CEs are initially represented in a CollationDataBuilder as temporary CEs * which point to stable indexes in this list, * and temporary CEs stored in a CollationDataBuilder only point to tailored nodes. * * A temporary CE in the ces[] array may point to a non-tailored reset-before-position node, * until the next relation is added. * * At the end, the tailored weights are allocated as necessary, * then the tailored nodes are replaced with final CEs, * and the CollationData is rewritten by replacing temporary CEs with final ones. * * We cannot simply insert new nodes in the middle of the array * because that would invalidate the indexes stored in existing temporary CEs. * We need to use a linked graph with stable indexes to existing nodes. * A doubly-linked list seems easiest to maintain. * * Each node is stored as an int64_t, with its fields stored as bit fields. * * Root primary node: * - primary weight: 32 bits 63..32 * - reserved/unused/zero: 4 bits 31..28 * * Weaker root nodes & tailored nodes: * - a weight: 16 bits 63..48 * + a root or default weight for a non-tailored node * + unused/zero for a tailored node * - index to the previous node: 20 bits 47..28 * * All types of nodes: * - index to the next node: 20 bits 27..8 * + nextIndex=0 in last node per root-primary list * - reserved/unused/zero bits: bits 7, 4, 2 * - HAS_BEFORE2: bit 6 * - HAS_BEFORE3: bit 5 * - IS_TAILORED: bit 3 * - the difference strength (primary/secondary/tertiary/quaternary): 2 bits 1..0 * * We could allocate structs with pointers, but we would have to store them * in a pointer list so that they can be indexed from temporary CEs, * and they would require more memory allocations. */ UVector64 nodes; }; U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION #endif // __COLLATIONBUILDER_H__