/** * f2fs.h * * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _F2FS_H_ #define _F2FS_H_ #include <stdlib.h> #include <unistd.h> #include <stdio.h> #include <errno.h> #include <fcntl.h> #include <string.h> #include <errno.h> #include <mntent.h> #include <linux/types.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/ioctl.h> #include <sys/mount.h> #include <assert.h> #include <list.h> #include <f2fs_fs.h> #define EXIT_ERR_CODE (-1) #define ver_after(a, b) (typecheck(unsigned long long, a) && \ typecheck(unsigned long long, b) && \ ((long long)((a) - (b)) > 0)) enum { NAT_BITMAP, SIT_BITMAP }; struct node_info { nid_t nid; nid_t ino; u32 blk_addr; unsigned char version; }; struct f2fs_nm_info { block_t nat_blkaddr; nid_t max_nid; nid_t init_scan_nid; nid_t next_scan_nid; unsigned int nat_cnt; unsigned int fcnt; char *nat_bitmap; int bitmap_size; }; struct seg_entry { unsigned short valid_blocks; /* # of valid blocks */ unsigned char *cur_valid_map; /* validity bitmap of blocks */ /* * # of valid blocks and the validity bitmap stored in the the last * checkpoint pack. This information is used by the SSR mode. */ unsigned short ckpt_valid_blocks; unsigned char *ckpt_valid_map; unsigned char type; /* segment type like CURSEG_XXX_TYPE */ unsigned long long mtime; /* modification time of the segment */ }; struct sec_entry { unsigned int valid_blocks; /* # of valid blocks in a section */ }; struct sit_info { block_t sit_base_addr; /* start block address of SIT area */ block_t sit_blocks; /* # of blocks used by SIT area */ block_t written_valid_blocks; /* # of valid blocks in main area */ char *sit_bitmap; /* SIT bitmap pointer */ unsigned int bitmap_size; /* SIT bitmap size */ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ unsigned int dirty_sentries; /* # of dirty sentries */ unsigned int sents_per_block; /* # of SIT entries per block */ struct seg_entry *sentries; /* SIT segment-level cache */ struct sec_entry *sec_entries; /* SIT section-level cache */ unsigned long long elapsed_time; /* elapsed time after mount */ unsigned long long mounted_time; /* mount time */ unsigned long long min_mtime; /* min. modification time */ unsigned long long max_mtime; /* max. modification time */ }; struct curseg_info { struct f2fs_summary_block *sum_blk; /* cached summary block */ unsigned char alloc_type; /* current allocation type */ unsigned int segno; /* current segment number */ unsigned short next_blkoff; /* next block offset to write */ unsigned int zone; /* current zone number */ unsigned int next_segno; /* preallocated segment */ }; struct f2fs_sm_info { struct sit_info *sit_info; struct curseg_info *curseg_array; block_t seg0_blkaddr; block_t main_blkaddr; block_t ssa_blkaddr; unsigned int segment_count; unsigned int main_segments; unsigned int reserved_segments; unsigned int ovp_segments; }; struct f2fs_sb_info { struct f2fs_fsck *fsck; struct f2fs_super_block *raw_super; struct f2fs_nm_info *nm_info; struct f2fs_sm_info *sm_info; struct f2fs_checkpoint *ckpt; struct list_head orphan_inode_list; unsigned int n_orphans; /* basic file system units */ unsigned int log_sectors_per_block; /* log2 sectors per block */ unsigned int log_blocksize; /* log2 block size */ unsigned int blocksize; /* block size */ unsigned int root_ino_num; /* root inode number*/ unsigned int node_ino_num; /* node inode number*/ unsigned int meta_ino_num; /* meta inode number*/ unsigned int log_blocks_per_seg; /* log2 blocks per segment */ unsigned int blocks_per_seg; /* blocks per segment */ unsigned int segs_per_sec; /* segments per section */ unsigned int secs_per_zone; /* sections per zone */ unsigned int total_sections; /* total section count */ unsigned int total_node_count; /* total node block count */ unsigned int total_valid_node_count; /* valid node block count */ unsigned int total_valid_inode_count; /* valid inode count */ int active_logs; /* # of active logs */ block_t user_block_count; /* # of user blocks */ block_t total_valid_block_count; /* # of valid blocks */ block_t alloc_valid_block_count; /* # of allocated blocks */ block_t last_valid_block_count; /* for recovery */ u32 s_next_generation; /* for NFS support */ unsigned int cur_victim_sec; /* current victim section num */ }; static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) { return (struct f2fs_super_block *)(sbi->raw_super); } static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) { return (struct f2fs_checkpoint *)(sbi->ckpt); } static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi) { return (struct f2fs_fsck *)(sbi->fsck); } static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_nm_info *)(sbi->nm_info); } static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_sm_info *)(sbi->sm_info); } static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) { return (struct sit_info *)(SM_I(sbi)->sit_info); } static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); /* return NAT or SIT bitmap */ if (flag == NAT_BITMAP) return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); else if (flag == SIT_BITMAP) return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); return 0; } static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); int offset; if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) { if (flag == NAT_BITMAP) return &ckpt->sit_nat_version_bitmap; else return ((char *)ckpt + F2FS_BLKSIZE); } else { offset = (flag == NAT_BITMAP) ? le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; return &ckpt->sit_nat_version_bitmap + offset; } } static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); return ckpt_flags & f; } static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) { block_t start_addr; struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver); start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); /* * odd numbered checkpoint should at cp segment 0 * and even segent must be at cp segment 1 */ if (!(ckpt_version & 1)) start_addr += sbi->blocks_per_seg; return start_addr; } static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) #define IS_DATASEG(t) \ ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ (t == CURSEG_WARM_DATA)) #define IS_NODESEG(t) \ ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ (t == CURSEG_WARM_NODE)) #define GET_SUM_BLKADDR(sbi, segno) \ ((sbi->sm_info->ssa_blkaddr) + segno) #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ ((blk_addr) - SM_I(sbi)->seg0_blkaddr) #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) #define FREE_I_START_SEGNO(sbi) GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr) #define GET_R2L_SEGNO(sbi, segno) (segno + FREE_I_START_SEGNO(sbi)) #define START_BLOCK(sbi, segno) (SM_I(sbi)->main_blkaddr + (segno << sbi->log_blocks_per_seg)) static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) { return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); } static inline block_t start_sum_block(struct f2fs_sb_info *sbi) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) - (base + 1) + type; } #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) #define SIT_ENTRY_OFFSET(sit_i, segno) \ (segno % sit_i->sents_per_block) #define SIT_BLOCK_OFFSET(sit_i, segno) \ (segno / SIT_ENTRY_PER_BLOCK) #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) #define IS_VALID_NID(sbi, nid) \ do { \ ASSERT(nid <= (NAT_ENTRY_PER_BLOCK * \ F2FS_RAW_SUPER(sbi)->segment_count_nat \ << (sbi->log_blocks_per_seg - 1))); \ } while (0); #define IS_VALID_BLK_ADDR(sbi, addr) \ do { \ if (addr >= F2FS_RAW_SUPER(sbi)->block_count || \ addr < SM_I(sbi)->main_blkaddr) \ { \ DBG(0, "block addr [0x%x]\n", addr); \ ASSERT(addr < F2FS_RAW_SUPER(sbi)->block_count); \ ASSERT(addr >= SM_I(sbi)->main_blkaddr); \ } \ } while (0); static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr) { ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr); return blk_addr - SM_I(sbi)->main_blkaddr; } static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr) { return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr) >> sbi->log_blocks_per_seg); } static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr) { return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr) % (1 << sbi->log_blocks_per_seg)); } static inline void node_info_from_raw_nat(struct node_info *ni, struct f2fs_nat_entry *raw_nat) { ni->ino = le32_to_cpu(raw_nat->ino); ni->blk_addr = le32_to_cpu(raw_nat->block_addr); ni->version = raw_nat->version; } extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne); #define IS_SUM_NODE_SEG(footer) (footer.entry_type == SUM_TYPE_NODE) #endif /* _F2FS_H_ */