/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Tessellation and geometry shader interaction stress tests. *//*--------------------------------------------------------------------*/ #include "es31sTessellationGeometryInteractionTests.hpp" #include "tcuTestLog.hpp" #include "tcuRenderTarget.hpp" #include "tcuSurface.hpp" #include "tcuTextureUtil.hpp" #include "gluRenderContext.hpp" #include "gluShaderProgram.hpp" #include "gluContextInfo.hpp" #include "gluObjectWrapper.hpp" #include "gluPixelTransfer.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "deStringUtil.hpp" #include "deUniquePtr.hpp" #include <sstream> namespace deqp { namespace gles31 { namespace Stress { namespace { class AllowedRenderFailureException : public std::runtime_error { public: AllowedRenderFailureException (const char* message) : std::runtime_error(message) { } }; class GridRenderCase : public TestCase { public: enum Flags { FLAG_TESSELLATION_MAX_SPEC = 0x0001, FLAG_TESSELLATION_MAX_IMPLEMENTATION = 0x0002, FLAG_GEOMETRY_MAX_SPEC = 0x0004, FLAG_GEOMETRY_MAX_IMPLEMENTATION = 0x0008, FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC = 0x0010, FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION = 0x0020, }; GridRenderCase (Context& context, const char* name, const char* description, int flags); ~GridRenderCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); void renderTo (std::vector<tcu::Surface>& dst); bool verifyResultLayer (int layerNdx, const tcu::Surface& dst); const char* getVertexSource (void); const char* getFragmentSource (void); std::string getTessellationControlSource (int tessLevel); std::string getTessellationEvaluationSource (int tessLevel); std::string getGeometryShaderSource (int numPrimitives, int numInstances); enum { RENDER_SIZE = 256 }; const int m_flags; glu::ShaderProgram* m_program; int m_numLayers; }; GridRenderCase::GridRenderCase (Context& context, const char* name, const char* description, int flags) : TestCase (context, name, description) , m_flags (flags) , m_program (DE_NULL) , m_numLayers (1) { DE_ASSERT(((m_flags & FLAG_TESSELLATION_MAX_SPEC) == 0) || ((m_flags & FLAG_TESSELLATION_MAX_IMPLEMENTATION) == 0)); DE_ASSERT(((m_flags & FLAG_GEOMETRY_MAX_SPEC) == 0) || ((m_flags & FLAG_GEOMETRY_MAX_IMPLEMENTATION) == 0)); DE_ASSERT(((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC) == 0) || ((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION) == 0)); } GridRenderCase::~GridRenderCase (void) { deinit(); } void GridRenderCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); // Requirements if (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") || !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions"); if (m_context.getRenderTarget().getWidth() < RENDER_SIZE || m_context.getRenderTarget().getHeight() < RENDER_SIZE) throw tcu::NotSupportedError("Test requires " + de::toString<int>(RENDER_SIZE) + "x" + de::toString<int>(RENDER_SIZE) + " or larger render target."); // Log m_testCtx.getLog() << tcu::TestLog::Message << "Testing tessellation and geometry shaders that output a large number of primitives.\n" << getDescription() << tcu::TestLog::EndMessage; // Gen program { glu::ProgramSources sources; int tessGenLevel = -1; sources << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()); // Tessellation limits { if (m_flags & FLAG_TESSELLATION_MAX_IMPLEMENTATION) { gl.getIntegerv(GL_MAX_TESS_GEN_LEVEL, &tessGenLevel); GLU_EXPECT_NO_ERROR(gl.getError(), "query tessellation limits"); } else if (m_flags & FLAG_TESSELLATION_MAX_SPEC) { tessGenLevel = 64; } else { tessGenLevel = 5; } m_testCtx.getLog() << tcu::TestLog::Message << "Tessellation level: " << tessGenLevel << ", mode = quad.\n" << "\tEach input patch produces " << (tessGenLevel*tessGenLevel) << " (" << (tessGenLevel*tessGenLevel*2) << " triangles)\n" << tcu::TestLog::EndMessage; sources << glu::TessellationControlSource(getTessellationControlSource(tessGenLevel)) << glu::TessellationEvaluationSource(getTessellationEvaluationSource(tessGenLevel)); } // Geometry limits { int geometryOutputComponents = -1; int geometryOutputVertices = -1; int geometryTotalOutputComponents = -1; int geometryShaderInvocations = -1; bool logGeometryLimits = false; bool logInvocationLimits = false; if (m_flags & FLAG_GEOMETRY_MAX_IMPLEMENTATION) { m_testCtx.getLog() << tcu::TestLog::Message << "Using implementation maximum geometry shader output limits." << tcu::TestLog::EndMessage; gl.getIntegerv(GL_MAX_GEOMETRY_OUTPUT_COMPONENTS, &geometryOutputComponents); gl.getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &geometryOutputVertices); gl.getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &geometryTotalOutputComponents); GLU_EXPECT_NO_ERROR(gl.getError(), "query geometry limits"); logGeometryLimits = true; } else if (m_flags & FLAG_GEOMETRY_MAX_SPEC) { m_testCtx.getLog() << tcu::TestLog::Message << "Using geometry shader extension minimum maximum output limits." << tcu::TestLog::EndMessage; geometryOutputComponents = 128; geometryOutputVertices = 256; geometryTotalOutputComponents = 1024; logGeometryLimits = true; } else { geometryOutputComponents = 128; geometryOutputVertices = 16; geometryTotalOutputComponents = 1024; } if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION) { gl.getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS, &geometryShaderInvocations); GLU_EXPECT_NO_ERROR(gl.getError(), "query geometry invocation limits"); logInvocationLimits = true; } else if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC) { geometryShaderInvocations = 32; logInvocationLimits = true; } else { geometryShaderInvocations = 4; } if (logGeometryLimits || logInvocationLimits) { tcu::MessageBuilder msg(&m_testCtx.getLog()); msg << "Geometry shader, targeting following limits:\n"; if (logGeometryLimits) msg << "\tGL_MAX_GEOMETRY_OUTPUT_COMPONENTS = " << geometryOutputComponents << "\n" << "\tGL_MAX_GEOMETRY_OUTPUT_VERTICES = " << geometryOutputVertices << "\n" << "\tGL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << geometryTotalOutputComponents << "\n"; if (logInvocationLimits) msg << "\tGL_MAX_GEOMETRY_SHADER_INVOCATIONS = " << geometryShaderInvocations; msg << tcu::TestLog::EndMessage; } { const int numComponentsPerVertex = 8; // vec4 pos, vec4 color // If FLAG_GEOMETRY_SEPARATE_PRIMITIVES is not set, geometry shader fills a rectangle area in slices. // Each slice is a triangle strip and is generated by a single shader invocation. // One slice with 4 segment ends (nodes) and 3 segments: // .__.__.__. // |\ |\ |\ | // |_\|_\|_\| const int numSliceNodesComponentLimit = geometryTotalOutputComponents / (2 * numComponentsPerVertex); // each node 2 vertices const int numSliceNodesOutputLimit = geometryOutputVertices / 2; // each node 2 vertices const int numSliceNodes = de::min(numSliceNodesComponentLimit, numSliceNodesOutputLimit); const int numVerticesPerInvocation = numSliceNodes * 2; const int numPrimitivesPerInvocation = (numSliceNodes - 1) * 2; const int geometryVerticesPerPrimitive = numVerticesPerInvocation * geometryShaderInvocations; const int geometryPrimitivesOutPerPrimitive = numPrimitivesPerInvocation * geometryShaderInvocations; m_testCtx.getLog() << tcu::TestLog::Message << "Geometry shader:\n" << "\tTotal output vertex count per invocation: " << (numVerticesPerInvocation) << "\n" << "\tTotal output primitive count per invocation: " << (numPrimitivesPerInvocation) << "\n" << "\tNumber of invocations per primitive: " << geometryShaderInvocations << "\n" << "\tTotal output vertex count per input primitive: " << (geometryVerticesPerPrimitive) << "\n" << "\tTotal output primitive count per input primitive: " << (geometryPrimitivesOutPerPrimitive) << "\n" << tcu::TestLog::EndMessage; sources << glu::GeometrySource(getGeometryShaderSource(numPrimitivesPerInvocation, geometryShaderInvocations)); m_testCtx.getLog() << tcu::TestLog::Message << "Program:\n" << "\tTotal program output vertices count per input patch: " << (tessGenLevel*tessGenLevel*2 * geometryVerticesPerPrimitive) << "\n" << "\tTotal program output primitive count per input patch: " << (tessGenLevel*tessGenLevel*2 * geometryPrimitivesOutPerPrimitive) << "\n" << tcu::TestLog::EndMessage; } } m_program = new glu::ShaderProgram(m_context.getRenderContext(), sources); m_testCtx.getLog() << *m_program; if (!m_program->isOk()) throw tcu::TestError("failed to build program"); } } void GridRenderCase::deinit (void) { delete m_program; m_program = DE_NULL; } GridRenderCase::IterateResult GridRenderCase::iterate (void) { std::vector<tcu::Surface> renderedLayers (m_numLayers); bool allLayersOk = true; for (int ndx = 0; ndx < m_numLayers; ++ndx) renderedLayers[ndx].setSize(RENDER_SIZE, RENDER_SIZE); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering single point at the origin. Expecting yellow and green colored grid-like image. (High-frequency grid may appear unicolored)." << tcu::TestLog::EndMessage; try { renderTo(renderedLayers); } catch (const AllowedRenderFailureException& ex) { // Got accepted failure m_testCtx.getLog() << tcu::TestLog::Message << "Could not render, reason: " << ex.what() << "\n" << "Failure is allowed." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); return STOP; } for (int ndx = 0; ndx < m_numLayers; ++ndx) allLayersOk &= verifyResultLayer(ndx, renderedLayers[ndx]); if (allLayersOk) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed"); return STOP; } void GridRenderCase::renderTo (std::vector<tcu::Surface>& dst) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int positionLocation = gl.getAttribLocation(m_program->getProgram(), "a_position"); const glu::VertexArray vao (m_context.getRenderContext()); if (positionLocation == -1) throw tcu::TestError("Attribute a_position location was -1"); gl.viewport(0, 0, dst.front().getWidth(), dst.front().getHeight()); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "viewport"); gl.bindVertexArray(*vao); GLU_EXPECT_NO_ERROR(gl.getError(), "bind vao"); gl.useProgram(m_program->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.patchParameteri(GL_PATCH_VERTICES, 1); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.vertexAttrib4f(positionLocation, 0.0f, 0.0f, 0.0f, 1.0f); // clear viewport gl.clear(GL_COLOR_BUFFER_BIT); // draw { glw::GLenum glerror; gl.drawArrays(GL_PATCHES, 0, 1); // allow always OOM glerror = gl.getError(); if (glerror == GL_OUT_OF_MEMORY) throw AllowedRenderFailureException("got GL_OUT_OF_MEMORY while drawing"); GLU_EXPECT_NO_ERROR(glerror, "draw patches"); } // Read layers glu::readPixels(m_context.getRenderContext(), 0, 0, dst.front().getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels"); } bool GridRenderCase::verifyResultLayer (int layerNdx, const tcu::Surface& image) { tcu::Surface errorMask (image.getWidth(), image.getHeight()); bool foundError = false; tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying output layer " << layerNdx << tcu::TestLog::EndMessage; for (int y = 0; y < image.getHeight(); ++y) for (int x = 0; x < image.getWidth(); ++x) { const int threshold = 8; const tcu::RGBA color = image.getPixel(x, y); // Color must be a linear combination of green and yellow if (color.getGreen() < 255 - threshold || color.getBlue() > threshold) { errorMask.setPixel(x, y, tcu::RGBA::red); foundError = true; } } if (!foundError) { m_testCtx.getLog() << tcu::TestLog::Message << "Image valid." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("ImageVerification", "Image verification") << tcu::TestLog::Image("Result", "Rendered result", image.getAccess()) << tcu::TestLog::EndImageSet; return true; } else { m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed, found invalid pixels." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("ImageVerification", "Image verification") << tcu::TestLog::Image("Result", "Rendered result", image.getAccess()) << tcu::TestLog::Image("ErrorMask", "Error mask", errorMask.getAccess()) << tcu::TestLog::EndImageSet; return false; } } const char* GridRenderCase::getVertexSource (void) { return "#version 310 es\n" "in highp vec4 a_position;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" "}\n"; } const char* GridRenderCase::getFragmentSource (void) { return "#version 310 es\n" "flat in mediump vec4 v_color;\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = v_color;\n" "}\n"; } std::string GridRenderCase::getTessellationControlSource (int tessLevel) { std::ostringstream buf; buf << "#version 310 es\n" "#extension GL_EXT_tessellation_shader : require\n" "layout(vertices=1) out;\n" "\n" "void main()\n" "{\n" " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" " gl_TessLevelOuter[0] = " << tessLevel << ".0;\n" " gl_TessLevelOuter[1] = " << tessLevel << ".0;\n" " gl_TessLevelOuter[2] = " << tessLevel << ".0;\n" " gl_TessLevelOuter[3] = " << tessLevel << ".0;\n" " gl_TessLevelInner[0] = " << tessLevel << ".0;\n" " gl_TessLevelInner[1] = " << tessLevel << ".0;\n" "}\n"; return buf.str(); } std::string GridRenderCase::getTessellationEvaluationSource (int tessLevel) { std::ostringstream buf; buf << "#version 310 es\n" "#extension GL_EXT_tessellation_shader : require\n" "layout(quads) in;\n" "\n" "out mediump ivec2 v_tessellationGridPosition;\n" "\n" "void main (void)\n" "{\n" " // Fill the whole viewport\n" " gl_Position = vec4(gl_TessCoord.x * 2.0 - 1.0, gl_TessCoord.y * 2.0 - 1.0, 0.0, 1.0);\n" " // Calculate position in tessellation grid\n" " v_tessellationGridPosition = ivec2(round(gl_TessCoord.xy * float(" << tessLevel << ")));\n" "}\n"; return buf.str(); } std::string GridRenderCase::getGeometryShaderSource (int numPrimitives, int numInstances) { std::ostringstream buf; buf << "#version 310 es\n" "#extension GL_EXT_geometry_shader : require\n" "layout(triangles, invocations=" << numInstances << ") in;\n" "layout(triangle_strip, max_vertices=" << (numPrimitives + 2) << ") out;\n" "\n" "in mediump ivec2 v_tessellationGridPosition[];\n" "flat out highp vec4 v_color;\n" "\n" "void main ()\n" "{\n" " const float equalThreshold = 0.001;\n" " const float gapOffset = 0.0001; // subdivision performed by the geometry shader might produce gaps. Fill potential gaps by enlarging the output slice a little.\n" "\n" " // Input triangle is generated from an axis-aligned rectangle by splitting it in half\n" " // Original rectangle can be found by finding the bounding AABB of the triangle\n" " vec4 aabb = vec4(min(gl_in[0].gl_Position.x, min(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n" " min(gl_in[0].gl_Position.y, min(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)),\n" " max(gl_in[0].gl_Position.x, max(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n" " max(gl_in[0].gl_Position.y, max(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)));\n" "\n" " // Location in tessellation grid\n" " ivec2 gridPosition = ivec2(min(v_tessellationGridPosition[0], min(v_tessellationGridPosition[1], v_tessellationGridPosition[2])));\n" "\n" " // Which triangle of the two that split the grid cell\n" " int numVerticesOnBottomEdge = 0;\n" " for (int ndx = 0; ndx < 3; ++ndx)\n" " if (abs(gl_in[ndx].gl_Position.y - aabb.w) < equalThreshold)\n" " ++numVerticesOnBottomEdge;\n" " bool isBottomTriangle = numVerticesOnBottomEdge == 2;\n" "\n" " // Fill the input area with slices\n" " // Upper triangle produces slices only to the upper half of the quad and vice-versa\n" " float triangleOffset = (isBottomTriangle) ? ((aabb.w + aabb.y) / 2.0) : (aabb.y);\n" " // Each slice is a invocation\n" " float sliceHeight = (aabb.w - aabb.y) / float(2 * " << numInstances << ");\n" " float invocationOffset = float(gl_InvocationID) * sliceHeight;\n" "\n" " vec4 outputSliceArea;\n" " outputSliceArea.x = aabb.x - gapOffset;\n" " outputSliceArea.y = triangleOffset + invocationOffset - gapOffset;\n" " outputSliceArea.z = aabb.z + gapOffset;\n" " outputSliceArea.w = triangleOffset + invocationOffset + sliceHeight + gapOffset;\n""\n" " // Draw slice\n" " for (int ndx = 0; ndx < " << ((numPrimitives+2)/2) << "; ++ndx)\n" " {\n" " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " vec4 outputColor = (((gl_InvocationID + ndx) % 2) == 0) ? (green) : (yellow);\n" " float xpos = mix(outputSliceArea.x, outputSliceArea.z, float(ndx) / float(" << (numPrimitives/2) << "));\n" "\n" " gl_Position = vec4(xpos, outputSliceArea.y, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" "\n" " gl_Position = vec4(xpos, outputSliceArea.w, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" " }\n" "}\n"; return buf.str(); } } // anonymous TessellationGeometryInteractionTests::TessellationGeometryInteractionTests (Context& context) : TestCaseGroup(context, "tessellation_geometry_interaction", "Tessellation and geometry shader interaction stress tests") { } TessellationGeometryInteractionTests::~TessellationGeometryInteractionTests (void) { } void TessellationGeometryInteractionTests::init (void) { tcu::TestCaseGroup* const multilimitGroup = new tcu::TestCaseGroup(m_testCtx, "render_multiple_limits", "Various render tests"); addChild(multilimitGroup); // .render_multiple_limits { static const struct LimitCaseDef { const char* name; const char* desc; int flags; } cases[] = { // Test multiple limits at the same time { "output_required_max_tessellation_max_geometry", "Minimum maximum tessellation level and geometry shader output vertices", GridRenderCase::FLAG_TESSELLATION_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_MAX_SPEC }, { "output_implementation_max_tessellation_max_geometry", "Maximum tessellation level and geometry shader output vertices supported by the implementation", GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION }, { "output_required_max_tessellation_max_invocations", "Minimum maximum tessellation level and geometry shader invocations", GridRenderCase::FLAG_TESSELLATION_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC }, { "output_implementation_max_tessellation_max_invocations", "Maximum tessellation level and geometry shader invocations supported by the implementation", GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION }, { "output_required_max_geometry_max_invocations", "Minimum maximum geometry shader output vertices and invocations", GridRenderCase::FLAG_GEOMETRY_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC }, { "output_implementation_max_geometry_max_invocations", "Maximum geometry shader output vertices and invocations invocations supported by the implementation", GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION }, // Test all limits simultaneously { "output_max_required", "Output minimum maximum number of vertices", GridRenderCase::FLAG_TESSELLATION_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC }, { "output_max_implementation", "Output maximum number of vertices supported by the implementation", GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION }, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx) multilimitGroup->addChild(new GridRenderCase(m_context, cases[ndx].name, cases[ndx].desc, cases[ndx].flags)); } } } // Stress } // gles31 } // deqp