//===-- tsan_rtl_report.cc ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_suppressions.h" #include "tsan_symbolize.h" #include "tsan_report.h" #include "tsan_sync.h" #include "tsan_mman.h" #include "tsan_flags.h" #include "tsan_fd.h" namespace __tsan { using namespace __sanitizer; // NOLINT static ReportStack *SymbolizeStack(const StackTrace& trace); void TsanCheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2) { // There is high probability that interceptors will check-fail as well, // on the other hand there is no sense in processing interceptors // since we are going to die soon. ScopedIgnoreInterceptors ignore; Printf("FATAL: ThreadSanitizer CHECK failed: " "%s:%d \"%s\" (0x%zx, 0x%zx)\n", file, line, cond, (uptr)v1, (uptr)v2); PrintCurrentStackSlow(); Die(); } // Can be overriden by an application/test to intercept reports. #ifdef TSAN_EXTERNAL_HOOKS bool OnReport(const ReportDesc *rep, bool suppressed); #else SANITIZER_INTERFACE_ATTRIBUTE bool WEAK OnReport(const ReportDesc *rep, bool suppressed) { (void)rep; return suppressed; } #endif static void StackStripMain(ReportStack *stack) { ReportStack *last_frame = 0; ReportStack *last_frame2 = 0; const char *prefix = "__interceptor_"; uptr prefix_len = internal_strlen(prefix); const char *path_prefix = flags()->strip_path_prefix; uptr path_prefix_len = internal_strlen(path_prefix); char *pos; for (ReportStack *ent = stack; ent; ent = ent->next) { if (ent->func && 0 == internal_strncmp(ent->func, prefix, prefix_len)) ent->func += prefix_len; if (ent->file && (pos = internal_strstr(ent->file, path_prefix))) ent->file = pos + path_prefix_len; if (ent->file && ent->file[0] == '.' && ent->file[1] == '/') ent->file += 2; last_frame2 = last_frame; last_frame = ent; } if (last_frame2 == 0) return; const char *last = last_frame->func; #ifndef TSAN_GO const char *last2 = last_frame2->func; // Strip frame above 'main' if (last2 && 0 == internal_strcmp(last2, "main")) { last_frame2->next = 0; // Strip our internal thread start routine. } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) { last_frame2->next = 0; // Strip global ctors init. } else if (last && 0 == internal_strcmp(last, "__do_global_ctors_aux")) { last_frame2->next = 0; // If both are 0, then we probably just failed to symbolize. } else if (last || last2) { // Ensure that we recovered stack completely. Trimmed stack // can actually happen if we do not instrument some code, // so it's only a debug print. However we must try hard to not miss it // due to our fault. DPrintf("Bottom stack frame of stack %zx is missed\n", stack->pc); } #else // The last frame always point into runtime (gosched0, goexit0, runtime.main). last_frame2->next = 0; (void)last; #endif } ReportStack *SymbolizeStackId(u32 stack_id) { if (stack_id == 0) return 0; uptr ssz = 0; const uptr *stack = StackDepotGet(stack_id, &ssz); if (stack == 0) return 0; StackTrace trace; trace.Init(stack, ssz); return SymbolizeStack(trace); } static ReportStack *SymbolizeStack(const StackTrace& trace) { if (trace.IsEmpty()) return 0; ReportStack *stack = 0; for (uptr si = 0; si < trace.Size(); si++) { const uptr pc = trace.Get(si); #ifndef TSAN_GO // We obtain the return address, that is, address of the next instruction, // so offset it by 1 byte. const uptr pc1 = __sanitizer::StackTrace::GetPreviousInstructionPc(pc); #else // FIXME(dvyukov): Go sometimes uses address of a function as top pc. uptr pc1 = pc; if (si != trace.Size() - 1) pc1 -= 1; #endif ReportStack *ent = SymbolizeCode(pc1); CHECK_NE(ent, 0); ReportStack *last = ent; while (last->next) { last->pc = pc; // restore original pc for report last = last->next; } last->pc = pc; // restore original pc for report last->next = stack; stack = ent; } StackStripMain(stack); return stack; } ScopedReport::ScopedReport(ReportType typ) { ctx->thread_registry->CheckLocked(); void *mem = internal_alloc(MBlockReport, sizeof(ReportDesc)); rep_ = new(mem) ReportDesc; rep_->typ = typ; ctx->report_mtx.Lock(); CommonSanitizerReportMutex.Lock(); } ScopedReport::~ScopedReport() { CommonSanitizerReportMutex.Unlock(); ctx->report_mtx.Unlock(); DestroyAndFree(rep_); } void ScopedReport::AddStack(const StackTrace *stack, bool suppressable) { ReportStack **rs = rep_->stacks.PushBack(); *rs = SymbolizeStack(*stack); (*rs)->suppressable = suppressable; } void ScopedReport::AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack, const MutexSet *mset) { void *mem = internal_alloc(MBlockReportMop, sizeof(ReportMop)); ReportMop *mop = new(mem) ReportMop; rep_->mops.PushBack(mop); mop->tid = s.tid(); mop->addr = addr + s.addr0(); mop->size = s.size(); mop->write = s.IsWrite(); mop->atomic = s.IsAtomic(); mop->stack = SymbolizeStack(*stack); if (mop->stack) mop->stack->suppressable = true; for (uptr i = 0; i < mset->Size(); i++) { MutexSet::Desc d = mset->Get(i); u64 mid = this->AddMutex(d.id); ReportMopMutex mtx = {mid, d.write}; mop->mset.PushBack(mtx); } } void ScopedReport::AddUniqueTid(int unique_tid) { rep_->unique_tids.PushBack(unique_tid); } void ScopedReport::AddThread(const ThreadContext *tctx, bool suppressable) { for (uptr i = 0; i < rep_->threads.Size(); i++) { if ((u32)rep_->threads[i]->id == tctx->tid) return; } void *mem = internal_alloc(MBlockReportThread, sizeof(ReportThread)); ReportThread *rt = new(mem) ReportThread(); rep_->threads.PushBack(rt); rt->id = tctx->tid; rt->pid = tctx->os_id; rt->running = (tctx->status == ThreadStatusRunning); rt->name = internal_strdup(tctx->name); rt->parent_tid = tctx->parent_tid; rt->stack = 0; rt->stack = SymbolizeStackId(tctx->creation_stack_id); if (rt->stack) rt->stack->suppressable = suppressable; } #ifndef TSAN_GO static ThreadContext *FindThreadByUidLocked(int unique_id) { ctx->thread_registry->CheckLocked(); for (unsigned i = 0; i < kMaxTid; i++) { ThreadContext *tctx = static_cast<ThreadContext*>( ctx->thread_registry->GetThreadLocked(i)); if (tctx && tctx->unique_id == (u32)unique_id) { return tctx; } } return 0; } static ThreadContext *FindThreadByTidLocked(int tid) { ctx->thread_registry->CheckLocked(); return static_cast<ThreadContext*>( ctx->thread_registry->GetThreadLocked(tid)); } static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) { uptr addr = (uptr)arg; ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base); if (tctx->status != ThreadStatusRunning) return false; ThreadState *thr = tctx->thr; CHECK(thr); return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) || (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size)); } ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) { ctx->thread_registry->CheckLocked(); ThreadContext *tctx = static_cast<ThreadContext*>( ctx->thread_registry->FindThreadContextLocked(IsInStackOrTls, (void*)addr)); if (!tctx) return 0; ThreadState *thr = tctx->thr; CHECK(thr); *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size); return tctx; } #endif void ScopedReport::AddThread(int unique_tid, bool suppressable) { #ifndef TSAN_GO AddThread(FindThreadByUidLocked(unique_tid), suppressable); #endif } void ScopedReport::AddMutex(const SyncVar *s) { for (uptr i = 0; i < rep_->mutexes.Size(); i++) { if (rep_->mutexes[i]->id == s->uid) return; } void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex)); ReportMutex *rm = new(mem) ReportMutex(); rep_->mutexes.PushBack(rm); rm->id = s->uid; rm->addr = s->addr; rm->destroyed = false; rm->stack = SymbolizeStackId(s->creation_stack_id); } u64 ScopedReport::AddMutex(u64 id) { u64 uid = 0; u64 mid = id; uptr addr = SyncVar::SplitId(id, &uid); SyncVar *s = ctx->metamap.GetIfExistsAndLock(addr); // Check that the mutex is still alive. // Another mutex can be created at the same address, // so check uid as well. if (s && s->CheckId(uid)) { mid = s->uid; AddMutex(s); } else { AddDeadMutex(id); } if (s) s->mtx.Unlock(); return mid; } void ScopedReport::AddDeadMutex(u64 id) { for (uptr i = 0; i < rep_->mutexes.Size(); i++) { if (rep_->mutexes[i]->id == id) return; } void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex)); ReportMutex *rm = new(mem) ReportMutex(); rep_->mutexes.PushBack(rm); rm->id = id; rm->addr = 0; rm->destroyed = true; rm->stack = 0; } void ScopedReport::AddLocation(uptr addr, uptr size) { if (addr == 0) return; #ifndef TSAN_GO int fd = -1; int creat_tid = -1; u32 creat_stack = 0; if (FdLocation(addr, &fd, &creat_tid, &creat_stack) || FdLocation(AlternativeAddress(addr), &fd, &creat_tid, &creat_stack)) { void *mem = internal_alloc(MBlockReportLoc, sizeof(ReportLocation)); ReportLocation *loc = new(mem) ReportLocation(); rep_->locs.PushBack(loc); loc->type = ReportLocationFD; loc->fd = fd; loc->tid = creat_tid; loc->stack = SymbolizeStackId(creat_stack); ThreadContext *tctx = FindThreadByUidLocked(creat_tid); if (tctx) AddThread(tctx); return; } MBlock *b = 0; Allocator *a = allocator(); if (a->PointerIsMine((void*)addr)) { void *block_begin = a->GetBlockBegin((void*)addr); if (block_begin) b = ctx->metamap.GetBlock((uptr)block_begin); } if (b != 0) { ThreadContext *tctx = FindThreadByTidLocked(b->tid); void *mem = internal_alloc(MBlockReportLoc, sizeof(ReportLocation)); ReportLocation *loc = new(mem) ReportLocation(); rep_->locs.PushBack(loc); loc->type = ReportLocationHeap; loc->addr = (uptr)allocator()->GetBlockBegin((void*)addr); loc->size = b->siz; loc->tid = tctx ? tctx->tid : b->tid; loc->name = 0; loc->file = 0; loc->line = 0; loc->stack = 0; loc->stack = SymbolizeStackId(b->stk); if (tctx) AddThread(tctx); return; } bool is_stack = false; if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) { void *mem = internal_alloc(MBlockReportLoc, sizeof(ReportLocation)); ReportLocation *loc = new(mem) ReportLocation(); rep_->locs.PushBack(loc); loc->type = is_stack ? ReportLocationStack : ReportLocationTLS; loc->tid = tctx->tid; AddThread(tctx); } ReportLocation *loc = SymbolizeData(addr); if (loc) { loc->suppressable = true; rep_->locs.PushBack(loc); return; } #endif } #ifndef TSAN_GO void ScopedReport::AddSleep(u32 stack_id) { rep_->sleep = SymbolizeStackId(stack_id); } #endif void ScopedReport::SetCount(int count) { rep_->count = count; } const ReportDesc *ScopedReport::GetReport() const { return rep_; } void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset) { // This function restores stack trace and mutex set for the thread/epoch. // It does so by getting stack trace and mutex set at the beginning of // trace part, and then replaying the trace till the given epoch. ctx->thread_registry->CheckLocked(); ThreadContext *tctx = static_cast<ThreadContext*>( ctx->thread_registry->GetThreadLocked(tid)); if (tctx == 0) return; if (tctx->status != ThreadStatusRunning && tctx->status != ThreadStatusFinished && tctx->status != ThreadStatusDead) return; Trace* trace = ThreadTrace(tctx->tid); Lock l(&trace->mtx); const int partidx = (epoch / kTracePartSize) % TraceParts(); TraceHeader* hdr = &trace->headers[partidx]; if (epoch < hdr->epoch0) return; const u64 epoch0 = RoundDown(epoch, TraceSize()); const u64 eend = epoch % TraceSize(); const u64 ebegin = RoundDown(eend, kTracePartSize); DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n", tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx); InternalScopedBuffer<uptr> stack(kShadowStackSize); for (uptr i = 0; i < hdr->stack0.Size(); i++) { stack[i] = hdr->stack0.Get(i); DPrintf2(" #%02lu: pc=%zx\n", i, stack[i]); } if (mset) *mset = hdr->mset0; uptr pos = hdr->stack0.Size(); Event *events = (Event*)GetThreadTrace(tid); for (uptr i = ebegin; i <= eend; i++) { Event ev = events[i]; EventType typ = (EventType)(ev >> 61); uptr pc = (uptr)(ev & ((1ull << 61) - 1)); DPrintf2(" %zu typ=%d pc=%zx\n", i, typ, pc); if (typ == EventTypeMop) { stack[pos] = pc; } else if (typ == EventTypeFuncEnter) { stack[pos++] = pc; } else if (typ == EventTypeFuncExit) { if (pos > 0) pos--; } if (mset) { if (typ == EventTypeLock) { mset->Add(pc, true, epoch0 + i); } else if (typ == EventTypeUnlock) { mset->Del(pc, true); } else if (typ == EventTypeRLock) { mset->Add(pc, false, epoch0 + i); } else if (typ == EventTypeRUnlock) { mset->Del(pc, false); } } for (uptr j = 0; j <= pos; j++) DPrintf2(" #%zu: %zx\n", j, stack[j]); } if (pos == 0 && stack[0] == 0) return; pos++; stk->Init(stack.data(), pos); } static bool HandleRacyStacks(ThreadState *thr, const StackTrace (&traces)[2], uptr addr_min, uptr addr_max) { bool equal_stack = false; RacyStacks hash; if (flags()->suppress_equal_stacks) { hash.hash[0] = md5_hash(traces[0].Begin(), traces[0].Size() * sizeof(uptr)); hash.hash[1] = md5_hash(traces[1].Begin(), traces[1].Size() * sizeof(uptr)); for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) { if (hash == ctx->racy_stacks[i]) { DPrintf("ThreadSanitizer: suppressing report as doubled (stack)\n"); equal_stack = true; break; } } } bool equal_address = false; RacyAddress ra0 = {addr_min, addr_max}; if (flags()->suppress_equal_addresses) { for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) { RacyAddress ra2 = ctx->racy_addresses[i]; uptr maxbeg = max(ra0.addr_min, ra2.addr_min); uptr minend = min(ra0.addr_max, ra2.addr_max); if (maxbeg < minend) { DPrintf("ThreadSanitizer: suppressing report as doubled (addr)\n"); equal_address = true; break; } } } if (equal_stack || equal_address) { if (!equal_stack) ctx->racy_stacks.PushBack(hash); if (!equal_address) ctx->racy_addresses.PushBack(ra0); return true; } return false; } static void AddRacyStacks(ThreadState *thr, const StackTrace (&traces)[2], uptr addr_min, uptr addr_max) { if (flags()->suppress_equal_stacks) { RacyStacks hash; hash.hash[0] = md5_hash(traces[0].Begin(), traces[0].Size() * sizeof(uptr)); hash.hash[1] = md5_hash(traces[1].Begin(), traces[1].Size() * sizeof(uptr)); ctx->racy_stacks.PushBack(hash); } if (flags()->suppress_equal_addresses) { RacyAddress ra0 = {addr_min, addr_max}; ctx->racy_addresses.PushBack(ra0); } } bool OutputReport(ThreadState *thr, const ScopedReport &srep) { atomic_store(&ctx->last_symbolize_time_ns, NanoTime(), memory_order_relaxed); const ReportDesc *rep = srep.GetReport(); Suppression *supp = 0; uptr suppress_pc = 0; for (uptr i = 0; suppress_pc == 0 && i < rep->mops.Size(); i++) suppress_pc = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp); for (uptr i = 0; suppress_pc == 0 && i < rep->stacks.Size(); i++) suppress_pc = IsSuppressed(rep->typ, rep->stacks[i], &supp); for (uptr i = 0; suppress_pc == 0 && i < rep->threads.Size(); i++) suppress_pc = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp); for (uptr i = 0; suppress_pc == 0 && i < rep->locs.Size(); i++) suppress_pc = IsSuppressed(rep->typ, rep->locs[i], &supp); if (suppress_pc != 0) { FiredSuppression s = {srep.GetReport()->typ, suppress_pc, supp}; ctx->fired_suppressions.push_back(s); } { bool old_is_freeing = thr->is_freeing; thr->is_freeing = false; bool suppressed = OnReport(rep, suppress_pc != 0); thr->is_freeing = old_is_freeing; if (suppressed) return false; } PrintReport(rep); ctx->nreported++; if (flags()->halt_on_error) internal__exit(flags()->exitcode); return true; } bool IsFiredSuppression(Context *ctx, const ScopedReport &srep, const StackTrace &trace) { for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { if (ctx->fired_suppressions[k].type != srep.GetReport()->typ) continue; for (uptr j = 0; j < trace.Size(); j++) { FiredSuppression *s = &ctx->fired_suppressions[k]; if (trace.Get(j) == s->pc) { if (s->supp) s->supp->hit_count++; return true; } } } return false; } static bool IsFiredSuppression(Context *ctx, const ScopedReport &srep, uptr addr) { for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { if (ctx->fired_suppressions[k].type != srep.GetReport()->typ) continue; FiredSuppression *s = &ctx->fired_suppressions[k]; if (addr == s->pc) { if (s->supp) s->supp->hit_count++; return true; } } return false; } bool FrameIsInternal(const ReportStack *frame) { return frame != 0 && frame->file != 0 && (internal_strstr(frame->file, "tsan_interceptors.cc") || internal_strstr(frame->file, "sanitizer_common_interceptors.inc") || internal_strstr(frame->file, "tsan_interface_")); } // On programs that use Java we see weird reports like: // WARNING: ThreadSanitizer: data race (pid=22512) // Read of size 8 at 0x7d2b00084318 by thread 100: // #0 memcpy tsan_interceptors.cc:406 (foo+0x00000d8dfae3) // #1 <null> <null>:0 (0x7f7ad9b40193) // Previous write of size 8 at 0x7d2b00084318 by thread 105: // #0 strncpy tsan_interceptors.cc:501 (foo+0x00000d8e0919) // #1 <null> <null>:0 (0x7f7ad9b42707) static bool IsJavaNonsense(const ReportDesc *rep) { #ifndef TSAN_GO for (uptr i = 0; i < rep->mops.Size(); i++) { ReportMop *mop = rep->mops[i]; ReportStack *frame = mop->stack; if (frame == 0 || (frame->func == 0 && frame->file == 0 && frame->line == 0 && frame->module == 0)) { return true; } if (FrameIsInternal(frame)) { frame = frame->next; if (frame == 0 || (frame->func == 0 && frame->file == 0 && frame->line == 0 && frame->module == 0)) { if (frame) { FiredSuppression supp = {rep->typ, frame->pc, 0}; ctx->fired_suppressions.push_back(supp); } return true; } } } #endif return false; } static bool RaceBetweenAtomicAndFree(ThreadState *thr) { Shadow s0(thr->racy_state[0]); Shadow s1(thr->racy_state[1]); CHECK(!(s0.IsAtomic() && s1.IsAtomic())); if (!s0.IsAtomic() && !s1.IsAtomic()) return true; if (s0.IsAtomic() && s1.IsFreed()) return true; if (s1.IsAtomic() && thr->is_freeing) return true; return false; } void ReportRace(ThreadState *thr) { CheckNoLocks(thr); // Symbolizer makes lots of intercepted calls. If we try to process them, // at best it will cause deadlocks on internal mutexes. ScopedIgnoreInterceptors ignore; if (!flags()->report_bugs) return; if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr)) return; bool freed = false; { Shadow s(thr->racy_state[1]); freed = s.GetFreedAndReset(); thr->racy_state[1] = s.raw(); } uptr addr = ShadowToMem((uptr)thr->racy_shadow_addr); uptr addr_min = 0; uptr addr_max = 0; { uptr a0 = addr + Shadow(thr->racy_state[0]).addr0(); uptr a1 = addr + Shadow(thr->racy_state[1]).addr0(); uptr e0 = a0 + Shadow(thr->racy_state[0]).size(); uptr e1 = a1 + Shadow(thr->racy_state[1]).size(); addr_min = min(a0, a1); addr_max = max(e0, e1); if (IsExpectedReport(addr_min, addr_max - addr_min)) return; } ThreadRegistryLock l0(ctx->thread_registry); ReportType typ = ReportTypeRace; if (thr->is_vptr_access) typ = ReportTypeVptrRace; else if (freed) typ = ReportTypeUseAfterFree; ScopedReport rep(typ); if (IsFiredSuppression(ctx, rep, addr)) return; const uptr kMop = 2; StackTrace traces[kMop]; const uptr toppc = TraceTopPC(thr); traces[0].ObtainCurrent(thr, toppc); if (IsFiredSuppression(ctx, rep, traces[0])) return; InternalScopedBuffer<MutexSet> mset2(1); new(mset2.data()) MutexSet(); Shadow s2(thr->racy_state[1]); RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2.data()); if (IsFiredSuppression(ctx, rep, traces[1])) return; if (HandleRacyStacks(thr, traces, addr_min, addr_max)) return; for (uptr i = 0; i < kMop; i++) { Shadow s(thr->racy_state[i]); rep.AddMemoryAccess(addr, s, &traces[i], i == 0 ? &thr->mset : mset2.data()); } if (flags()->suppress_java && IsJavaNonsense(rep.GetReport())) return; for (uptr i = 0; i < kMop; i++) { FastState s(thr->racy_state[i]); ThreadContext *tctx = static_cast<ThreadContext*>( ctx->thread_registry->GetThreadLocked(s.tid())); if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1) continue; rep.AddThread(tctx); } rep.AddLocation(addr_min, addr_max - addr_min); #ifndef TSAN_GO { // NOLINT Shadow s(thr->racy_state[1]); if (s.epoch() <= thr->last_sleep_clock.get(s.tid())) rep.AddSleep(thr->last_sleep_stack_id); } #endif if (!OutputReport(thr, rep)) return; AddRacyStacks(thr, traces, addr_min, addr_max); } void PrintCurrentStack(ThreadState *thr, uptr pc) { StackTrace trace; trace.ObtainCurrent(thr, pc); PrintStack(SymbolizeStack(trace)); } void PrintCurrentStackSlow() { #ifndef TSAN_GO __sanitizer::StackTrace *ptrace = new(internal_alloc(MBlockStackTrace, sizeof(__sanitizer::StackTrace))) __sanitizer::StackTrace; ptrace->Unwind(kStackTraceMax, __sanitizer::StackTrace::GetCurrentPc(), 0, 0, 0, 0, false); for (uptr i = 0; i < ptrace->size / 2; i++) { uptr tmp = ptrace->trace[i]; ptrace->trace[i] = ptrace->trace[ptrace->size - i - 1]; ptrace->trace[ptrace->size - i - 1] = tmp; } StackTrace trace; trace.Init(ptrace->trace, ptrace->size); PrintStack(SymbolizeStack(trace)); #endif } } // namespace __tsan