//=-- lsan_allocator.cc ---------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of LeakSanitizer. // See lsan_allocator.h for details. // //===----------------------------------------------------------------------===// #include "lsan_allocator.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_internal_defs.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "lsan_common.h" extern "C" void *memset(void *ptr, int value, uptr num); namespace __lsan { static const uptr kMaxAllowedMallocSize = 8UL << 30; static const uptr kAllocatorSpace = 0x600000000000ULL; static const uptr kAllocatorSize = 0x40000000000ULL; // 4T. struct ChunkMetadata { bool allocated : 8; // Must be first. ChunkTag tag : 2; uptr requested_size : 54; u32 stack_trace_id; }; typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(ChunkMetadata), DefaultSizeClassMap> PrimaryAllocator; typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; typedef LargeMmapAllocator<> SecondaryAllocator; typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator> Allocator; static Allocator allocator; static THREADLOCAL AllocatorCache cache; void InitializeAllocator() { allocator.Init(); } void AllocatorThreadFinish() { allocator.SwallowCache(&cache); } static ChunkMetadata *Metadata(void *p) { return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p)); } static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) { if (!p) return; ChunkMetadata *m = Metadata(p); CHECK(m); m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked; m->stack_trace_id = StackDepotPut(stack.trace, stack.size); m->requested_size = size; atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed); } static void RegisterDeallocation(void *p) { if (!p) return; ChunkMetadata *m = Metadata(p); CHECK(m); atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed); } void *Allocate(const StackTrace &stack, uptr size, uptr alignment, bool cleared) { if (size == 0) size = 1; if (size > kMaxAllowedMallocSize) { Report("WARNING: LeakSanitizer failed to allocate %zu bytes\n", size); return 0; } void *p = allocator.Allocate(&cache, size, alignment, false); // Do not rely on the allocator to clear the memory (it's slow). if (cleared && allocator.FromPrimary(p)) memset(p, 0, size); RegisterAllocation(stack, p, size); return p; } void Deallocate(void *p) { RegisterDeallocation(p); allocator.Deallocate(&cache, p); } void *Reallocate(const StackTrace &stack, void *p, uptr new_size, uptr alignment) { RegisterDeallocation(p); if (new_size > kMaxAllowedMallocSize) { Report("WARNING: LeakSanitizer failed to allocate %zu bytes\n", new_size); allocator.Deallocate(&cache, p); return 0; } p = allocator.Reallocate(&cache, p, new_size, alignment); RegisterAllocation(stack, p, new_size); return p; } void GetAllocatorCacheRange(uptr *begin, uptr *end) { *begin = (uptr)&cache; *end = *begin + sizeof(cache); } uptr GetMallocUsableSize(void *p) { ChunkMetadata *m = Metadata(p); if (!m) return 0; return m->requested_size; } ///// Interface to the common LSan module. ///// void LockAllocator() { allocator.ForceLock(); } void UnlockAllocator() { allocator.ForceUnlock(); } void GetAllocatorGlobalRange(uptr *begin, uptr *end) { *begin = (uptr)&allocator; *end = *begin + sizeof(allocator); } uptr PointsIntoChunk(void* p) { uptr addr = reinterpret_cast<uptr>(p); uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p)); if (!chunk) return 0; // LargeMmapAllocator considers pointers to the meta-region of a chunk to be // valid, but we don't want that. if (addr < chunk) return 0; ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk)); CHECK(m); if (!m->allocated) return 0; if (addr < chunk + m->requested_size) return chunk; if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr)) return chunk; return 0; } uptr GetUserBegin(uptr chunk) { return chunk; } LsanMetadata::LsanMetadata(uptr chunk) { metadata_ = Metadata(reinterpret_cast<void *>(chunk)); CHECK(metadata_); } bool LsanMetadata::allocated() const { return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated; } ChunkTag LsanMetadata::tag() const { return reinterpret_cast<ChunkMetadata *>(metadata_)->tag; } void LsanMetadata::set_tag(ChunkTag value) { reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value; } uptr LsanMetadata::requested_size() const { return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size; } u32 LsanMetadata::stack_trace_id() const { return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id; } void ForEachChunk(ForEachChunkCallback callback, void *arg) { allocator.ForEachChunk(callback, arg); } IgnoreObjectResult IgnoreObjectLocked(const void *p) { void *chunk = allocator.GetBlockBegin(p); if (!chunk || p < chunk) return kIgnoreObjectInvalid; ChunkMetadata *m = Metadata(chunk); CHECK(m); if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) { if (m->tag == kIgnored) return kIgnoreObjectAlreadyIgnored; m->tag = kIgnored; return kIgnoreObjectSuccess; } else { return kIgnoreObjectInvalid; } } } // namespace __lsan