//===--- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PathDiagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtCXX.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; bool PathDiagnosticMacroPiece::containsEvent() const { for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end(); I!=E; ++I) { if (isa<PathDiagnosticEventPiece>(*I)) return true; if (PathDiagnosticMacroPiece *MP = dyn_cast<PathDiagnosticMacroPiece>(*I)) if (MP->containsEvent()) return true; } return false; } static StringRef StripTrailingDots(StringRef s) { for (StringRef::size_type i = s.size(); i != 0; --i) if (s[i - 1] != '.') return s.substr(0, i); return ""; } PathDiagnosticPiece::PathDiagnosticPiece(StringRef s, Kind k, DisplayHint hint) : str(StripTrailingDots(s)), kind(k), Hint(hint), LastInMainSourceFile(false) {} PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint) : kind(k), Hint(hint), LastInMainSourceFile(false) {} PathDiagnosticPiece::~PathDiagnosticPiece() {} PathDiagnosticEventPiece::~PathDiagnosticEventPiece() {} PathDiagnosticCallPiece::~PathDiagnosticCallPiece() {} PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() {} PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() {} PathPieces::~PathPieces() {} void PathPieces::flattenTo(PathPieces &Primary, PathPieces &Current, bool ShouldFlattenMacros) const { for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) { PathDiagnosticPiece *Piece = I->get(); switch (Piece->getKind()) { case PathDiagnosticPiece::Call: { PathDiagnosticCallPiece *Call = cast<PathDiagnosticCallPiece>(Piece); IntrusiveRefCntPtr<PathDiagnosticEventPiece> CallEnter = Call->getCallEnterEvent(); if (CallEnter) Current.push_back(CallEnter); Call->path.flattenTo(Primary, Primary, ShouldFlattenMacros); IntrusiveRefCntPtr<PathDiagnosticEventPiece> callExit = Call->getCallExitEvent(); if (callExit) Current.push_back(callExit); break; } case PathDiagnosticPiece::Macro: { PathDiagnosticMacroPiece *Macro = cast<PathDiagnosticMacroPiece>(Piece); if (ShouldFlattenMacros) { Macro->subPieces.flattenTo(Primary, Primary, ShouldFlattenMacros); } else { Current.push_back(Piece); PathPieces NewPath; Macro->subPieces.flattenTo(Primary, NewPath, ShouldFlattenMacros); // FIXME: This probably shouldn't mutate the original path piece. Macro->subPieces = NewPath; } break; } case PathDiagnosticPiece::Event: case PathDiagnosticPiece::ControlFlow: Current.push_back(Piece); break; } } } PathDiagnostic::~PathDiagnostic() {} PathDiagnostic::PathDiagnostic(StringRef CheckName, const Decl *declWithIssue, StringRef bugtype, StringRef verboseDesc, StringRef shortDesc, StringRef category, PathDiagnosticLocation LocationToUnique, const Decl *DeclToUnique) : CheckName(CheckName), DeclWithIssue(declWithIssue), BugType(StripTrailingDots(bugtype)), VerboseDesc(StripTrailingDots(verboseDesc)), ShortDesc(StripTrailingDots(shortDesc)), Category(StripTrailingDots(category)), UniqueingLoc(LocationToUnique), UniqueingDecl(DeclToUnique), path(pathImpl) {} static PathDiagnosticCallPiece * getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP, const SourceManager &SMgr) { SourceLocation CallLoc = CP->callEnter.asLocation(); // If the call is within a macro, don't do anything (for now). if (CallLoc.isMacroID()) return nullptr; assert(SMgr.isInMainFile(CallLoc) && "The call piece should be in the main file."); // Check if CP represents a path through a function outside of the main file. if (!SMgr.isInMainFile(CP->callEnterWithin.asLocation())) return CP; const PathPieces &Path = CP->path; if (Path.empty()) return nullptr; // Check if the last piece in the callee path is a call to a function outside // of the main file. if (PathDiagnosticCallPiece *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back())) { return getFirstStackedCallToHeaderFile(CPInner, SMgr); } // Otherwise, the last piece is in the main file. return nullptr; } void PathDiagnostic::resetDiagnosticLocationToMainFile() { if (path.empty()) return; PathDiagnosticPiece *LastP = path.back().get(); assert(LastP); const SourceManager &SMgr = LastP->getLocation().getManager(); // We only need to check if the report ends inside headers, if the last piece // is a call piece. if (PathDiagnosticCallPiece *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) { CP = getFirstStackedCallToHeaderFile(CP, SMgr); if (CP) { // Mark the piece. CP->setAsLastInMainSourceFile(); // Update the path diagnostic message. const NamedDecl *ND = dyn_cast<NamedDecl>(CP->getCallee()); if (ND) { SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << " (within a call to '" << ND->getDeclName() << "')"; appendToDesc(os.str()); } // Reset the report containing declaration and location. DeclWithIssue = CP->getCaller(); Loc = CP->getLocation(); return; } } } void PathDiagnosticConsumer::anchor() { } PathDiagnosticConsumer::~PathDiagnosticConsumer() { // Delete the contents of the FoldingSet if it isn't empty already. for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(), et = Diags.end() ; it != et ; ++it) { delete &*it; } } void PathDiagnosticConsumer::HandlePathDiagnostic(PathDiagnostic *D) { std::unique_ptr<PathDiagnostic> OwningD(D); if (!D || D->path.empty()) return; // We need to flatten the locations (convert Stmt* to locations) because // the referenced statements may be freed by the time the diagnostics // are emitted. D->flattenLocations(); // If the PathDiagnosticConsumer does not support diagnostics that // cross file boundaries, prune out such diagnostics now. if (!supportsCrossFileDiagnostics()) { // Verify that the entire path is from the same FileID. FileID FID; const SourceManager &SMgr = (*D->path.begin())->getLocation().getManager(); SmallVector<const PathPieces *, 5> WorkList; WorkList.push_back(&D->path); while (!WorkList.empty()) { const PathPieces &path = *WorkList.pop_back_val(); for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I) { const PathDiagnosticPiece *piece = I->get(); FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc(); if (FID.isInvalid()) { FID = SMgr.getFileID(L); } else if (SMgr.getFileID(L) != FID) return; // FIXME: Emit a warning? // Check the source ranges. ArrayRef<SourceRange> Ranges = piece->getRanges(); for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { SourceLocation L = SMgr.getExpansionLoc(I->getBegin()); if (!L.isFileID() || SMgr.getFileID(L) != FID) return; // FIXME: Emit a warning? L = SMgr.getExpansionLoc(I->getEnd()); if (!L.isFileID() || SMgr.getFileID(L) != FID) return; // FIXME: Emit a warning? } if (const PathDiagnosticCallPiece *call = dyn_cast<PathDiagnosticCallPiece>(piece)) { WorkList.push_back(&call->path); } else if (const PathDiagnosticMacroPiece *macro = dyn_cast<PathDiagnosticMacroPiece>(piece)) { WorkList.push_back(¯o->subPieces); } } } if (FID.isInvalid()) return; // FIXME: Emit a warning? } // Profile the node to see if we already have something matching it llvm::FoldingSetNodeID profile; D->Profile(profile); void *InsertPos = nullptr; if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) { // Keep the PathDiagnostic with the shorter path. // Note, the enclosing routine is called in deterministic order, so the // results will be consistent between runs (no reason to break ties if the // size is the same). const unsigned orig_size = orig->full_size(); const unsigned new_size = D->full_size(); if (orig_size <= new_size) return; assert(orig != D); Diags.RemoveNode(orig); delete orig; } Diags.InsertNode(OwningD.release()); } static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y); static Optional<bool> compareControlFlow(const PathDiagnosticControlFlowPiece &X, const PathDiagnosticControlFlowPiece &Y) { FullSourceLoc XSL = X.getStartLocation().asLocation(); FullSourceLoc YSL = Y.getStartLocation().asLocation(); if (XSL != YSL) return XSL.isBeforeInTranslationUnitThan(YSL); FullSourceLoc XEL = X.getEndLocation().asLocation(); FullSourceLoc YEL = Y.getEndLocation().asLocation(); if (XEL != YEL) return XEL.isBeforeInTranslationUnitThan(YEL); return None; } static Optional<bool> compareMacro(const PathDiagnosticMacroPiece &X, const PathDiagnosticMacroPiece &Y) { return comparePath(X.subPieces, Y.subPieces); } static Optional<bool> compareCall(const PathDiagnosticCallPiece &X, const PathDiagnosticCallPiece &Y) { FullSourceLoc X_CEL = X.callEnter.asLocation(); FullSourceLoc Y_CEL = Y.callEnter.asLocation(); if (X_CEL != Y_CEL) return X_CEL.isBeforeInTranslationUnitThan(Y_CEL); FullSourceLoc X_CEWL = X.callEnterWithin.asLocation(); FullSourceLoc Y_CEWL = Y.callEnterWithin.asLocation(); if (X_CEWL != Y_CEWL) return X_CEWL.isBeforeInTranslationUnitThan(Y_CEWL); FullSourceLoc X_CRL = X.callReturn.asLocation(); FullSourceLoc Y_CRL = Y.callReturn.asLocation(); if (X_CRL != Y_CRL) return X_CRL.isBeforeInTranslationUnitThan(Y_CRL); return comparePath(X.path, Y.path); } static Optional<bool> comparePiece(const PathDiagnosticPiece &X, const PathDiagnosticPiece &Y) { if (X.getKind() != Y.getKind()) return X.getKind() < Y.getKind(); FullSourceLoc XL = X.getLocation().asLocation(); FullSourceLoc YL = Y.getLocation().asLocation(); if (XL != YL) return XL.isBeforeInTranslationUnitThan(YL); if (X.getString() != Y.getString()) return X.getString() < Y.getString(); if (X.getRanges().size() != Y.getRanges().size()) return X.getRanges().size() < Y.getRanges().size(); const SourceManager &SM = XL.getManager(); for (unsigned i = 0, n = X.getRanges().size(); i < n; ++i) { SourceRange XR = X.getRanges()[i]; SourceRange YR = Y.getRanges()[i]; if (XR != YR) { if (XR.getBegin() != YR.getBegin()) return SM.isBeforeInTranslationUnit(XR.getBegin(), YR.getBegin()); return SM.isBeforeInTranslationUnit(XR.getEnd(), YR.getEnd()); } } switch (X.getKind()) { case clang::ento::PathDiagnosticPiece::ControlFlow: return compareControlFlow(cast<PathDiagnosticControlFlowPiece>(X), cast<PathDiagnosticControlFlowPiece>(Y)); case clang::ento::PathDiagnosticPiece::Event: return None; case clang::ento::PathDiagnosticPiece::Macro: return compareMacro(cast<PathDiagnosticMacroPiece>(X), cast<PathDiagnosticMacroPiece>(Y)); case clang::ento::PathDiagnosticPiece::Call: return compareCall(cast<PathDiagnosticCallPiece>(X), cast<PathDiagnosticCallPiece>(Y)); } llvm_unreachable("all cases handled"); } static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y) { if (X.size() != Y.size()) return X.size() < Y.size(); PathPieces::const_iterator X_I = X.begin(), X_end = X.end(); PathPieces::const_iterator Y_I = Y.begin(), Y_end = Y.end(); for ( ; X_I != X_end && Y_I != Y_end; ++X_I, ++Y_I) { Optional<bool> b = comparePiece(**X_I, **Y_I); if (b.hasValue()) return b.getValue(); } return None; } static bool compare(const PathDiagnostic &X, const PathDiagnostic &Y) { FullSourceLoc XL = X.getLocation().asLocation(); FullSourceLoc YL = Y.getLocation().asLocation(); if (XL != YL) return XL.isBeforeInTranslationUnitThan(YL); if (X.getBugType() != Y.getBugType()) return X.getBugType() < Y.getBugType(); if (X.getCategory() != Y.getCategory()) return X.getCategory() < Y.getCategory(); if (X.getVerboseDescription() != Y.getVerboseDescription()) return X.getVerboseDescription() < Y.getVerboseDescription(); if (X.getShortDescription() != Y.getShortDescription()) return X.getShortDescription() < Y.getShortDescription(); if (X.getDeclWithIssue() != Y.getDeclWithIssue()) { const Decl *XD = X.getDeclWithIssue(); if (!XD) return true; const Decl *YD = Y.getDeclWithIssue(); if (!YD) return false; SourceLocation XDL = XD->getLocation(); SourceLocation YDL = YD->getLocation(); if (XDL != YDL) { const SourceManager &SM = XL.getManager(); return SM.isBeforeInTranslationUnit(XDL, YDL); } } PathDiagnostic::meta_iterator XI = X.meta_begin(), XE = X.meta_end(); PathDiagnostic::meta_iterator YI = Y.meta_begin(), YE = Y.meta_end(); if (XE - XI != YE - YI) return (XE - XI) < (YE - YI); for ( ; XI != XE ; ++XI, ++YI) { if (*XI != *YI) return (*XI) < (*YI); } Optional<bool> b = comparePath(X.path, Y.path); assert(b.hasValue()); return b.getValue(); } void PathDiagnosticConsumer::FlushDiagnostics( PathDiagnosticConsumer::FilesMade *Files) { if (flushed) return; flushed = true; std::vector<const PathDiagnostic *> BatchDiags; for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(), et = Diags.end(); it != et; ++it) { const PathDiagnostic *D = &*it; BatchDiags.push_back(D); } // Sort the diagnostics so that they are always emitted in a deterministic // order. if (!BatchDiags.empty()) std::sort(BatchDiags.begin(), BatchDiags.end(), [](const PathDiagnostic *X, const PathDiagnostic *Y) { return X != Y && compare(*X, *Y); }); FlushDiagnosticsImpl(BatchDiags, Files); // Delete the flushed diagnostics. for (std::vector<const PathDiagnostic *>::iterator it = BatchDiags.begin(), et = BatchDiags.end(); it != et; ++it) { const PathDiagnostic *D = *it; delete D; } // Clear out the FoldingSet. Diags.clear(); } PathDiagnosticConsumer::FilesMade::~FilesMade() { for (PDFileEntry &Entry : *this) Entry.~PDFileEntry(); } void PathDiagnosticConsumer::FilesMade::addDiagnostic(const PathDiagnostic &PD, StringRef ConsumerName, StringRef FileName) { llvm::FoldingSetNodeID NodeID; NodeID.Add(PD); void *InsertPos; PDFileEntry *Entry = FindNodeOrInsertPos(NodeID, InsertPos); if (!Entry) { Entry = Alloc.Allocate<PDFileEntry>(); Entry = new (Entry) PDFileEntry(NodeID); InsertNode(Entry, InsertPos); } // Allocate persistent storage for the file name. char *FileName_cstr = (char*) Alloc.Allocate(FileName.size(), 1); memcpy(FileName_cstr, FileName.data(), FileName.size()); Entry->files.push_back(std::make_pair(ConsumerName, StringRef(FileName_cstr, FileName.size()))); } PathDiagnosticConsumer::PDFileEntry::ConsumerFiles * PathDiagnosticConsumer::FilesMade::getFiles(const PathDiagnostic &PD) { llvm::FoldingSetNodeID NodeID; NodeID.Add(PD); void *InsertPos; PDFileEntry *Entry = FindNodeOrInsertPos(NodeID, InsertPos); if (!Entry) return nullptr; return &Entry->files; } //===----------------------------------------------------------------------===// // PathDiagnosticLocation methods. //===----------------------------------------------------------------------===// static SourceLocation getValidSourceLocation(const Stmt* S, LocationOrAnalysisDeclContext LAC, bool UseEnd = false) { SourceLocation L = UseEnd ? S->getLocEnd() : S->getLocStart(); assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should " "be passed to PathDiagnosticLocation upon creation."); // S might be a temporary statement that does not have a location in the // source code, so find an enclosing statement and use its location. if (!L.isValid()) { AnalysisDeclContext *ADC; if (LAC.is<const LocationContext*>()) ADC = LAC.get<const LocationContext*>()->getAnalysisDeclContext(); else ADC = LAC.get<AnalysisDeclContext*>(); ParentMap &PM = ADC->getParentMap(); const Stmt *Parent = S; do { Parent = PM.getParent(Parent); // In rare cases, we have implicit top-level expressions, // such as arguments for implicit member initializers. // In this case, fall back to the start of the body (even if we were // asked for the statement end location). if (!Parent) { const Stmt *Body = ADC->getBody(); if (Body) L = Body->getLocStart(); else L = ADC->getDecl()->getLocEnd(); break; } L = UseEnd ? Parent->getLocEnd() : Parent->getLocStart(); } while (!L.isValid()); } return L; } static PathDiagnosticLocation getLocationForCaller(const StackFrameContext *SFC, const LocationContext *CallerCtx, const SourceManager &SM) { const CFGBlock &Block = *SFC->getCallSiteBlock(); CFGElement Source = Block[SFC->getIndex()]; switch (Source.getKind()) { case CFGElement::Statement: return PathDiagnosticLocation(Source.castAs<CFGStmt>().getStmt(), SM, CallerCtx); case CFGElement::Initializer: { const CFGInitializer &Init = Source.castAs<CFGInitializer>(); return PathDiagnosticLocation(Init.getInitializer()->getInit(), SM, CallerCtx); } case CFGElement::AutomaticObjectDtor: { const CFGAutomaticObjDtor &Dtor = Source.castAs<CFGAutomaticObjDtor>(); return PathDiagnosticLocation::createEnd(Dtor.getTriggerStmt(), SM, CallerCtx); } case CFGElement::DeleteDtor: { const CFGDeleteDtor &Dtor = Source.castAs<CFGDeleteDtor>(); return PathDiagnosticLocation(Dtor.getDeleteExpr(), SM, CallerCtx); } case CFGElement::BaseDtor: case CFGElement::MemberDtor: { const AnalysisDeclContext *CallerInfo = CallerCtx->getAnalysisDeclContext(); if (const Stmt *CallerBody = CallerInfo->getBody()) return PathDiagnosticLocation::createEnd(CallerBody, SM, CallerCtx); return PathDiagnosticLocation::create(CallerInfo->getDecl(), SM); } case CFGElement::TemporaryDtor: case CFGElement::NewAllocator: llvm_unreachable("not yet implemented!"); } llvm_unreachable("Unknown CFGElement kind"); } PathDiagnosticLocation PathDiagnosticLocation::createBegin(const Decl *D, const SourceManager &SM) { return PathDiagnosticLocation(D->getLocStart(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createBegin(const Stmt *S, const SourceManager &SM, LocationOrAnalysisDeclContext LAC) { return PathDiagnosticLocation(getValidSourceLocation(S, LAC), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createEnd(const Stmt *S, const SourceManager &SM, LocationOrAnalysisDeclContext LAC) { if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) return createEndBrace(CS, SM); return PathDiagnosticLocation(getValidSourceLocation(S, LAC, /*End=*/true), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO, const SourceManager &SM) { return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createConditionalColonLoc( const ConditionalOperator *CO, const SourceManager &SM) { return PathDiagnosticLocation(CO->getColonLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME, const SourceManager &SM) { return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS, const SourceManager &SM) { SourceLocation L = CS->getLBracLoc(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS, const SourceManager &SM) { SourceLocation L = CS->getRBracLoc(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createDeclBegin(const LocationContext *LC, const SourceManager &SM) { // FIXME: Should handle CXXTryStmt if analyser starts supporting C++. if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody())) if (!CS->body_empty()) { SourceLocation Loc = (*CS->body_begin())->getLocStart(); return PathDiagnosticLocation(Loc, SM, SingleLocK); } return PathDiagnosticLocation(); } PathDiagnosticLocation PathDiagnosticLocation::createDeclEnd(const LocationContext *LC, const SourceManager &SM) { SourceLocation L = LC->getDecl()->getBodyRBrace(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::create(const ProgramPoint& P, const SourceManager &SMng) { const Stmt* S = nullptr; if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { const CFGBlock *BSrc = BE->getSrc(); S = BSrc->getTerminatorCondition(); } else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) { S = SP->getStmt(); if (P.getAs<PostStmtPurgeDeadSymbols>()) return PathDiagnosticLocation::createEnd(S, SMng, P.getLocationContext()); } else if (Optional<PostInitializer> PIP = P.getAs<PostInitializer>()) { return PathDiagnosticLocation(PIP->getInitializer()->getSourceLocation(), SMng); } else if (Optional<PostImplicitCall> PIE = P.getAs<PostImplicitCall>()) { return PathDiagnosticLocation(PIE->getLocation(), SMng); } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { return getLocationForCaller(CE->getCalleeContext(), CE->getLocationContext(), SMng); } else if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>()) { return getLocationForCaller(CEE->getCalleeContext(), CEE->getLocationContext(), SMng); } else { llvm_unreachable("Unexpected ProgramPoint"); } return PathDiagnosticLocation(S, SMng, P.getLocationContext()); } const Stmt *PathDiagnosticLocation::getStmt(const ExplodedNode *N) { ProgramPoint P = N->getLocation(); if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) return SP->getStmt(); if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) return BE->getSrc()->getTerminator(); if (Optional<CallEnter> CE = P.getAs<CallEnter>()) return CE->getCallExpr(); if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>()) return CEE->getCalleeContext()->getCallSite(); if (Optional<PostInitializer> PIPP = P.getAs<PostInitializer>()) return PIPP->getInitializer()->getInit(); return nullptr; } const Stmt *PathDiagnosticLocation::getNextStmt(const ExplodedNode *N) { for (N = N->getFirstSucc(); N; N = N->getFirstSucc()) { if (const Stmt *S = getStmt(N)) { // Check if the statement is '?' or '&&'/'||'. These are "merges", // not actual statement points. switch (S->getStmtClass()) { case Stmt::ChooseExprClass: case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: continue; case Stmt::BinaryOperatorClass: { BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode(); if (Op == BO_LAnd || Op == BO_LOr) continue; break; } default: break; } // We found the statement, so return it. return S; } } return nullptr; } PathDiagnosticLocation PathDiagnosticLocation::createEndOfPath(const ExplodedNode *N, const SourceManager &SM) { assert(N && "Cannot create a location with a null node."); const Stmt *S = getStmt(N); if (!S) { // If this is an implicit call, return the implicit call point location. if (Optional<PreImplicitCall> PIE = N->getLocationAs<PreImplicitCall>()) return PathDiagnosticLocation(PIE->getLocation(), SM); S = getNextStmt(N); } if (S) { ProgramPoint P = N->getLocation(); const LocationContext *LC = N->getLocationContext(); // For member expressions, return the location of the '.' or '->'. if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) return PathDiagnosticLocation::createMemberLoc(ME, SM); // For binary operators, return the location of the operator. if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S)) return PathDiagnosticLocation::createOperatorLoc(B, SM); if (P.getAs<PostStmtPurgeDeadSymbols>()) return PathDiagnosticLocation::createEnd(S, SM, LC); if (S->getLocStart().isValid()) return PathDiagnosticLocation(S, SM, LC); return PathDiagnosticLocation(getValidSourceLocation(S, LC), SM); } return createDeclEnd(N->getLocationContext(), SM); } PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation( const PathDiagnosticLocation &PDL) { FullSourceLoc L = PDL.asLocation(); return PathDiagnosticLocation(L, L.getManager(), SingleLocK); } FullSourceLoc PathDiagnosticLocation::genLocation(SourceLocation L, LocationOrAnalysisDeclContext LAC) const { assert(isValid()); // Note that we want a 'switch' here so that the compiler can warn us in // case we add more cases. switch (K) { case SingleLocK: case RangeK: break; case StmtK: // Defensive checking. if (!S) break; return FullSourceLoc(getValidSourceLocation(S, LAC), const_cast<SourceManager&>(*SM)); case DeclK: // Defensive checking. if (!D) break; return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM)); } return FullSourceLoc(L, const_cast<SourceManager&>(*SM)); } PathDiagnosticRange PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const { assert(isValid()); // Note that we want a 'switch' here so that the compiler can warn us in // case we add more cases. switch (K) { case SingleLocK: return PathDiagnosticRange(SourceRange(Loc,Loc), true); case RangeK: break; case StmtK: { const Stmt *S = asStmt(); switch (S->getStmtClass()) { default: break; case Stmt::DeclStmtClass: { const DeclStmt *DS = cast<DeclStmt>(S); if (DS->isSingleDecl()) { // Should always be the case, but we'll be defensive. return SourceRange(DS->getLocStart(), DS->getSingleDecl()->getLocation()); } break; } // FIXME: Provide better range information for different // terminators. case Stmt::IfStmtClass: case Stmt::WhileStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::ChooseExprClass: case Stmt::IndirectGotoStmtClass: case Stmt::SwitchStmtClass: case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: case Stmt::ObjCForCollectionStmtClass: { SourceLocation L = getValidSourceLocation(S, LAC); return SourceRange(L, L); } } SourceRange R = S->getSourceRange(); if (R.isValid()) return R; break; } case DeclK: if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) return MD->getSourceRange(); if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { if (Stmt *Body = FD->getBody()) return Body->getSourceRange(); } else { SourceLocation L = D->getLocation(); return PathDiagnosticRange(SourceRange(L, L), true); } } return SourceRange(Loc,Loc); } void PathDiagnosticLocation::flatten() { if (K == StmtK) { K = RangeK; S = nullptr; D = nullptr; } else if (K == DeclK) { K = SingleLocK; S = nullptr; D = nullptr; } } //===----------------------------------------------------------------------===// // Manipulation of PathDiagnosticCallPieces. //===----------------------------------------------------------------------===// PathDiagnosticCallPiece * PathDiagnosticCallPiece::construct(const ExplodedNode *N, const CallExitEnd &CE, const SourceManager &SM) { const Decl *caller = CE.getLocationContext()->getDecl(); PathDiagnosticLocation pos = getLocationForCaller(CE.getCalleeContext(), CE.getLocationContext(), SM); return new PathDiagnosticCallPiece(caller, pos); } PathDiagnosticCallPiece * PathDiagnosticCallPiece::construct(PathPieces &path, const Decl *caller) { PathDiagnosticCallPiece *C = new PathDiagnosticCallPiece(path, caller); path.clear(); path.push_front(C); return C; } void PathDiagnosticCallPiece::setCallee(const CallEnter &CE, const SourceManager &SM) { const StackFrameContext *CalleeCtx = CE.getCalleeContext(); Callee = CalleeCtx->getDecl(); callEnterWithin = PathDiagnosticLocation::createBegin(Callee, SM); callEnter = getLocationForCaller(CalleeCtx, CE.getLocationContext(), SM); } static inline void describeClass(raw_ostream &Out, const CXXRecordDecl *D, StringRef Prefix = StringRef()) { if (!D->getIdentifier()) return; Out << Prefix << '\'' << *D << '\''; } static bool describeCodeDecl(raw_ostream &Out, const Decl *D, bool ExtendedDescription, StringRef Prefix = StringRef()) { if (!D) return false; if (isa<BlockDecl>(D)) { if (ExtendedDescription) Out << Prefix << "anonymous block"; return ExtendedDescription; } if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { Out << Prefix; if (ExtendedDescription && !MD->isUserProvided()) { if (MD->isExplicitlyDefaulted()) Out << "defaulted "; else Out << "implicit "; } if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(MD)) { if (CD->isDefaultConstructor()) Out << "default "; else if (CD->isCopyConstructor()) Out << "copy "; else if (CD->isMoveConstructor()) Out << "move "; Out << "constructor"; describeClass(Out, MD->getParent(), " for "); } else if (isa<CXXDestructorDecl>(MD)) { if (!MD->isUserProvided()) { Out << "destructor"; describeClass(Out, MD->getParent(), " for "); } else { // Use ~Foo for explicitly-written destructors. Out << "'" << *MD << "'"; } } else if (MD->isCopyAssignmentOperator()) { Out << "copy assignment operator"; describeClass(Out, MD->getParent(), " for "); } else if (MD->isMoveAssignmentOperator()) { Out << "move assignment operator"; describeClass(Out, MD->getParent(), " for "); } else { if (MD->getParent()->getIdentifier()) Out << "'" << *MD->getParent() << "::" << *MD << "'"; else Out << "'" << *MD << "'"; } return true; } Out << Prefix << '\'' << cast<NamedDecl>(*D) << '\''; return true; } IntrusiveRefCntPtr<PathDiagnosticEventPiece> PathDiagnosticCallPiece::getCallEnterEvent() const { if (!Callee) return nullptr; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Calling "; describeCodeDecl(Out, Callee, /*ExtendedDescription=*/true); assert(callEnter.asLocation().isValid()); return new PathDiagnosticEventPiece(callEnter, Out.str()); } IntrusiveRefCntPtr<PathDiagnosticEventPiece> PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const { if (!callEnterWithin.asLocation().isValid()) return nullptr; if (Callee->isImplicit() || !Callee->hasBody()) return nullptr; if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee)) if (MD->isDefaulted()) return nullptr; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Entered call"; describeCodeDecl(Out, Caller, /*ExtendedDescription=*/false, " from "); return new PathDiagnosticEventPiece(callEnterWithin, Out.str()); } IntrusiveRefCntPtr<PathDiagnosticEventPiece> PathDiagnosticCallPiece::getCallExitEvent() const { if (NoExit) return nullptr; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); if (!CallStackMessage.empty()) { Out << CallStackMessage; } else { bool DidDescribe = describeCodeDecl(Out, Callee, /*ExtendedDescription=*/false, "Returning from "); if (!DidDescribe) Out << "Returning to caller"; } assert(callReturn.asLocation().isValid()); return new PathDiagnosticEventPiece(callReturn, Out.str()); } static void compute_path_size(const PathPieces &pieces, unsigned &size) { for (PathPieces::const_iterator it = pieces.begin(), et = pieces.end(); it != et; ++it) { const PathDiagnosticPiece *piece = it->get(); if (const PathDiagnosticCallPiece *cp = dyn_cast<PathDiagnosticCallPiece>(piece)) { compute_path_size(cp->path, size); } else ++size; } } unsigned PathDiagnostic::full_size() { unsigned size = 0; compute_path_size(path, size); return size; } //===----------------------------------------------------------------------===// // FoldingSet profiling methods. //===----------------------------------------------------------------------===// void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Range.getBegin().getRawEncoding()); ID.AddInteger(Range.getEnd().getRawEncoding()); ID.AddInteger(Loc.getRawEncoding()); return; } void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger((unsigned) getKind()); ID.AddString(str); // FIXME: Add profiling support for code hints. ID.AddInteger((unsigned) getDisplayHint()); ArrayRef<SourceRange> Ranges = getRanges(); for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { ID.AddInteger(I->getBegin().getRawEncoding()); ID.AddInteger(I->getEnd().getRawEncoding()); } } void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); for (PathPieces::const_iterator it = path.begin(), et = path.end(); it != et; ++it) { ID.Add(**it); } } void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); ID.Add(Pos); } void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); for (const_iterator I = begin(), E = end(); I != E; ++I) ID.Add(*I); } void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticSpotPiece::Profile(ID); for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end(); I != E; ++I) ID.Add(**I); } void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const { ID.Add(getLocation()); ID.AddString(BugType); ID.AddString(VerboseDesc); ID.AddString(Category); } void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const { Profile(ID); for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I) ID.Add(**I); for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I) ID.AddString(*I); } StackHintGenerator::~StackHintGenerator() {} std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){ ProgramPoint P = N->getLocation(); CallExitEnd CExit = P.castAs<CallExitEnd>(); // FIXME: Use CallEvent to abstract this over all calls. const Stmt *CallSite = CExit.getCalleeContext()->getCallSite(); const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite); if (!CE) return ""; if (!N) return getMessageForSymbolNotFound(); // Check if one of the parameters are set to the interesting symbol. ProgramStateRef State = N->getState(); const LocationContext *LCtx = N->getLocationContext(); unsigned ArgIndex = 0; for (CallExpr::const_arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I, ++ArgIndex){ SVal SV = State->getSVal(*I, LCtx); // Check if the variable corresponding to the symbol is passed by value. SymbolRef AS = SV.getAsLocSymbol(); if (AS == Sym) { return getMessageForArg(*I, ArgIndex); } // Check if the parameter is a pointer to the symbol. if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) { SVal PSV = State->getSVal(Reg->getRegion()); SymbolRef AS = PSV.getAsLocSymbol(); if (AS == Sym) { return getMessageForArg(*I, ArgIndex); } } } // Check if we are returning the interesting symbol. SVal SV = State->getSVal(CE, LCtx); SymbolRef RetSym = SV.getAsLocSymbol(); if (RetSym == Sym) { return getMessageForReturn(CE); } return getMessageForSymbolNotFound(); } std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE, unsigned ArgIndex) { // Printed parameters start at 1, not 0. ++ArgIndex; SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << Msg << " via " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) << " parameter"; return os.str(); }