//===--- ASTWriter.cpp - AST File Writer ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTWriter class, which writes AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTWriter.h" #include "ASTCommon.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclContextInternals.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclLookups.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemStatCache.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/Version.h" #include "clang/Basic/VersionTuple.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/Sema.h" #include "clang/Serialization/ASTReader.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamWriter.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/OnDiskHashTable.h" #include "llvm/Support/Path.h" #include <algorithm> #include <cstdio> #include <string.h> #include <utility> using namespace clang; using namespace clang::serialization; template <typename T, typename Allocator> static StringRef data(const std::vector<T, Allocator> &v) { if (v.empty()) return StringRef(); return StringRef(reinterpret_cast<const char*>(&v[0]), sizeof(T) * v.size()); } template <typename T> static StringRef data(const SmallVectorImpl<T> &v) { return StringRef(reinterpret_cast<const char*>(v.data()), sizeof(T) * v.size()); } //===----------------------------------------------------------------------===// // Type serialization //===----------------------------------------------------------------------===// namespace { class ASTTypeWriter { ASTWriter &Writer; ASTWriter::RecordDataImpl &Record; public: /// \brief Type code that corresponds to the record generated. TypeCode Code; ASTTypeWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record) : Writer(Writer), Record(Record), Code(TYPE_EXT_QUAL) { } void VisitArrayType(const ArrayType *T); void VisitFunctionType(const FunctionType *T); void VisitTagType(const TagType *T); #define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T); #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" }; } void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) { llvm_unreachable("Built-in types are never serialized"); } void ASTTypeWriter::VisitComplexType(const ComplexType *T) { Writer.AddTypeRef(T->getElementType(), Record); Code = TYPE_COMPLEX; } void ASTTypeWriter::VisitPointerType(const PointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_POINTER; } void ASTTypeWriter::VisitDecayedType(const DecayedType *T) { Writer.AddTypeRef(T->getOriginalType(), Record); Code = TYPE_DECAYED; } void ASTTypeWriter::VisitAdjustedType(const AdjustedType *T) { Writer.AddTypeRef(T->getOriginalType(), Record); Writer.AddTypeRef(T->getAdjustedType(), Record); Code = TYPE_ADJUSTED; } void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_BLOCK_POINTER; } void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) { Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record); Record.push_back(T->isSpelledAsLValue()); Code = TYPE_LVALUE_REFERENCE; } void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) { Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record); Code = TYPE_RVALUE_REFERENCE; } void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Writer.AddTypeRef(QualType(T->getClass(), 0), Record); Code = TYPE_MEMBER_POINTER; } void ASTTypeWriter::VisitArrayType(const ArrayType *T) { Writer.AddTypeRef(T->getElementType(), Record); Record.push_back(T->getSizeModifier()); // FIXME: stable values Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values } void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) { VisitArrayType(T); Writer.AddAPInt(T->getSize(), Record); Code = TYPE_CONSTANT_ARRAY; } void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) { VisitArrayType(T); Code = TYPE_INCOMPLETE_ARRAY; } void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) { VisitArrayType(T); Writer.AddSourceLocation(T->getLBracketLoc(), Record); Writer.AddSourceLocation(T->getRBracketLoc(), Record); Writer.AddStmt(T->getSizeExpr()); Code = TYPE_VARIABLE_ARRAY; } void ASTTypeWriter::VisitVectorType(const VectorType *T) { Writer.AddTypeRef(T->getElementType(), Record); Record.push_back(T->getNumElements()); Record.push_back(T->getVectorKind()); Code = TYPE_VECTOR; } void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) { VisitVectorType(T); Code = TYPE_EXT_VECTOR; } void ASTTypeWriter::VisitFunctionType(const FunctionType *T) { Writer.AddTypeRef(T->getReturnType(), Record); FunctionType::ExtInfo C = T->getExtInfo(); Record.push_back(C.getNoReturn()); Record.push_back(C.getHasRegParm()); Record.push_back(C.getRegParm()); // FIXME: need to stabilize encoding of calling convention... Record.push_back(C.getCC()); Record.push_back(C.getProducesResult()); } void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) { VisitFunctionType(T); Code = TYPE_FUNCTION_NO_PROTO; } static void addExceptionSpec(ASTWriter &Writer, const FunctionProtoType *T, ASTWriter::RecordDataImpl &Record) { Record.push_back(T->getExceptionSpecType()); if (T->getExceptionSpecType() == EST_Dynamic) { Record.push_back(T->getNumExceptions()); for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I) Writer.AddTypeRef(T->getExceptionType(I), Record); } else if (T->getExceptionSpecType() == EST_ComputedNoexcept) { Writer.AddStmt(T->getNoexceptExpr()); } else if (T->getExceptionSpecType() == EST_Uninstantiated) { Writer.AddDeclRef(T->getExceptionSpecDecl(), Record); Writer.AddDeclRef(T->getExceptionSpecTemplate(), Record); } else if (T->getExceptionSpecType() == EST_Unevaluated) { Writer.AddDeclRef(T->getExceptionSpecDecl(), Record); } } void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) { VisitFunctionType(T); Record.push_back(T->getNumParams()); for (unsigned I = 0, N = T->getNumParams(); I != N; ++I) Writer.AddTypeRef(T->getParamType(I), Record); Record.push_back(T->isVariadic()); Record.push_back(T->hasTrailingReturn()); Record.push_back(T->getTypeQuals()); Record.push_back(static_cast<unsigned>(T->getRefQualifier())); addExceptionSpec(Writer, T, Record); Code = TYPE_FUNCTION_PROTO; } void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) { Writer.AddDeclRef(T->getDecl(), Record); Code = TYPE_UNRESOLVED_USING; } void ASTTypeWriter::VisitTypedefType(const TypedefType *T) { Writer.AddDeclRef(T->getDecl(), Record); assert(!T->isCanonicalUnqualified() && "Invalid typedef ?"); Writer.AddTypeRef(T->getCanonicalTypeInternal(), Record); Code = TYPE_TYPEDEF; } void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) { Writer.AddStmt(T->getUnderlyingExpr()); Code = TYPE_TYPEOF_EXPR; } void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) { Writer.AddTypeRef(T->getUnderlyingType(), Record); Code = TYPE_TYPEOF; } void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) { Writer.AddTypeRef(T->getUnderlyingType(), Record); Writer.AddStmt(T->getUnderlyingExpr()); Code = TYPE_DECLTYPE; } void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) { Writer.AddTypeRef(T->getBaseType(), Record); Writer.AddTypeRef(T->getUnderlyingType(), Record); Record.push_back(T->getUTTKind()); Code = TYPE_UNARY_TRANSFORM; } void ASTTypeWriter::VisitAutoType(const AutoType *T) { Writer.AddTypeRef(T->getDeducedType(), Record); Record.push_back(T->isDecltypeAuto()); if (T->getDeducedType().isNull()) Record.push_back(T->isDependentType()); Code = TYPE_AUTO; } void ASTTypeWriter::VisitTagType(const TagType *T) { Record.push_back(T->isDependentType()); Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record); assert(!T->isBeingDefined() && "Cannot serialize in the middle of a type definition"); } void ASTTypeWriter::VisitRecordType(const RecordType *T) { VisitTagType(T); Code = TYPE_RECORD; } void ASTTypeWriter::VisitEnumType(const EnumType *T) { VisitTagType(T); Code = TYPE_ENUM; } void ASTTypeWriter::VisitAttributedType(const AttributedType *T) { Writer.AddTypeRef(T->getModifiedType(), Record); Writer.AddTypeRef(T->getEquivalentType(), Record); Record.push_back(T->getAttrKind()); Code = TYPE_ATTRIBUTED; } void ASTTypeWriter::VisitSubstTemplateTypeParmType( const SubstTemplateTypeParmType *T) { Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record); Writer.AddTypeRef(T->getReplacementType(), Record); Code = TYPE_SUBST_TEMPLATE_TYPE_PARM; } void ASTTypeWriter::VisitSubstTemplateTypeParmPackType( const SubstTemplateTypeParmPackType *T) { Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record); Writer.AddTemplateArgument(T->getArgumentPack(), Record); Code = TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK; } void ASTTypeWriter::VisitTemplateSpecializationType( const TemplateSpecializationType *T) { Record.push_back(T->isDependentType()); Writer.AddTemplateName(T->getTemplateName(), Record); Record.push_back(T->getNumArgs()); for (TemplateSpecializationType::iterator ArgI = T->begin(), ArgE = T->end(); ArgI != ArgE; ++ArgI) Writer.AddTemplateArgument(*ArgI, Record); Writer.AddTypeRef(T->isTypeAlias() ? T->getAliasedType() : T->isCanonicalUnqualified() ? QualType() : T->getCanonicalTypeInternal(), Record); Code = TYPE_TEMPLATE_SPECIALIZATION; } void ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) { VisitArrayType(T); Writer.AddStmt(T->getSizeExpr()); Writer.AddSourceRange(T->getBracketsRange(), Record); Code = TYPE_DEPENDENT_SIZED_ARRAY; } void ASTTypeWriter::VisitDependentSizedExtVectorType( const DependentSizedExtVectorType *T) { // FIXME: Serialize this type (C++ only) llvm_unreachable("Cannot serialize dependent sized extended vector types"); } void ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) { Record.push_back(T->getDepth()); Record.push_back(T->getIndex()); Record.push_back(T->isParameterPack()); Writer.AddDeclRef(T->getDecl(), Record); Code = TYPE_TEMPLATE_TYPE_PARM; } void ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddIdentifierRef(T->getIdentifier(), Record); Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType() : T->getCanonicalTypeInternal(), Record); Code = TYPE_DEPENDENT_NAME; } void ASTTypeWriter::VisitDependentTemplateSpecializationType( const DependentTemplateSpecializationType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddIdentifierRef(T->getIdentifier(), Record); Record.push_back(T->getNumArgs()); for (DependentTemplateSpecializationType::iterator I = T->begin(), E = T->end(); I != E; ++I) Writer.AddTemplateArgument(*I, Record); Code = TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION; } void ASTTypeWriter::VisitPackExpansionType(const PackExpansionType *T) { Writer.AddTypeRef(T->getPattern(), Record); if (Optional<unsigned> NumExpansions = T->getNumExpansions()) Record.push_back(*NumExpansions + 1); else Record.push_back(0); Code = TYPE_PACK_EXPANSION; } void ASTTypeWriter::VisitParenType(const ParenType *T) { Writer.AddTypeRef(T->getInnerType(), Record); Code = TYPE_PAREN; } void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) { Record.push_back(T->getKeyword()); Writer.AddNestedNameSpecifier(T->getQualifier(), Record); Writer.AddTypeRef(T->getNamedType(), Record); Code = TYPE_ELABORATED; } void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) { Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record); Writer.AddTypeRef(T->getInjectedSpecializationType(), Record); Code = TYPE_INJECTED_CLASS_NAME; } void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) { Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record); Code = TYPE_OBJC_INTERFACE; } void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) { Writer.AddTypeRef(T->getBaseType(), Record); Record.push_back(T->getNumProtocols()); for (const auto *I : T->quals()) Writer.AddDeclRef(I, Record); Code = TYPE_OBJC_OBJECT; } void ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { Writer.AddTypeRef(T->getPointeeType(), Record); Code = TYPE_OBJC_OBJECT_POINTER; } void ASTTypeWriter::VisitAtomicType(const AtomicType *T) { Writer.AddTypeRef(T->getValueType(), Record); Code = TYPE_ATOMIC; } namespace { class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> { ASTWriter &Writer; ASTWriter::RecordDataImpl &Record; public: TypeLocWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record) : Writer(Writer), Record(Record) { } #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitArrayTypeLoc(ArrayTypeLoc TyLoc); void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc); }; } void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { Writer.AddSourceLocation(TL.getBuiltinLoc(), Record); if (TL.needsExtraLocalData()) { Record.push_back(TL.getWrittenTypeSpec()); Record.push_back(TL.getWrittenSignSpec()); Record.push_back(TL.getWrittenWidthSpec()); Record.push_back(TL.hasModeAttr()); } } void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { // nothing to do } void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getCaretLoc(), Record); } void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { Writer.AddSourceLocation(TL.getAmpLoc(), Record); } void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { Writer.AddSourceLocation(TL.getAmpAmpLoc(), Record); } void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); Writer.AddTypeSourceInfo(TL.getClassTInfo(), Record); } void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) { Writer.AddSourceLocation(TL.getLBracketLoc(), Record); Writer.AddSourceLocation(TL.getRBracketLoc(), Record); Record.push_back(TL.getSizeExpr() ? 1 : 0); if (TL.getSizeExpr()) Writer.AddStmt(TL.getSizeExpr()); } void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) { Writer.AddSourceLocation(TL.getLocalRangeBegin(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddSourceLocation(TL.getLocalRangeEnd(), Record); for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) Writer.AddDeclRef(TL.getParam(i), Record); } void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { Writer.AddSourceLocation(TL.getTypeofLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { Writer.AddSourceLocation(TL.getTypeofLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record); } void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { Writer.AddSourceLocation(TL.getKWLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record); } void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) { Writer.AddSourceLocation(TL.getAttrNameLoc(), Record); if (TL.hasAttrOperand()) { SourceRange range = TL.getAttrOperandParensRange(); Writer.AddSourceLocation(range.getBegin(), Record); Writer.AddSourceLocation(range.getEnd(), Record); } if (TL.hasAttrExprOperand()) { Expr *operand = TL.getAttrExprOperand(); Record.push_back(operand ? 1 : 0); if (operand) Writer.AddStmt(operand); } else if (TL.hasAttrEnumOperand()) { Writer.AddSourceLocation(TL.getAttrEnumOperandLoc(), Record); } } void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record); Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(), TL.getArgLoc(i).getLocInfo(), Record); } void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) { Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record); Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record); } void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record); Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record); Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record); Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record); Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record); Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(), TL.getArgLoc(I).getLocInfo(), Record); } void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { Writer.AddSourceLocation(TL.getEllipsisLoc(), Record); } void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { Writer.AddSourceLocation(TL.getNameLoc(), Record); } void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { Record.push_back(TL.hasBaseTypeAsWritten()); Writer.AddSourceLocation(TL.getLAngleLoc(), Record); Writer.AddSourceLocation(TL.getRAngleLoc(), Record); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) Writer.AddSourceLocation(TL.getProtocolLoc(i), Record); } void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { Writer.AddSourceLocation(TL.getStarLoc(), Record); } void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) { Writer.AddSourceLocation(TL.getKWLoc(), Record); Writer.AddSourceLocation(TL.getLParenLoc(), Record); Writer.AddSourceLocation(TL.getRParenLoc(), Record); } //===----------------------------------------------------------------------===// // ASTWriter Implementation //===----------------------------------------------------------------------===// static void EmitBlockID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { Record.clear(); Record.push_back(ID); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record); // Emit the block name if present. if (!Name || Name[0] == 0) return; Record.clear(); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record); } static void EmitRecordID(unsigned ID, const char *Name, llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { Record.clear(); Record.push_back(ID); while (*Name) Record.push_back(*Name++); Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record); } static void AddStmtsExprs(llvm::BitstreamWriter &Stream, ASTWriter::RecordDataImpl &Record) { #define RECORD(X) EmitRecordID(X, #X, Stream, Record) RECORD(STMT_STOP); RECORD(STMT_NULL_PTR); RECORD(STMT_NULL); RECORD(STMT_COMPOUND); RECORD(STMT_CASE); RECORD(STMT_DEFAULT); RECORD(STMT_LABEL); RECORD(STMT_ATTRIBUTED); RECORD(STMT_IF); RECORD(STMT_SWITCH); RECORD(STMT_WHILE); RECORD(STMT_DO); RECORD(STMT_FOR); RECORD(STMT_GOTO); RECORD(STMT_INDIRECT_GOTO); RECORD(STMT_CONTINUE); RECORD(STMT_BREAK); RECORD(STMT_RETURN); RECORD(STMT_DECL); RECORD(STMT_GCCASM); RECORD(STMT_MSASM); RECORD(EXPR_PREDEFINED); RECORD(EXPR_DECL_REF); RECORD(EXPR_INTEGER_LITERAL); RECORD(EXPR_FLOATING_LITERAL); RECORD(EXPR_IMAGINARY_LITERAL); RECORD(EXPR_STRING_LITERAL); RECORD(EXPR_CHARACTER_LITERAL); RECORD(EXPR_PAREN); RECORD(EXPR_UNARY_OPERATOR); RECORD(EXPR_SIZEOF_ALIGN_OF); RECORD(EXPR_ARRAY_SUBSCRIPT); RECORD(EXPR_CALL); RECORD(EXPR_MEMBER); RECORD(EXPR_BINARY_OPERATOR); RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR); RECORD(EXPR_CONDITIONAL_OPERATOR); RECORD(EXPR_IMPLICIT_CAST); RECORD(EXPR_CSTYLE_CAST); RECORD(EXPR_COMPOUND_LITERAL); RECORD(EXPR_EXT_VECTOR_ELEMENT); RECORD(EXPR_INIT_LIST); RECORD(EXPR_DESIGNATED_INIT); RECORD(EXPR_IMPLICIT_VALUE_INIT); RECORD(EXPR_VA_ARG); RECORD(EXPR_ADDR_LABEL); RECORD(EXPR_STMT); RECORD(EXPR_CHOOSE); RECORD(EXPR_GNU_NULL); RECORD(EXPR_SHUFFLE_VECTOR); RECORD(EXPR_BLOCK); RECORD(EXPR_GENERIC_SELECTION); RECORD(EXPR_OBJC_STRING_LITERAL); RECORD(EXPR_OBJC_BOXED_EXPRESSION); RECORD(EXPR_OBJC_ARRAY_LITERAL); RECORD(EXPR_OBJC_DICTIONARY_LITERAL); RECORD(EXPR_OBJC_ENCODE); RECORD(EXPR_OBJC_SELECTOR_EXPR); RECORD(EXPR_OBJC_PROTOCOL_EXPR); RECORD(EXPR_OBJC_IVAR_REF_EXPR); RECORD(EXPR_OBJC_PROPERTY_REF_EXPR); RECORD(EXPR_OBJC_KVC_REF_EXPR); RECORD(EXPR_OBJC_MESSAGE_EXPR); RECORD(STMT_OBJC_FOR_COLLECTION); RECORD(STMT_OBJC_CATCH); RECORD(STMT_OBJC_FINALLY); RECORD(STMT_OBJC_AT_TRY); RECORD(STMT_OBJC_AT_SYNCHRONIZED); RECORD(STMT_OBJC_AT_THROW); RECORD(EXPR_OBJC_BOOL_LITERAL); RECORD(EXPR_CXX_OPERATOR_CALL); RECORD(EXPR_CXX_CONSTRUCT); RECORD(EXPR_CXX_STATIC_CAST); RECORD(EXPR_CXX_DYNAMIC_CAST); RECORD(EXPR_CXX_REINTERPRET_CAST); RECORD(EXPR_CXX_CONST_CAST); RECORD(EXPR_CXX_FUNCTIONAL_CAST); RECORD(EXPR_USER_DEFINED_LITERAL); RECORD(EXPR_CXX_STD_INITIALIZER_LIST); RECORD(EXPR_CXX_BOOL_LITERAL); RECORD(EXPR_CXX_NULL_PTR_LITERAL); RECORD(EXPR_CXX_TYPEID_EXPR); RECORD(EXPR_CXX_TYPEID_TYPE); RECORD(EXPR_CXX_UUIDOF_EXPR); RECORD(EXPR_CXX_UUIDOF_TYPE); RECORD(EXPR_CXX_THIS); RECORD(EXPR_CXX_THROW); RECORD(EXPR_CXX_DEFAULT_ARG); RECORD(EXPR_CXX_BIND_TEMPORARY); RECORD(EXPR_CXX_SCALAR_VALUE_INIT); RECORD(EXPR_CXX_NEW); RECORD(EXPR_CXX_DELETE); RECORD(EXPR_CXX_PSEUDO_DESTRUCTOR); RECORD(EXPR_EXPR_WITH_CLEANUPS); RECORD(EXPR_CXX_DEPENDENT_SCOPE_MEMBER); RECORD(EXPR_CXX_DEPENDENT_SCOPE_DECL_REF); RECORD(EXPR_CXX_UNRESOLVED_CONSTRUCT); RECORD(EXPR_CXX_UNRESOLVED_MEMBER); RECORD(EXPR_CXX_UNRESOLVED_LOOKUP); RECORD(EXPR_CXX_NOEXCEPT); RECORD(EXPR_OPAQUE_VALUE); RECORD(EXPR_PACK_EXPANSION); RECORD(EXPR_SIZEOF_PACK); RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK); RECORD(EXPR_CUDA_KERNEL_CALL); #undef RECORD } void ASTWriter::WriteBlockInfoBlock() { RecordData Record; Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3); #define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record) #define RECORD(X) EmitRecordID(X, #X, Stream, Record) // Control Block. BLOCK(CONTROL_BLOCK); RECORD(METADATA); RECORD(MODULE_NAME); RECORD(MODULE_MAP_FILE); RECORD(IMPORTS); RECORD(LANGUAGE_OPTIONS); RECORD(TARGET_OPTIONS); RECORD(ORIGINAL_FILE); RECORD(ORIGINAL_PCH_DIR); RECORD(ORIGINAL_FILE_ID); RECORD(INPUT_FILE_OFFSETS); RECORD(DIAGNOSTIC_OPTIONS); RECORD(FILE_SYSTEM_OPTIONS); RECORD(HEADER_SEARCH_OPTIONS); RECORD(PREPROCESSOR_OPTIONS); BLOCK(INPUT_FILES_BLOCK); RECORD(INPUT_FILE); // AST Top-Level Block. BLOCK(AST_BLOCK); RECORD(TYPE_OFFSET); RECORD(DECL_OFFSET); RECORD(IDENTIFIER_OFFSET); RECORD(IDENTIFIER_TABLE); RECORD(EAGERLY_DESERIALIZED_DECLS); RECORD(SPECIAL_TYPES); RECORD(STATISTICS); RECORD(TENTATIVE_DEFINITIONS); RECORD(UNUSED_FILESCOPED_DECLS); RECORD(LOCALLY_SCOPED_EXTERN_C_DECLS); RECORD(SELECTOR_OFFSETS); RECORD(METHOD_POOL); RECORD(PP_COUNTER_VALUE); RECORD(SOURCE_LOCATION_OFFSETS); RECORD(SOURCE_LOCATION_PRELOADS); RECORD(EXT_VECTOR_DECLS); RECORD(PPD_ENTITIES_OFFSETS); RECORD(REFERENCED_SELECTOR_POOL); RECORD(TU_UPDATE_LEXICAL); RECORD(LOCAL_REDECLARATIONS_MAP); RECORD(SEMA_DECL_REFS); RECORD(WEAK_UNDECLARED_IDENTIFIERS); RECORD(PENDING_IMPLICIT_INSTANTIATIONS); RECORD(DECL_REPLACEMENTS); RECORD(UPDATE_VISIBLE); RECORD(DECL_UPDATE_OFFSETS); RECORD(DECL_UPDATES); RECORD(CXX_BASE_SPECIFIER_OFFSETS); RECORD(DIAG_PRAGMA_MAPPINGS); RECORD(CUDA_SPECIAL_DECL_REFS); RECORD(HEADER_SEARCH_TABLE); RECORD(FP_PRAGMA_OPTIONS); RECORD(OPENCL_EXTENSIONS); RECORD(DELEGATING_CTORS); RECORD(KNOWN_NAMESPACES); RECORD(UNDEFINED_BUT_USED); RECORD(MODULE_OFFSET_MAP); RECORD(SOURCE_MANAGER_LINE_TABLE); RECORD(OBJC_CATEGORIES_MAP); RECORD(FILE_SORTED_DECLS); RECORD(IMPORTED_MODULES); RECORD(MERGED_DECLARATIONS); RECORD(LOCAL_REDECLARATIONS); RECORD(OBJC_CATEGORIES); RECORD(MACRO_OFFSET); RECORD(MACRO_TABLE); RECORD(LATE_PARSED_TEMPLATE); RECORD(OPTIMIZE_PRAGMA_OPTIONS); // SourceManager Block. BLOCK(SOURCE_MANAGER_BLOCK); RECORD(SM_SLOC_FILE_ENTRY); RECORD(SM_SLOC_BUFFER_ENTRY); RECORD(SM_SLOC_BUFFER_BLOB); RECORD(SM_SLOC_EXPANSION_ENTRY); // Preprocessor Block. BLOCK(PREPROCESSOR_BLOCK); RECORD(PP_MACRO_OBJECT_LIKE); RECORD(PP_MACRO_FUNCTION_LIKE); RECORD(PP_TOKEN); // Decls and Types block. BLOCK(DECLTYPES_BLOCK); RECORD(TYPE_EXT_QUAL); RECORD(TYPE_COMPLEX); RECORD(TYPE_POINTER); RECORD(TYPE_BLOCK_POINTER); RECORD(TYPE_LVALUE_REFERENCE); RECORD(TYPE_RVALUE_REFERENCE); RECORD(TYPE_MEMBER_POINTER); RECORD(TYPE_CONSTANT_ARRAY); RECORD(TYPE_INCOMPLETE_ARRAY); RECORD(TYPE_VARIABLE_ARRAY); RECORD(TYPE_VECTOR); RECORD(TYPE_EXT_VECTOR); RECORD(TYPE_FUNCTION_PROTO); RECORD(TYPE_FUNCTION_NO_PROTO); RECORD(TYPE_TYPEDEF); RECORD(TYPE_TYPEOF_EXPR); RECORD(TYPE_TYPEOF); RECORD(TYPE_RECORD); RECORD(TYPE_ENUM); RECORD(TYPE_OBJC_INTERFACE); RECORD(TYPE_OBJC_OBJECT); RECORD(TYPE_OBJC_OBJECT_POINTER); RECORD(TYPE_DECLTYPE); RECORD(TYPE_ELABORATED); RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM); RECORD(TYPE_UNRESOLVED_USING); RECORD(TYPE_INJECTED_CLASS_NAME); RECORD(TYPE_OBJC_OBJECT); RECORD(TYPE_TEMPLATE_TYPE_PARM); RECORD(TYPE_TEMPLATE_SPECIALIZATION); RECORD(TYPE_DEPENDENT_NAME); RECORD(TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION); RECORD(TYPE_DEPENDENT_SIZED_ARRAY); RECORD(TYPE_PAREN); RECORD(TYPE_PACK_EXPANSION); RECORD(TYPE_ATTRIBUTED); RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK); RECORD(TYPE_ATOMIC); RECORD(DECL_TYPEDEF); RECORD(DECL_ENUM); RECORD(DECL_RECORD); RECORD(DECL_ENUM_CONSTANT); RECORD(DECL_FUNCTION); RECORD(DECL_OBJC_METHOD); RECORD(DECL_OBJC_INTERFACE); RECORD(DECL_OBJC_PROTOCOL); RECORD(DECL_OBJC_IVAR); RECORD(DECL_OBJC_AT_DEFS_FIELD); RECORD(DECL_OBJC_CATEGORY); RECORD(DECL_OBJC_CATEGORY_IMPL); RECORD(DECL_OBJC_IMPLEMENTATION); RECORD(DECL_OBJC_COMPATIBLE_ALIAS); RECORD(DECL_OBJC_PROPERTY); RECORD(DECL_OBJC_PROPERTY_IMPL); RECORD(DECL_FIELD); RECORD(DECL_MS_PROPERTY); RECORD(DECL_VAR); RECORD(DECL_IMPLICIT_PARAM); RECORD(DECL_PARM_VAR); RECORD(DECL_FILE_SCOPE_ASM); RECORD(DECL_BLOCK); RECORD(DECL_CONTEXT_LEXICAL); RECORD(DECL_CONTEXT_VISIBLE); RECORD(DECL_NAMESPACE); RECORD(DECL_NAMESPACE_ALIAS); RECORD(DECL_USING); RECORD(DECL_USING_SHADOW); RECORD(DECL_USING_DIRECTIVE); RECORD(DECL_UNRESOLVED_USING_VALUE); RECORD(DECL_UNRESOLVED_USING_TYPENAME); RECORD(DECL_LINKAGE_SPEC); RECORD(DECL_CXX_RECORD); RECORD(DECL_CXX_METHOD); RECORD(DECL_CXX_CONSTRUCTOR); RECORD(DECL_CXX_DESTRUCTOR); RECORD(DECL_CXX_CONVERSION); RECORD(DECL_ACCESS_SPEC); RECORD(DECL_FRIEND); RECORD(DECL_FRIEND_TEMPLATE); RECORD(DECL_CLASS_TEMPLATE); RECORD(DECL_CLASS_TEMPLATE_SPECIALIZATION); RECORD(DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION); RECORD(DECL_VAR_TEMPLATE); RECORD(DECL_VAR_TEMPLATE_SPECIALIZATION); RECORD(DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION); RECORD(DECL_FUNCTION_TEMPLATE); RECORD(DECL_TEMPLATE_TYPE_PARM); RECORD(DECL_NON_TYPE_TEMPLATE_PARM); RECORD(DECL_TEMPLATE_TEMPLATE_PARM); RECORD(DECL_STATIC_ASSERT); RECORD(DECL_CXX_BASE_SPECIFIERS); RECORD(DECL_INDIRECTFIELD); RECORD(DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK); // Statements and Exprs can occur in the Decls and Types block. AddStmtsExprs(Stream, Record); BLOCK(PREPROCESSOR_DETAIL_BLOCK); RECORD(PPD_MACRO_EXPANSION); RECORD(PPD_MACRO_DEFINITION); RECORD(PPD_INCLUSION_DIRECTIVE); #undef RECORD #undef BLOCK Stream.ExitBlock(); } /// \brief Adjusts the given filename to only write out the portion of the /// filename that is not part of the system root directory. /// /// \param Filename the file name to adjust. /// /// \param isysroot When non-NULL, the PCH file is a relocatable PCH file and /// the returned filename will be adjusted by this system root. /// /// \returns either the original filename (if it needs no adjustment) or the /// adjusted filename (which points into the @p Filename parameter). static const char * adjustFilenameForRelocatablePCH(const char *Filename, StringRef isysroot) { assert(Filename && "No file name to adjust?"); if (isysroot.empty()) return Filename; // Verify that the filename and the system root have the same prefix. unsigned Pos = 0; for (; Filename[Pos] && Pos < isysroot.size(); ++Pos) if (Filename[Pos] != isysroot[Pos]) return Filename; // Prefixes don't match. // We hit the end of the filename before we hit the end of the system root. if (!Filename[Pos]) return Filename; // If the file name has a '/' at the current position, skip over the '/'. // We distinguish sysroot-based includes from absolute includes by the // absence of '/' at the beginning of sysroot-based includes. if (Filename[Pos] == '/') ++Pos; return Filename + Pos; } /// \brief Write the control block. void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context, StringRef isysroot, const std::string &OutputFile) { using namespace llvm; Stream.EnterSubblock(CONTROL_BLOCK_ID, 5); RecordData Record; // Metadata BitCodeAbbrev *MetadataAbbrev = new BitCodeAbbrev(); MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA)); MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj. MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min. MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag unsigned MetadataAbbrevCode = Stream.EmitAbbrev(MetadataAbbrev); Record.push_back(METADATA); Record.push_back(VERSION_MAJOR); Record.push_back(VERSION_MINOR); Record.push_back(CLANG_VERSION_MAJOR); Record.push_back(CLANG_VERSION_MINOR); Record.push_back(!isysroot.empty()); Record.push_back(ASTHasCompilerErrors); Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record, getClangFullRepositoryVersion()); // Module name if (WritingModule) { BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); RecordData Record; Record.push_back(MODULE_NAME); Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name); } // Module map file if (WritingModule) { BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MODULE_MAP_FILE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Filename unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); assert(WritingModule->ModuleMap && "missing module map"); SmallString<128> ModuleMap(WritingModule->ModuleMap->getName()); llvm::sys::fs::make_absolute(ModuleMap); RecordData Record; Record.push_back(MODULE_MAP_FILE); Stream.EmitRecordWithBlob(AbbrevCode, Record, ModuleMap.str()); } // Imports if (Chain) { serialization::ModuleManager &Mgr = Chain->getModuleManager(); Record.clear(); for (ModuleManager::ModuleIterator M = Mgr.begin(), MEnd = Mgr.end(); M != MEnd; ++M) { // Skip modules that weren't directly imported. if (!(*M)->isDirectlyImported()) continue; Record.push_back((unsigned)(*M)->Kind); // FIXME: Stable encoding AddSourceLocation((*M)->ImportLoc, Record); Record.push_back((*M)->File->getSize()); Record.push_back((*M)->File->getModificationTime()); const std::string &FileName = (*M)->FileName; Record.push_back(FileName.size()); Record.append(FileName.begin(), FileName.end()); } Stream.EmitRecord(IMPORTS, Record); } // Language options. Record.clear(); const LangOptions &LangOpts = Context.getLangOpts(); #define LANGOPT(Name, Bits, Default, Description) \ Record.push_back(LangOpts.Name); #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ Record.push_back(static_cast<unsigned>(LangOpts.get##Name())); #include "clang/Basic/LangOptions.def" #define SANITIZER(NAME, ID) Record.push_back(LangOpts.Sanitize.ID); #include "clang/Basic/Sanitizers.def" Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind()); AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record); Record.push_back(LangOpts.CurrentModule.size()); Record.append(LangOpts.CurrentModule.begin(), LangOpts.CurrentModule.end()); // Comment options. Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size()); for (CommentOptions::BlockCommandNamesTy::const_iterator I = LangOpts.CommentOpts.BlockCommandNames.begin(), IEnd = LangOpts.CommentOpts.BlockCommandNames.end(); I != IEnd; ++I) { AddString(*I, Record); } Record.push_back(LangOpts.CommentOpts.ParseAllComments); Stream.EmitRecord(LANGUAGE_OPTIONS, Record); // Target options. Record.clear(); const TargetInfo &Target = Context.getTargetInfo(); const TargetOptions &TargetOpts = Target.getTargetOpts(); AddString(TargetOpts.Triple, Record); AddString(TargetOpts.CPU, Record); AddString(TargetOpts.ABI, Record); Record.push_back(TargetOpts.FeaturesAsWritten.size()); for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) { AddString(TargetOpts.FeaturesAsWritten[I], Record); } Record.push_back(TargetOpts.Features.size()); for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) { AddString(TargetOpts.Features[I], Record); } Stream.EmitRecord(TARGET_OPTIONS, Record); // Diagnostic options. Record.clear(); const DiagnosticOptions &DiagOpts = Context.getDiagnostics().getDiagnosticOptions(); #define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name); #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ Record.push_back(static_cast<unsigned>(DiagOpts.get##Name())); #include "clang/Basic/DiagnosticOptions.def" Record.push_back(DiagOpts.Warnings.size()); for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I) AddString(DiagOpts.Warnings[I], Record); // Note: we don't serialize the log or serialization file names, because they // are generally transient files and will almost always be overridden. Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record); // File system options. Record.clear(); const FileSystemOptions &FSOpts = Context.getSourceManager().getFileManager().getFileSystemOptions(); AddString(FSOpts.WorkingDir, Record); Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record); // Header search options. Record.clear(); const HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); AddString(HSOpts.Sysroot, Record); // Include entries. Record.push_back(HSOpts.UserEntries.size()); for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) { const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I]; AddString(Entry.Path, Record); Record.push_back(static_cast<unsigned>(Entry.Group)); Record.push_back(Entry.IsFramework); Record.push_back(Entry.IgnoreSysRoot); } // System header prefixes. Record.push_back(HSOpts.SystemHeaderPrefixes.size()); for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) { AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record); Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader); } AddString(HSOpts.ResourceDir, Record); AddString(HSOpts.ModuleCachePath, Record); AddString(HSOpts.ModuleUserBuildPath, Record); Record.push_back(HSOpts.DisableModuleHash); Record.push_back(HSOpts.UseBuiltinIncludes); Record.push_back(HSOpts.UseStandardSystemIncludes); Record.push_back(HSOpts.UseStandardCXXIncludes); Record.push_back(HSOpts.UseLibcxx); Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record); // Preprocessor options. Record.clear(); const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts(); // Macro definitions. Record.push_back(PPOpts.Macros.size()); for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) { AddString(PPOpts.Macros[I].first, Record); Record.push_back(PPOpts.Macros[I].second); } // Includes Record.push_back(PPOpts.Includes.size()); for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I) AddString(PPOpts.Includes[I], Record); // Macro includes Record.push_back(PPOpts.MacroIncludes.size()); for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I) AddString(PPOpts.MacroIncludes[I], Record); Record.push_back(PPOpts.UsePredefines); // Detailed record is important since it is used for the module cache hash. Record.push_back(PPOpts.DetailedRecord); AddString(PPOpts.ImplicitPCHInclude, Record); AddString(PPOpts.ImplicitPTHInclude, Record); Record.push_back(static_cast<unsigned>(PPOpts.ObjCXXARCStandardLibrary)); Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record); // Original file name and file ID SourceManager &SM = Context.getSourceManager(); if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { BitCodeAbbrev *FileAbbrev = new BitCodeAbbrev(); FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE)); FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned FileAbbrevCode = Stream.EmitAbbrev(FileAbbrev); SmallString<128> MainFilePath(MainFile->getName()); llvm::sys::fs::make_absolute(MainFilePath); const char *MainFileNameStr = MainFilePath.c_str(); MainFileNameStr = adjustFilenameForRelocatablePCH(MainFileNameStr, isysroot); Record.clear(); Record.push_back(ORIGINAL_FILE); Record.push_back(SM.getMainFileID().getOpaqueValue()); Stream.EmitRecordWithBlob(FileAbbrevCode, Record, MainFileNameStr); } Record.clear(); Record.push_back(SM.getMainFileID().getOpaqueValue()); Stream.EmitRecord(ORIGINAL_FILE_ID, Record); // Original PCH directory if (!OutputFile.empty() && OutputFile != "-") { BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); SmallString<128> OutputPath(OutputFile); llvm::sys::fs::make_absolute(OutputPath); StringRef origDir = llvm::sys::path::parent_path(OutputPath); RecordData Record; Record.push_back(ORIGINAL_PCH_DIR); Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir); } WriteInputFiles(Context.SourceMgr, PP.getHeaderSearchInfo().getHeaderSearchOpts(), isysroot, PP.getLangOpts().Modules); Stream.ExitBlock(); } namespace { /// \brief An input file. struct InputFileEntry { const FileEntry *File; bool IsSystemFile; bool BufferOverridden; }; } void ASTWriter::WriteInputFiles(SourceManager &SourceMgr, HeaderSearchOptions &HSOpts, StringRef isysroot, bool Modules) { using namespace llvm; Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4); RecordData Record; // Create input-file abbreviation. BitCodeAbbrev *IFAbbrev = new BitCodeAbbrev(); IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE)); IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name unsigned IFAbbrevCode = Stream.EmitAbbrev(IFAbbrev); // Get all ContentCache objects for files, sorted by whether the file is a // system one or not. System files go at the back, users files at the front. std::deque<InputFileEntry> SortedFiles; for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I); assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc); // We only care about file entries that were not overridden. if (!SLoc->isFile()) continue; const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache(); if (!Cache->OrigEntry) continue; InputFileEntry Entry; Entry.File = Cache->OrigEntry; Entry.IsSystemFile = Cache->IsSystemFile; Entry.BufferOverridden = Cache->BufferOverridden; if (Cache->IsSystemFile) SortedFiles.push_back(Entry); else SortedFiles.push_front(Entry); } unsigned UserFilesNum = 0; // Write out all of the input files. std::vector<uint32_t> InputFileOffsets; for (std::deque<InputFileEntry>::iterator I = SortedFiles.begin(), E = SortedFiles.end(); I != E; ++I) { const InputFileEntry &Entry = *I; uint32_t &InputFileID = InputFileIDs[Entry.File]; if (InputFileID != 0) continue; // already recorded this file. // Record this entry's offset. InputFileOffsets.push_back(Stream.GetCurrentBitNo()); InputFileID = InputFileOffsets.size(); if (!Entry.IsSystemFile) ++UserFilesNum; Record.clear(); Record.push_back(INPUT_FILE); Record.push_back(InputFileOffsets.size()); // Emit size/modification time for this file. Record.push_back(Entry.File->getSize()); Record.push_back(Entry.File->getModificationTime()); // Whether this file was overridden. Record.push_back(Entry.BufferOverridden); // Turn the file name into an absolute path, if it isn't already. const char *Filename = Entry.File->getName(); SmallString<128> FilePath(Filename); // Ask the file manager to fixup the relative path for us. This will // honor the working directory. SourceMgr.getFileManager().FixupRelativePath(FilePath); // FIXME: This call to make_absolute shouldn't be necessary, the // call to FixupRelativePath should always return an absolute path. llvm::sys::fs::make_absolute(FilePath); Filename = FilePath.c_str(); Filename = adjustFilenameForRelocatablePCH(Filename, isysroot); Stream.EmitRecordWithBlob(IFAbbrevCode, Record, Filename); } Stream.ExitBlock(); // Create input file offsets abbreviation. BitCodeAbbrev *OffsetsAbbrev = new BitCodeAbbrev(); OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS)); OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system // input files OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(OffsetsAbbrev); // Write input file offsets. Record.clear(); Record.push_back(INPUT_FILE_OFFSETS); Record.push_back(InputFileOffsets.size()); Record.push_back(UserFilesNum); Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, data(InputFileOffsets)); } //===----------------------------------------------------------------------===// // Source Manager Serialization //===----------------------------------------------------------------------===// /// \brief Create an abbreviation for the SLocEntry that refers to a /// file. static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives // FileEntry fields. Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a /// buffer. static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a /// buffer's blob. static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_BLOB)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob return Stream.EmitAbbrev(Abbrev); } /// \brief Create an abbreviation for the SLocEntry that refers to a macro /// expansion. static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) { using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length return Stream.EmitAbbrev(Abbrev); } namespace { // Trait used for the on-disk hash table of header search information. class HeaderFileInfoTrait { ASTWriter &Writer; const HeaderSearch &HS; // Keep track of the framework names we've used during serialization. SmallVector<char, 128> FrameworkStringData; llvm::StringMap<unsigned> FrameworkNameOffset; public: HeaderFileInfoTrait(ASTWriter &Writer, const HeaderSearch &HS) : Writer(Writer), HS(HS) { } struct key_type { const FileEntry *FE; const char *Filename; }; typedef const key_type &key_type_ref; typedef HeaderFileInfo data_type; typedef const data_type &data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; static hash_value_type ComputeHash(key_type_ref key) { // The hash is based only on size/time of the file, so that the reader can // match even when symlinking or excess path elements ("foo/../", "../") // change the form of the name. However, complete path is still the key. return llvm::hash_combine(key.FE->getSize(), key.FE->getModificationTime()); } std::pair<unsigned,unsigned> EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) { using namespace llvm::support; endian::Writer<little> Writer(Out); unsigned KeyLen = strlen(key.Filename) + 1 + 8 + 8; Writer.write<uint16_t>(KeyLen); unsigned DataLen = 1 + 2 + 4 + 4; if (Data.isModuleHeader) DataLen += 4; Writer.write<uint8_t>(DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) { using namespace llvm::support; endian::Writer<little> LE(Out); LE.write<uint64_t>(key.FE->getSize()); KeyLen -= 8; LE.write<uint64_t>(key.FE->getModificationTime()); KeyLen -= 8; Out.write(key.Filename, KeyLen); } void EmitData(raw_ostream &Out, key_type_ref key, data_type_ref Data, unsigned DataLen) { using namespace llvm::support; endian::Writer<little> LE(Out); uint64_t Start = Out.tell(); (void)Start; unsigned char Flags = (Data.HeaderRole << 6) | (Data.isImport << 5) | (Data.isPragmaOnce << 4) | (Data.DirInfo << 2) | (Data.Resolved << 1) | Data.IndexHeaderMapHeader; LE.write<uint8_t>(Flags); LE.write<uint16_t>(Data.NumIncludes); if (!Data.ControllingMacro) LE.write<uint32_t>(Data.ControllingMacroID); else LE.write<uint32_t>(Writer.getIdentifierRef(Data.ControllingMacro)); unsigned Offset = 0; if (!Data.Framework.empty()) { // If this header refers into a framework, save the framework name. llvm::StringMap<unsigned>::iterator Pos = FrameworkNameOffset.find(Data.Framework); if (Pos == FrameworkNameOffset.end()) { Offset = FrameworkStringData.size() + 1; FrameworkStringData.append(Data.Framework.begin(), Data.Framework.end()); FrameworkStringData.push_back(0); FrameworkNameOffset[Data.Framework] = Offset; } else Offset = Pos->second; } LE.write<uint32_t>(Offset); if (Data.isModuleHeader) { Module *Mod = HS.findModuleForHeader(key.FE).getModule(); LE.write<uint32_t>(Writer.getExistingSubmoduleID(Mod)); } assert(Out.tell() - Start == DataLen && "Wrong data length"); } const char *strings_begin() const { return FrameworkStringData.begin(); } const char *strings_end() const { return FrameworkStringData.end(); } }; } // end anonymous namespace /// \brief Write the header search block for the list of files that /// /// \param HS The header search structure to save. void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS, StringRef isysroot) { SmallVector<const FileEntry *, 16> FilesByUID; HS.getFileMgr().GetUniqueIDMapping(FilesByUID); if (FilesByUID.size() > HS.header_file_size()) FilesByUID.resize(HS.header_file_size()); HeaderFileInfoTrait GeneratorTrait(*this, HS); llvm::OnDiskChainedHashTableGenerator<HeaderFileInfoTrait> Generator; SmallVector<const char *, 4> SavedStrings; unsigned NumHeaderSearchEntries = 0; for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) { const FileEntry *File = FilesByUID[UID]; if (!File) continue; // Use HeaderSearch's getFileInfo to make sure we get the HeaderFileInfo // from the external source if it was not provided already. HeaderFileInfo HFI; if (!HS.tryGetFileInfo(File, HFI) || (HFI.External && Chain) || (HFI.isModuleHeader && !HFI.isCompilingModuleHeader)) continue; // Turn the file name into an absolute path, if it isn't already. const char *Filename = File->getName(); Filename = adjustFilenameForRelocatablePCH(Filename, isysroot); // If we performed any translation on the file name at all, we need to // save this string, since the generator will refer to it later. if (Filename != File->getName()) { Filename = strdup(Filename); SavedStrings.push_back(Filename); } HeaderFileInfoTrait::key_type key = { File, Filename }; Generator.insert(key, HFI, GeneratorTrait); ++NumHeaderSearchEntries; } // Create the on-disk hash table in a buffer. SmallString<4096> TableData; uint32_t BucketOffset; { using namespace llvm::support; llvm::raw_svector_ostream Out(TableData); // Make sure that no bucket is at offset 0 endian::Writer<little>(Out).write<uint32_t>(0); BucketOffset = Generator.Emit(Out, GeneratorTrait); } // Create a blob abbreviation using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned TableAbbrev = Stream.EmitAbbrev(Abbrev); // Write the header search table RecordData Record; Record.push_back(HEADER_SEARCH_TABLE); Record.push_back(BucketOffset); Record.push_back(NumHeaderSearchEntries); Record.push_back(TableData.size()); TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end()); Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData.str()); // Free all of the strings we had to duplicate. for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I) free(const_cast<char *>(SavedStrings[I])); } /// \brief Writes the block containing the serialized form of the /// source manager. /// /// TODO: We should probably use an on-disk hash table (stored in a /// blob), indexed based on the file name, so that we only create /// entries for files that we actually need. In the common case (no /// errors), we probably won't have to create file entries for any of /// the files in the AST. void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr, const Preprocessor &PP, StringRef isysroot) { RecordData Record; // Enter the source manager block. Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 3); // Abbreviations for the various kinds of source-location entries. unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream); unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream); unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream); unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream); // Write out the source location entry table. We skip the first // entry, which is always the same dummy entry. std::vector<uint32_t> SLocEntryOffsets; RecordData PreloadSLocs; SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1); for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) { // Get this source location entry. const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I); FileID FID = FileID::get(I); assert(&SourceMgr.getSLocEntry(FID) == SLoc); // Record the offset of this source-location entry. SLocEntryOffsets.push_back(Stream.GetCurrentBitNo()); // Figure out which record code to use. unsigned Code; if (SLoc->isFile()) { const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache(); if (Cache->OrigEntry) { Code = SM_SLOC_FILE_ENTRY; } else Code = SM_SLOC_BUFFER_ENTRY; } else Code = SM_SLOC_EXPANSION_ENTRY; Record.clear(); Record.push_back(Code); // Starting offset of this entry within this module, so skip the dummy. Record.push_back(SLoc->getOffset() - 2); if (SLoc->isFile()) { const SrcMgr::FileInfo &File = SLoc->getFile(); Record.push_back(File.getIncludeLoc().getRawEncoding()); Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding Record.push_back(File.hasLineDirectives()); const SrcMgr::ContentCache *Content = File.getContentCache(); if (Content->OrigEntry) { assert(Content->OrigEntry == Content->ContentsEntry && "Writing to AST an overridden file is not supported"); // The source location entry is a file. Emit input file ID. assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry"); Record.push_back(InputFileIDs[Content->OrigEntry]); Record.push_back(File.NumCreatedFIDs); FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID); if (FDI != FileDeclIDs.end()) { Record.push_back(FDI->second->FirstDeclIndex); Record.push_back(FDI->second->DeclIDs.size()); } else { Record.push_back(0); Record.push_back(0); } Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record); if (Content->BufferOverridden) { Record.clear(); Record.push_back(SM_SLOC_BUFFER_BLOB); const llvm::MemoryBuffer *Buffer = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager()); Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, StringRef(Buffer->getBufferStart(), Buffer->getBufferSize() + 1)); } } else { // The source location entry is a buffer. The blob associated // with this entry contains the contents of the buffer. // We add one to the size so that we capture the trailing NULL // that is required by llvm::MemoryBuffer::getMemBuffer (on // the reader side). const llvm::MemoryBuffer *Buffer = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager()); const char *Name = Buffer->getBufferIdentifier(); Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record, StringRef(Name, strlen(Name) + 1)); Record.clear(); Record.push_back(SM_SLOC_BUFFER_BLOB); Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, StringRef(Buffer->getBufferStart(), Buffer->getBufferSize() + 1)); if (strcmp(Name, "<built-in>") == 0) { PreloadSLocs.push_back(SLocEntryOffsets.size()); } } } else { // The source location entry is a macro expansion. const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion(); Record.push_back(Expansion.getSpellingLoc().getRawEncoding()); Record.push_back(Expansion.getExpansionLocStart().getRawEncoding()); Record.push_back(Expansion.isMacroArgExpansion() ? 0 : Expansion.getExpansionLocEnd().getRawEncoding()); // Compute the token length for this macro expansion. unsigned NextOffset = SourceMgr.getNextLocalOffset(); if (I + 1 != N) NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset(); Record.push_back(NextOffset - SLoc->getOffset() - 1); Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record); } } Stream.ExitBlock(); if (SLocEntryOffsets.empty()) return; // Write the source-location offsets table into the AST block. This // table is used for lazily loading source-location information. using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(SOURCE_LOCATION_OFFSETS); Record.push_back(SLocEntryOffsets.size()); Record.push_back(SourceMgr.getNextLocalOffset() - 1); // skip dummy Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record, data(SLocEntryOffsets)); // Write the source location entry preloads array, telling the AST // reader which source locations entries it should load eagerly. Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs); // Write the line table. It depends on remapping working, so it must come // after the source location offsets. if (SourceMgr.hasLineTable()) { LineTableInfo &LineTable = SourceMgr.getLineTable(); Record.clear(); // Emit the file names Record.push_back(LineTable.getNumFilenames()); for (unsigned I = 0, N = LineTable.getNumFilenames(); I != N; ++I) { // Emit the file name const char *Filename = LineTable.getFilename(I); Filename = adjustFilenameForRelocatablePCH(Filename, isysroot); unsigned FilenameLen = Filename? strlen(Filename) : 0; Record.push_back(FilenameLen); if (FilenameLen) Record.insert(Record.end(), Filename, Filename + FilenameLen); } // Emit the line entries for (LineTableInfo::iterator L = LineTable.begin(), LEnd = LineTable.end(); L != LEnd; ++L) { // Only emit entries for local files. if (L->first.ID < 0) continue; // Emit the file ID Record.push_back(L->first.ID); // Emit the line entries Record.push_back(L->second.size()); for (std::vector<LineEntry>::iterator LE = L->second.begin(), LEEnd = L->second.end(); LE != LEEnd; ++LE) { Record.push_back(LE->FileOffset); Record.push_back(LE->LineNo); Record.push_back(LE->FilenameID); Record.push_back((unsigned)LE->FileKind); Record.push_back(LE->IncludeOffset); } } Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record); } } //===----------------------------------------------------------------------===// // Preprocessor Serialization //===----------------------------------------------------------------------===// namespace { class ASTMacroTableTrait { public: typedef IdentID key_type; typedef key_type key_type_ref; struct Data { uint32_t MacroDirectivesOffset; }; typedef Data data_type; typedef const data_type &data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; static hash_value_type ComputeHash(IdentID IdID) { return llvm::hash_value(IdID); } std::pair<unsigned,unsigned> static EmitKeyDataLength(raw_ostream& Out, key_type_ref Key, data_type_ref Data) { unsigned KeyLen = 4; // IdentID. unsigned DataLen = 4; // MacroDirectivesOffset. return std::make_pair(KeyLen, DataLen); } static void EmitKey(raw_ostream& Out, key_type_ref Key, unsigned KeyLen) { using namespace llvm::support; endian::Writer<little>(Out).write<uint32_t>(Key); } static void EmitData(raw_ostream& Out, key_type_ref Key, data_type_ref Data, unsigned) { using namespace llvm::support; endian::Writer<little>(Out).write<uint32_t>(Data.MacroDirectivesOffset); } }; } // end anonymous namespace static int compareMacroDirectives( const std::pair<const IdentifierInfo *, MacroDirective *> *X, const std::pair<const IdentifierInfo *, MacroDirective *> *Y) { return X->first->getName().compare(Y->first->getName()); } static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule, const Preprocessor &PP) { if (MacroInfo *MI = MD->getMacroInfo()) if (MI->isBuiltinMacro()) return true; if (IsModule) { SourceLocation Loc = MD->getLocation(); if (Loc.isInvalid()) return true; if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID()) return true; } return false; } /// \brief Writes the block containing the serialized form of the /// preprocessor. /// void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) { PreprocessingRecord *PPRec = PP.getPreprocessingRecord(); if (PPRec) WritePreprocessorDetail(*PPRec); RecordData Record; // If the preprocessor __COUNTER__ value has been bumped, remember it. if (PP.getCounterValue() != 0) { Record.push_back(PP.getCounterValue()); Stream.EmitRecord(PP_COUNTER_VALUE, Record); Record.clear(); } // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3); // If the AST file contains __DATE__ or __TIME__ emit a warning about this. // FIXME: use diagnostics subsystem for localization etc. if (PP.SawDateOrTime()) fprintf(stderr, "warning: precompiled header used __DATE__ or __TIME__.\n"); // Loop over all the macro directives that are live at the end of the file, // emitting each to the PP section. // Construct the list of macro directives that need to be serialized. SmallVector<std::pair<const IdentifierInfo *, MacroDirective *>, 2> MacroDirectives; for (Preprocessor::macro_iterator I = PP.macro_begin(/*IncludeExternalMacros=*/false), E = PP.macro_end(/*IncludeExternalMacros=*/false); I != E; ++I) { MacroDirectives.push_back(std::make_pair(I->first, I->second)); } // Sort the set of macro definitions that need to be serialized by the // name of the macro, to provide a stable ordering. llvm::array_pod_sort(MacroDirectives.begin(), MacroDirectives.end(), &compareMacroDirectives); llvm::OnDiskChainedHashTableGenerator<ASTMacroTableTrait> Generator; // Emit the macro directives as a list and associate the offset with the // identifier they belong to. for (unsigned I = 0, N = MacroDirectives.size(); I != N; ++I) { const IdentifierInfo *Name = MacroDirectives[I].first; uint64_t MacroDirectiveOffset = Stream.GetCurrentBitNo(); MacroDirective *MD = MacroDirectives[I].second; // If the macro or identifier need no updates, don't write the macro history // for this one. // FIXME: Chain the macro history instead of re-writing it. if (MD->isFromPCH() && Name->isFromAST() && !Name->hasChangedSinceDeserialization()) continue; // Emit the macro directives in reverse source order. for (; MD; MD = MD->getPrevious()) { if (shouldIgnoreMacro(MD, IsModule, PP)) continue; AddSourceLocation(MD->getLocation(), Record); Record.push_back(MD->getKind()); if (DefMacroDirective *DefMD = dyn_cast<DefMacroDirective>(MD)) { MacroID InfoID = getMacroRef(DefMD->getInfo(), Name); Record.push_back(InfoID); Record.push_back(DefMD->isImported()); Record.push_back(DefMD->isAmbiguous()); } else if (VisibilityMacroDirective * VisMD = dyn_cast<VisibilityMacroDirective>(MD)) { Record.push_back(VisMD->isPublic()); } } if (Record.empty()) continue; Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record); Record.clear(); IdentMacroDirectivesOffsetMap[Name] = MacroDirectiveOffset; IdentID NameID = getIdentifierRef(Name); ASTMacroTableTrait::Data data; data.MacroDirectivesOffset = MacroDirectiveOffset; Generator.insert(NameID, data); } /// \brief Offsets of each of the macros into the bitstream, indexed by /// the local macro ID /// /// For each identifier that is associated with a macro, this map /// provides the offset into the bitstream where that macro is /// defined. std::vector<uint32_t> MacroOffsets; for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) { const IdentifierInfo *Name = MacroInfosToEmit[I].Name; MacroInfo *MI = MacroInfosToEmit[I].MI; MacroID ID = MacroInfosToEmit[I].ID; if (ID < FirstMacroID) { assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?"); continue; } // Record the local offset of this macro. unsigned Index = ID - FirstMacroID; if (Index == MacroOffsets.size()) MacroOffsets.push_back(Stream.GetCurrentBitNo()); else { if (Index > MacroOffsets.size()) MacroOffsets.resize(Index + 1); MacroOffsets[Index] = Stream.GetCurrentBitNo(); } AddIdentifierRef(Name, Record); Record.push_back(inferSubmoduleIDFromLocation(MI->getDefinitionLoc())); AddSourceLocation(MI->getDefinitionLoc(), Record); AddSourceLocation(MI->getDefinitionEndLoc(), Record); Record.push_back(MI->isUsed()); Record.push_back(MI->isUsedForHeaderGuard()); unsigned Code; if (MI->isObjectLike()) { Code = PP_MACRO_OBJECT_LIKE; } else { Code = PP_MACRO_FUNCTION_LIKE; Record.push_back(MI->isC99Varargs()); Record.push_back(MI->isGNUVarargs()); Record.push_back(MI->hasCommaPasting()); Record.push_back(MI->getNumArgs()); for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); I != E; ++I) AddIdentifierRef(*I, Record); } // If we have a detailed preprocessing record, record the macro definition // ID that corresponds to this macro. if (PPRec) Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]); Stream.EmitRecord(Code, Record); Record.clear(); // Emit the tokens array. for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) { // Note that we know that the preprocessor does not have any annotation // tokens in it because they are created by the parser, and thus can't // be in a macro definition. const Token &Tok = MI->getReplacementToken(TokNo); AddToken(Tok, Record); Stream.EmitRecord(PP_TOKEN, Record); Record.clear(); } ++NumMacros; } Stream.ExitBlock(); // Create the on-disk hash table in a buffer. SmallString<4096> MacroTable; uint32_t BucketOffset; { using namespace llvm::support; llvm::raw_svector_ostream Out(MacroTable); // Make sure that no bucket is at offset 0 endian::Writer<little>(Out).write<uint32_t>(0); BucketOffset = Generator.Emit(Out); } // Write the macro table using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MACRO_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MacroTableAbbrev = Stream.EmitAbbrev(Abbrev); Record.push_back(MACRO_TABLE); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(MacroTableAbbrev, Record, MacroTable.str()); Record.clear(); // Write the offsets table for macro IDs. using namespace llvm; Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(MACRO_OFFSET); Record.push_back(MacroOffsets.size()); Record.push_back(FirstMacroID - NUM_PREDEF_MACRO_IDS); Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record, data(MacroOffsets)); } void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec) { if (PPRec.local_begin() == PPRec.local_end()) return; SmallVector<PPEntityOffset, 64> PreprocessedEntityOffsets; // Enter the preprocessor block. Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3); // If the preprocessor has a preprocessing record, emit it. unsigned NumPreprocessingRecords = 0; using namespace llvm; // Set up the abbreviation for unsigned InclusionAbbrev = 0; { BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); InclusionAbbrev = Stream.EmitAbbrev(Abbrev); } unsigned FirstPreprocessorEntityID = (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0) + NUM_PREDEF_PP_ENTITY_IDS; unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID; RecordData Record; for (PreprocessingRecord::iterator E = PPRec.local_begin(), EEnd = PPRec.local_end(); E != EEnd; (void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) { Record.clear(); PreprocessedEntityOffsets.push_back(PPEntityOffset((*E)->getSourceRange(), Stream.GetCurrentBitNo())); if (MacroDefinition *MD = dyn_cast<MacroDefinition>(*E)) { // Record this macro definition's ID. MacroDefinitions[MD] = NextPreprocessorEntityID; AddIdentifierRef(MD->getName(), Record); Stream.EmitRecord(PPD_MACRO_DEFINITION, Record); continue; } if (MacroExpansion *ME = dyn_cast<MacroExpansion>(*E)) { Record.push_back(ME->isBuiltinMacro()); if (ME->isBuiltinMacro()) AddIdentifierRef(ME->getName(), Record); else Record.push_back(MacroDefinitions[ME->getDefinition()]); Stream.EmitRecord(PPD_MACRO_EXPANSION, Record); continue; } if (InclusionDirective *ID = dyn_cast<InclusionDirective>(*E)) { Record.push_back(PPD_INCLUSION_DIRECTIVE); Record.push_back(ID->getFileName().size()); Record.push_back(ID->wasInQuotes()); Record.push_back(static_cast<unsigned>(ID->getKind())); Record.push_back(ID->importedModule()); SmallString<64> Buffer; Buffer += ID->getFileName(); // Check that the FileEntry is not null because it was not resolved and // we create a PCH even with compiler errors. if (ID->getFile()) Buffer += ID->getFile()->getName(); Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer); continue; } llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter"); } Stream.ExitBlock(); // Write the offsets table for the preprocessing record. if (NumPreprocessingRecords > 0) { assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords); // Write the offsets table for identifier IDs. using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(PPD_ENTITIES_OFFSETS); Record.push_back(FirstPreprocessorEntityID - NUM_PREDEF_PP_ENTITY_IDS); Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record, data(PreprocessedEntityOffsets)); } } unsigned ASTWriter::getSubmoduleID(Module *Mod) { llvm::DenseMap<Module *, unsigned>::iterator Known = SubmoduleIDs.find(Mod); if (Known != SubmoduleIDs.end()) return Known->second; return SubmoduleIDs[Mod] = NextSubmoduleID++; } unsigned ASTWriter::getExistingSubmoduleID(Module *Mod) const { if (!Mod) return 0; llvm::DenseMap<Module *, unsigned>::const_iterator Known = SubmoduleIDs.find(Mod); if (Known != SubmoduleIDs.end()) return Known->second; return 0; } /// \brief Compute the number of modules within the given tree (including the /// given module). static unsigned getNumberOfModules(Module *Mod) { unsigned ChildModules = 0; for (Module::submodule_iterator Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end(); Sub != SubEnd; ++Sub) ChildModules += getNumberOfModules(*Sub); return ChildModules + 1; } void ASTWriter::WriteSubmodules(Module *WritingModule) { // Determine the dependencies of our module and each of it's submodules. // FIXME: This feels like it belongs somewhere else, but there are no // other consumers of this information. SourceManager &SrcMgr = PP->getSourceManager(); ModuleMap &ModMap = PP->getHeaderSearchInfo().getModuleMap(); for (const auto *I : Context->local_imports()) { if (Module *ImportedFrom = ModMap.inferModuleFromLocation(FullSourceLoc(I->getLocation(), SrcMgr))) { ImportedFrom->Imports.push_back(I->getImportedModule()); } } // Enter the submodule description block. Stream.EnterSubblock(SUBMODULE_BLOCK_ID, NUM_ALLOWED_ABBREVS_SIZE); // Write the abbreviations needed for the submodules block. using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh... Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned DefinitionAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned UmbrellaAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned HeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned TopHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature unsigned RequiresAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(Abbrev); Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message unsigned ConflictAbbrev = Stream.EmitAbbrev(Abbrev); // Write the submodule metadata block. RecordData Record; Record.push_back(getNumberOfModules(WritingModule)); Record.push_back(FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS); Stream.EmitRecord(SUBMODULE_METADATA, Record); // Write all of the submodules. std::queue<Module *> Q; Q.push(WritingModule); while (!Q.empty()) { Module *Mod = Q.front(); Q.pop(); unsigned ID = getSubmoduleID(Mod); // Emit the definition of the block. Record.clear(); Record.push_back(SUBMODULE_DEFINITION); Record.push_back(ID); if (Mod->Parent) { assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?"); Record.push_back(SubmoduleIDs[Mod->Parent]); } else { Record.push_back(0); } Record.push_back(Mod->IsFramework); Record.push_back(Mod->IsExplicit); Record.push_back(Mod->IsSystem); Record.push_back(Mod->IsExternC); Record.push_back(Mod->InferSubmodules); Record.push_back(Mod->InferExplicitSubmodules); Record.push_back(Mod->InferExportWildcard); Record.push_back(Mod->ConfigMacrosExhaustive); Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name); // Emit the requirements. for (unsigned I = 0, N = Mod->Requirements.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_REQUIRES); Record.push_back(Mod->Requirements[I].second); Stream.EmitRecordWithBlob(RequiresAbbrev, Record, Mod->Requirements[I].first); } // Emit the umbrella header, if there is one. if (const FileEntry *UmbrellaHeader = Mod->getUmbrellaHeader()) { Record.clear(); Record.push_back(SUBMODULE_UMBRELLA_HEADER); Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record, UmbrellaHeader->getName()); } else if (const DirectoryEntry *UmbrellaDir = Mod->getUmbrellaDir()) { Record.clear(); Record.push_back(SUBMODULE_UMBRELLA_DIR); Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record, UmbrellaDir->getName()); } // Emit the headers. for (unsigned I = 0, N = Mod->NormalHeaders.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_HEADER); Stream.EmitRecordWithBlob(HeaderAbbrev, Record, Mod->NormalHeaders[I]->getName()); } // Emit the excluded headers. for (unsigned I = 0, N = Mod->ExcludedHeaders.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_EXCLUDED_HEADER); Stream.EmitRecordWithBlob(ExcludedHeaderAbbrev, Record, Mod->ExcludedHeaders[I]->getName()); } // Emit the private headers. for (unsigned I = 0, N = Mod->PrivateHeaders.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_PRIVATE_HEADER); Stream.EmitRecordWithBlob(PrivateHeaderAbbrev, Record, Mod->PrivateHeaders[I]->getName()); } ArrayRef<const FileEntry *> TopHeaders = Mod->getTopHeaders(PP->getFileManager()); for (unsigned I = 0, N = TopHeaders.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_TOPHEADER); Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, TopHeaders[I]->getName()); } // Emit the imports. if (!Mod->Imports.empty()) { Record.clear(); for (unsigned I = 0, N = Mod->Imports.size(); I != N; ++I) { unsigned ImportedID = getSubmoduleID(Mod->Imports[I]); assert(ImportedID && "Unknown submodule!"); Record.push_back(ImportedID); } Stream.EmitRecord(SUBMODULE_IMPORTS, Record); } // Emit the exports. if (!Mod->Exports.empty()) { Record.clear(); for (unsigned I = 0, N = Mod->Exports.size(); I != N; ++I) { if (Module *Exported = Mod->Exports[I].getPointer()) { unsigned ExportedID = SubmoduleIDs[Exported]; assert(ExportedID > 0 && "Unknown submodule ID?"); Record.push_back(ExportedID); } else { Record.push_back(0); } Record.push_back(Mod->Exports[I].getInt()); } Stream.EmitRecord(SUBMODULE_EXPORTS, Record); } //FIXME: How do we emit the 'use'd modules? They may not be submodules. // Might be unnecessary as use declarations are only used to build the // module itself. // Emit the link libraries. for (unsigned I = 0, N = Mod->LinkLibraries.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_LINK_LIBRARY); Record.push_back(Mod->LinkLibraries[I].IsFramework); Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record, Mod->LinkLibraries[I].Library); } // Emit the conflicts. for (unsigned I = 0, N = Mod->Conflicts.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_CONFLICT); unsigned OtherID = getSubmoduleID(Mod->Conflicts[I].Other); assert(OtherID && "Unknown submodule!"); Record.push_back(OtherID); Stream.EmitRecordWithBlob(ConflictAbbrev, Record, Mod->Conflicts[I].Message); } // Emit the configuration macros. for (unsigned I = 0, N = Mod->ConfigMacros.size(); I != N; ++I) { Record.clear(); Record.push_back(SUBMODULE_CONFIG_MACRO); Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record, Mod->ConfigMacros[I]); } // Queue up the submodules of this module. for (Module::submodule_iterator Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end(); Sub != SubEnd; ++Sub) Q.push(*Sub); } Stream.ExitBlock(); assert((NextSubmoduleID - FirstSubmoduleID == getNumberOfModules(WritingModule)) && "Wrong # of submodules"); } serialization::SubmoduleID ASTWriter::inferSubmoduleIDFromLocation(SourceLocation Loc) { if (Loc.isInvalid() || !WritingModule) return 0; // No submodule // Find the module that owns this location. ModuleMap &ModMap = PP->getHeaderSearchInfo().getModuleMap(); Module *OwningMod = ModMap.inferModuleFromLocation(FullSourceLoc(Loc,PP->getSourceManager())); if (!OwningMod) return 0; // Check whether this submodule is part of our own module. if (WritingModule != OwningMod && !OwningMod->isSubModuleOf(WritingModule)) return 0; return getSubmoduleID(OwningMod); } void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag, bool isModule) { // Make sure set diagnostic pragmas don't affect the translation unit that // imports the module. // FIXME: Make diagnostic pragma sections work properly with modules. if (isModule) return; llvm::SmallDenseMap<const DiagnosticsEngine::DiagState *, unsigned, 64> DiagStateIDMap; unsigned CurrID = 0; DiagStateIDMap[&Diag.DiagStates.front()] = ++CurrID; // the command-line one. RecordData Record; for (DiagnosticsEngine::DiagStatePointsTy::const_iterator I = Diag.DiagStatePoints.begin(), E = Diag.DiagStatePoints.end(); I != E; ++I) { const DiagnosticsEngine::DiagStatePoint &point = *I; if (point.Loc.isInvalid()) continue; Record.push_back(point.Loc.getRawEncoding()); unsigned &DiagStateID = DiagStateIDMap[point.State]; Record.push_back(DiagStateID); if (DiagStateID == 0) { DiagStateID = ++CurrID; for (DiagnosticsEngine::DiagState::const_iterator I = point.State->begin(), E = point.State->end(); I != E; ++I) { if (I->second.isPragma()) { Record.push_back(I->first); Record.push_back((unsigned)I->second.getSeverity()); } } Record.push_back(-1); // mark the end of the diag/map pairs for this // location. } } if (!Record.empty()) Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record); } void ASTWriter::WriteCXXBaseSpecifiersOffsets() { if (CXXBaseSpecifiersOffsets.empty()) return; RecordData Record; // Create a blob abbreviation for the C++ base specifiers offsets. using namespace llvm; BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(CXX_BASE_SPECIFIER_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned BaseSpecifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev); // Write the base specifier offsets table. Record.clear(); Record.push_back(CXX_BASE_SPECIFIER_OFFSETS); Record.push_back(CXXBaseSpecifiersOffsets.size()); Stream.EmitRecordWithBlob(BaseSpecifierOffsetAbbrev, Record, data(CXXBaseSpecifiersOffsets)); } //===----------------------------------------------------------------------===// // Type Serialization //===----------------------------------------------------------------------===// /// \brief Write the representation of a type to the AST stream. void ASTWriter::WriteType(QualType T) { TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) // we haven't seen this type before. Idx = TypeIdx(NextTypeID++); assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST"); // Record the offset for this type. unsigned Index = Idx.getIndex() - FirstTypeID; if (TypeOffsets.size() == Index) TypeOffsets.push_back(Stream.GetCurrentBitNo()); else if (TypeOffsets.size() < Index) { TypeOffsets.resize(Index + 1); TypeOffsets[Index] = Stream.GetCurrentBitNo(); } RecordData Record; // Emit the type's representation. ASTTypeWriter W(*this, Record); if (T.hasLocalNonFastQualifiers()) { Qualifiers Qs = T.getLocalQualifiers(); AddTypeRef(T.getLocalUnqualifiedType(), Record); Record.push_back(Qs.getAsOpaqueValue()); W.Code = TYPE_EXT_QUAL; } else { switch (T->getTypeClass()) { // For all of the concrete, non-dependent types, call the // appropriate visitor function. #define TYPE(Class, Base) \ case Type::Class: W.Visit##Class##Type(cast<Class##Type>(T)); break; #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" } } // Emit the serialized record. Stream.EmitRecord(W.Code, Record); // Flush any expressions that were written as part of this type. FlushStmts(); } //===----------------------------------------------------------------------===// // Declaration Serialization //===----------------------------------------------------------------------===// /// \brief Write the block containing all of the declaration IDs /// lexically declared within the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_LEXICAL block within the /// bistream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context, DeclContext *DC) { if (DC->decls_empty()) return 0; uint64_t Offset = Stream.GetCurrentBitNo(); RecordData Record; Record.push_back(DECL_CONTEXT_LEXICAL); SmallVector<KindDeclIDPair, 64> Decls; for (const auto *D : DC->decls()) Decls.push_back(std::make_pair(D->getKind(), GetDeclRef(D))); ++NumLexicalDeclContexts; Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record, data(Decls)); return Offset; } void ASTWriter::WriteTypeDeclOffsets() { using namespace llvm; RecordData Record; // Write the type offsets array BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(TYPE_OFFSET); Record.push_back(TypeOffsets.size()); Record.push_back(FirstTypeID - NUM_PREDEF_TYPE_IDS); Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, data(TypeOffsets)); // Write the declaration offsets array Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(Abbrev); Record.clear(); Record.push_back(DECL_OFFSET); Record.push_back(DeclOffsets.size()); Record.push_back(FirstDeclID - NUM_PREDEF_DECL_IDS); Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, data(DeclOffsets)); } void ASTWriter::WriteFileDeclIDsMap() { using namespace llvm; RecordData Record; // Join the vectors of DeclIDs from all files. SmallVector<DeclID, 256> FileSortedIDs; for (FileDeclIDsTy::iterator FI = FileDeclIDs.begin(), FE = FileDeclIDs.end(); FI != FE; ++FI) { DeclIDInFileInfo &Info = *FI->second; Info.FirstDeclIndex = FileSortedIDs.size(); for (LocDeclIDsTy::iterator DI = Info.DeclIDs.begin(), DE = Info.DeclIDs.end(); DI != DE; ++DI) FileSortedIDs.push_back(DI->second); } BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev); Record.push_back(FILE_SORTED_DECLS); Record.push_back(FileSortedIDs.size()); Stream.EmitRecordWithBlob(AbbrevCode, Record, data(FileSortedIDs)); } void ASTWriter::WriteComments() { Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3); ArrayRef<RawComment *> RawComments = Context->Comments.getComments(); RecordData Record; for (ArrayRef<RawComment *>::iterator I = RawComments.begin(), E = RawComments.end(); I != E; ++I) { Record.clear(); AddSourceRange((*I)->getSourceRange(), Record); Record.push_back((*I)->getKind()); Record.push_back((*I)->isTrailingComment()); Record.push_back((*I)->isAlmostTrailingComment()); Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record); } Stream.ExitBlock(); } //===----------------------------------------------------------------------===// // Global Method Pool and Selector Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTMethodPoolTrait { ASTWriter &Writer; public: typedef Selector key_type; typedef key_type key_type_ref; struct data_type { SelectorID ID; ObjCMethodList Instance, Factory; }; typedef const data_type& data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) { } static hash_value_type ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair<unsigned,unsigned> EmitKeyDataLength(raw_ostream& Out, Selector Sel, data_type_ref Methods) { using namespace llvm::support; endian::Writer<little> LE(Out); unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4); LE.write<uint16_t>(KeyLen); unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (Method->Method) DataLen += 4; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (Method->Method) DataLen += 4; LE.write<uint16_t>(DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, Selector Sel, unsigned) { using namespace llvm::support; endian::Writer<little> LE(Out); uint64_t Start = Out.tell(); assert((Start >> 32) == 0 && "Selector key offset too large"); Writer.SetSelectorOffset(Sel, Start); unsigned N = Sel.getNumArgs(); LE.write<uint16_t>(N); if (N == 0) N = 1; for (unsigned I = 0; I != N; ++I) LE.write<uint32_t>( Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I))); } void EmitData(raw_ostream& Out, key_type_ref, data_type_ref Methods, unsigned DataLen) { using namespace llvm::support; endian::Writer<little> LE(Out); uint64_t Start = Out.tell(); (void)Start; LE.write<uint32_t>(Methods.ID); unsigned NumInstanceMethods = 0; for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (Method->Method) ++NumInstanceMethods; unsigned NumFactoryMethods = 0; for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (Method->Method) ++NumFactoryMethods; unsigned InstanceBits = Methods.Instance.getBits(); assert(InstanceBits < 4); unsigned NumInstanceMethodsAndBits = (NumInstanceMethods << 2) | InstanceBits; unsigned FactoryBits = Methods.Factory.getBits(); assert(FactoryBits < 4); unsigned NumFactoryMethodsAndBits = (NumFactoryMethods << 2) | FactoryBits; LE.write<uint16_t>(NumInstanceMethodsAndBits); LE.write<uint16_t>(NumFactoryMethodsAndBits); for (const ObjCMethodList *Method = &Methods.Instance; Method; Method = Method->getNext()) if (Method->Method) LE.write<uint32_t>(Writer.getDeclID(Method->Method)); for (const ObjCMethodList *Method = &Methods.Factory; Method; Method = Method->getNext()) if (Method->Method) LE.write<uint32_t>(Writer.getDeclID(Method->Method)); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // end anonymous namespace /// \brief Write ObjC data: selectors and the method pool. /// /// The method pool contains both instance and factory methods, stored /// in an on-disk hash table indexed by the selector. The hash table also /// contains an empty entry for every other selector known to Sema. void ASTWriter::WriteSelectors(Sema &SemaRef) { using namespace llvm; // Do we have to do anything at all? if (SemaRef.MethodPool.empty() && SelectorIDs.empty()) return; unsigned NumTableEntries = 0; // Create and write out the blob that contains selectors and the method pool. { llvm::OnDiskChainedHashTableGenerator<ASTMethodPoolTrait> Generator; ASTMethodPoolTrait Trait(*this); // Create the on-disk hash table representation. We walk through every // selector we've seen and look it up in the method pool. SelectorOffsets.resize(NextSelectorID - FirstSelectorID); for (llvm::DenseMap<Selector, SelectorID>::iterator I = SelectorIDs.begin(), E = SelectorIDs.end(); I != E; ++I) { Selector S = I->first; Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S); ASTMethodPoolTrait::data_type Data = { I->second, ObjCMethodList(), ObjCMethodList() }; if (F != SemaRef.MethodPool.end()) { Data.Instance = F->second.first; Data.Factory = F->second.second; } // Only write this selector if it's not in an existing AST or something // changed. if (Chain && I->second < FirstSelectorID) { // Selector already exists. Did it change? bool changed = false; for (ObjCMethodList *M = &Data.Instance; !changed && M && M->Method; M = M->getNext()) { if (!M->Method->isFromASTFile()) changed = true; } for (ObjCMethodList *M = &Data.Factory; !changed && M && M->Method; M = M->getNext()) { if (!M->Method->isFromASTFile()) changed = true; } if (!changed) continue; } else if (Data.Instance.Method || Data.Factory.Method) { // A new method pool entry. ++NumTableEntries; } Generator.insert(S, Data, Trait); } // Create the on-disk hash table in a buffer. SmallString<4096> MethodPool; uint32_t BucketOffset; { using namespace llvm::support; ASTMethodPoolTrait Trait(*this); llvm::raw_svector_ostream Out(MethodPool); // Make sure that no bucket is at offset 0 endian::Writer<little>(Out).write<uint32_t>(0); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned MethodPoolAbbrev = Stream.EmitAbbrev(Abbrev); // Write the method pool RecordData Record; Record.push_back(METHOD_POOL); Record.push_back(BucketOffset); Record.push_back(NumTableEntries); Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool.str()); // Create a blob abbreviation for the selector table offsets. Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(Abbrev); // Write the selector offsets table. Record.clear(); Record.push_back(SELECTOR_OFFSETS); Record.push_back(SelectorOffsets.size()); Record.push_back(FirstSelectorID - NUM_PREDEF_SELECTOR_IDS); Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record, data(SelectorOffsets)); } } /// \brief Write the selectors referenced in @selector expression into AST file. void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) { using namespace llvm; if (SemaRef.ReferencedSelectors.empty()) return; RecordData Record; // Note: this writes out all references even for a dependent AST. But it is // very tricky to fix, and given that @selector shouldn't really appear in // headers, probably not worth it. It's not a correctness issue. for (DenseMap<Selector, SourceLocation>::iterator S = SemaRef.ReferencedSelectors.begin(), E = SemaRef.ReferencedSelectors.end(); S != E; ++S) { Selector Sel = (*S).first; SourceLocation Loc = (*S).second; AddSelectorRef(Sel, Record); AddSourceLocation(Loc, Record); } Stream.EmitRecord(REFERENCED_SELECTOR_POOL, Record); } //===----------------------------------------------------------------------===// // Identifier Table Serialization //===----------------------------------------------------------------------===// namespace { class ASTIdentifierTableTrait { ASTWriter &Writer; Preprocessor &PP; IdentifierResolver &IdResolver; bool IsModule; /// \brief Determines whether this is an "interesting" identifier /// that needs a full IdentifierInfo structure written into the hash /// table. bool isInterestingIdentifier(IdentifierInfo *II, MacroDirective *&Macro) { if (II->isPoisoned() || II->isExtensionToken() || II->getObjCOrBuiltinID() || II->hasRevertedTokenIDToIdentifier() || II->getFETokenInfo<void>()) return true; return hadMacroDefinition(II, Macro); } bool hadMacroDefinition(IdentifierInfo *II, MacroDirective *&Macro) { if (!II->hadMacroDefinition()) return false; if (Macro || (Macro = PP.getMacroDirectiveHistory(II))) { if (!IsModule) return !shouldIgnoreMacro(Macro, IsModule, PP); SubmoduleID ModID; if (getFirstPublicSubmoduleMacro(Macro, ModID)) return true; } return false; } typedef llvm::SmallVectorImpl<SubmoduleID> OverriddenList; MacroDirective * getFirstPublicSubmoduleMacro(MacroDirective *MD, SubmoduleID &ModID) { ModID = 0; llvm::SmallVector<SubmoduleID, 1> Overridden; if (MacroDirective *NextMD = getPublicSubmoduleMacro(MD, ModID, Overridden)) if (!shouldIgnoreMacro(NextMD, IsModule, PP)) return NextMD; return nullptr; } MacroDirective * getNextPublicSubmoduleMacro(MacroDirective *MD, SubmoduleID &ModID, OverriddenList &Overridden) { if (MacroDirective *NextMD = getPublicSubmoduleMacro(MD->getPrevious(), ModID, Overridden)) if (!shouldIgnoreMacro(NextMD, IsModule, PP)) return NextMD; return nullptr; } /// \brief Traverses the macro directives history and returns the latest /// public macro definition or undefinition that is not in ModID. /// A macro that is defined in submodule A and undefined in submodule B /// will still be considered as defined/exported from submodule A. /// ModID is updated to the module containing the returned directive. /// /// FIXME: This process breaks down if a module defines a macro, imports /// another submodule that changes the macro, then changes the /// macro again itself. MacroDirective *getPublicSubmoduleMacro(MacroDirective *MD, SubmoduleID &ModID, OverriddenList &Overridden) { if (!MD) return nullptr; Overridden.clear(); SubmoduleID OrigModID = ModID; Optional<bool> IsPublic; for (; MD; MD = MD->getPrevious()) { SubmoduleID ThisModID = getSubmoduleID(MD); if (ThisModID == 0) { IsPublic = Optional<bool>(); continue; } if (ThisModID != ModID) { ModID = ThisModID; IsPublic = Optional<bool>(); } // If this is a definition from a submodule import, that submodule's // definition is overridden by the definition or undefinition that we // started with. // FIXME: This should only apply to macros defined in OrigModID. // We can't do that currently, because a #include of a different submodule // of the same module just leaks through macros instead of providing new // DefMacroDirectives for them. if (DefMacroDirective *DefMD = dyn_cast<DefMacroDirective>(MD)) { // Figure out which submodule the macro was originally defined within. SubmoduleID SourceID = DefMD->getInfo()->getOwningModuleID(); if (!SourceID) { SourceLocation DefLoc = DefMD->getInfo()->getDefinitionLoc(); if (DefLoc == MD->getLocation()) SourceID = ThisModID; else SourceID = Writer.inferSubmoduleIDFromLocation(DefLoc); } if (SourceID != OrigModID) Overridden.push_back(SourceID); } // We are looking for a definition in a different submodule than the one // that we started with. If a submodule has re-definitions of the same // macro, only the last definition will be used as the "exported" one. if (ModID == OrigModID) continue; // The latest visibility directive for a name in a submodule affects all // the directives that come before it. if (VisibilityMacroDirective *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) { if (!IsPublic.hasValue()) IsPublic = VisMD->isPublic(); } else if (!IsPublic.hasValue() || IsPublic.getValue()) { // FIXME: If we find an imported macro, we should include its list of // overrides in our export. return MD; } } return nullptr; } SubmoduleID getSubmoduleID(MacroDirective *MD) { return Writer.inferSubmoduleIDFromLocation(MD->getLocation()); } public: typedef IdentifierInfo* key_type; typedef key_type key_type_ref; typedef IdentID data_type; typedef data_type data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule) : Writer(Writer), PP(PP), IdResolver(IdResolver), IsModule(IsModule) { } static hash_value_type ComputeHash(const IdentifierInfo* II) { return llvm::HashString(II->getName()); } std::pair<unsigned,unsigned> EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) { unsigned KeyLen = II->getLength() + 1; unsigned DataLen = 4; // 4 bytes for the persistent ID << 1 MacroDirective *Macro = nullptr; if (isInterestingIdentifier(II, Macro)) { DataLen += 2; // 2 bytes for builtin ID DataLen += 2; // 2 bytes for flags if (hadMacroDefinition(II, Macro)) { DataLen += 4; // MacroDirectives offset. if (IsModule) { SubmoduleID ModID; llvm::SmallVector<SubmoduleID, 4> Overridden; for (MacroDirective * MD = getFirstPublicSubmoduleMacro(Macro, ModID); MD; MD = getNextPublicSubmoduleMacro(MD, ModID, Overridden)) { // Previous macro's overrides. if (!Overridden.empty()) DataLen += 4 * (1 + Overridden.size()); DataLen += 4; // MacroInfo ID or ModuleID. } // Previous macro's overrides. if (!Overridden.empty()) DataLen += 4 * (1 + Overridden.size()); DataLen += 4; } } for (IdentifierResolver::iterator D = IdResolver.begin(II), DEnd = IdResolver.end(); D != DEnd; ++D) DataLen += sizeof(DeclID); } using namespace llvm::support; endian::Writer<little> LE(Out); LE.write<uint16_t>(DataLen); // We emit the key length after the data length so that every // string is preceded by a 16-bit length. This matches the PTH // format for storing identifiers. LE.write<uint16_t>(KeyLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, const IdentifierInfo* II, unsigned KeyLen) { // Record the location of the key data. This is used when generating // the mapping from persistent IDs to strings. Writer.SetIdentifierOffset(II, Out.tell()); Out.write(II->getNameStart(), KeyLen); } static void emitMacroOverrides(raw_ostream &Out, ArrayRef<SubmoduleID> Overridden) { if (!Overridden.empty()) { using namespace llvm::support; endian::Writer<little> LE(Out); LE.write<uint32_t>(Overridden.size() | 0x80000000U); for (unsigned I = 0, N = Overridden.size(); I != N; ++I) LE.write<uint32_t>(Overridden[I]); } } void EmitData(raw_ostream& Out, IdentifierInfo* II, IdentID ID, unsigned) { using namespace llvm::support; endian::Writer<little> LE(Out); MacroDirective *Macro = nullptr; if (!isInterestingIdentifier(II, Macro)) { LE.write<uint32_t>(ID << 1); return; } LE.write<uint32_t>((ID << 1) | 0x01); uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID(); assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader."); LE.write<uint16_t>(Bits); Bits = 0; bool HadMacroDefinition = hadMacroDefinition(II, Macro); Bits = (Bits << 1) | unsigned(HadMacroDefinition); Bits = (Bits << 1) | unsigned(IsModule); Bits = (Bits << 1) | unsigned(II->isExtensionToken()); Bits = (Bits << 1) | unsigned(II->isPoisoned()); Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier()); Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword()); LE.write<uint16_t>(Bits); if (HadMacroDefinition) { LE.write<uint32_t>(Writer.getMacroDirectivesOffset(II)); if (IsModule) { // Write the IDs of macros coming from different submodules. SubmoduleID ModID; llvm::SmallVector<SubmoduleID, 4> Overridden; for (MacroDirective * MD = getFirstPublicSubmoduleMacro(Macro, ModID); MD; MD = getNextPublicSubmoduleMacro(MD, ModID, Overridden)) { MacroID InfoID = 0; emitMacroOverrides(Out, Overridden); if (DefMacroDirective *DefMD = dyn_cast<DefMacroDirective>(MD)) { InfoID = Writer.getMacroID(DefMD->getInfo()); assert(InfoID); LE.write<uint32_t>(InfoID << 1); } else { assert(isa<UndefMacroDirective>(MD)); LE.write<uint32_t>((ModID << 1) | 1); } } emitMacroOverrides(Out, Overridden); LE.write<uint32_t>(0); } } // Emit the declaration IDs in reverse order, because the // IdentifierResolver provides the declarations as they would be // visible (e.g., the function "stat" would come before the struct // "stat"), but the ASTReader adds declarations to the end of the list // (so we need to see the struct "status" before the function "status"). // Only emit declarations that aren't from a chained PCH, though. SmallVector<Decl *, 16> Decls(IdResolver.begin(II), IdResolver.end()); for (SmallVectorImpl<Decl *>::reverse_iterator D = Decls.rbegin(), DEnd = Decls.rend(); D != DEnd; ++D) LE.write<uint32_t>(Writer.getDeclID(getMostRecentLocalDecl(*D))); } /// \brief Returns the most recent local decl or the given decl if there are /// no local ones. The given decl is assumed to be the most recent one. Decl *getMostRecentLocalDecl(Decl *Orig) { // The only way a "from AST file" decl would be more recent from a local one // is if it came from a module. if (!PP.getLangOpts().Modules) return Orig; // Look for a local in the decl chain. for (Decl *D = Orig; D; D = D->getPreviousDecl()) { if (!D->isFromASTFile()) return D; // If we come up a decl from a (chained-)PCH stop since we won't find a // local one. if (D->getOwningModuleID() == 0) break; } return Orig; } }; } // end anonymous namespace /// \brief Write the identifier table into the AST file. /// /// The identifier table consists of a blob containing string data /// (the actual identifiers themselves) and a separate "offsets" index /// that maps identifier IDs to locations within the blob. void ASTWriter::WriteIdentifierTable(Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule) { using namespace llvm; // Create and write out the blob that contains the identifier // strings. { llvm::OnDiskChainedHashTableGenerator<ASTIdentifierTableTrait> Generator; ASTIdentifierTableTrait Trait(*this, PP, IdResolver, IsModule); // Look for any identifiers that were named while processing the // headers, but are otherwise not needed. We add these to the hash // table to enable checking of the predefines buffer in the case // where the user adds new macro definitions when building the AST // file. for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(), IDEnd = PP.getIdentifierTable().end(); ID != IDEnd; ++ID) getIdentifierRef(ID->second); // Create the on-disk hash table representation. We only store offsets // for identifiers that appear here for the first time. IdentifierOffsets.resize(NextIdentID - FirstIdentID); for (llvm::DenseMap<const IdentifierInfo *, IdentID>::iterator ID = IdentifierIDs.begin(), IDEnd = IdentifierIDs.end(); ID != IDEnd; ++ID) { assert(ID->first && "NULL identifier in identifier table"); if (!Chain || !ID->first->isFromAST() || ID->first->hasChangedSinceDeserialization()) Generator.insert(const_cast<IdentifierInfo *>(ID->first), ID->second, Trait); } // Create the on-disk hash table in a buffer. SmallString<4096> IdentifierTable; uint32_t BucketOffset; { using namespace llvm::support; ASTIdentifierTableTrait Trait(*this, PP, IdResolver, IsModule); llvm::raw_svector_ostream Out(IdentifierTable); // Make sure that no bucket is at offset 0 endian::Writer<little>(Out).write<uint32_t>(0); BucketOffset = Generator.Emit(Out, Trait); } // Create a blob abbreviation BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev); // Write the identifier table RecordData Record; Record.push_back(IDENTIFIER_TABLE); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable.str()); } // Write the offsets table for identifier IDs. BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev); #ifndef NDEBUG for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I) assert(IdentifierOffsets[I] && "Missing identifier offset?"); #endif RecordData Record; Record.push_back(IDENTIFIER_OFFSET); Record.push_back(IdentifierOffsets.size()); Record.push_back(FirstIdentID - NUM_PREDEF_IDENT_IDS); Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record, data(IdentifierOffsets)); } //===----------------------------------------------------------------------===// // DeclContext's Name Lookup Table Serialization //===----------------------------------------------------------------------===// namespace { // Trait used for the on-disk hash table used in the method pool. class ASTDeclContextNameLookupTrait { ASTWriter &Writer; public: typedef DeclarationName key_type; typedef key_type key_type_ref; typedef DeclContext::lookup_result data_type; typedef const data_type& data_type_ref; typedef unsigned hash_value_type; typedef unsigned offset_type; explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) { } hash_value_type ComputeHash(DeclarationName Name) { llvm::FoldingSetNodeID ID; ID.AddInteger(Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: ID.AddString(Name.getAsIdentifierInfo()->getName()); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: ID.AddInteger(serialization::ComputeHash(Name.getObjCSelector())); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: break; case DeclarationName::CXXOperatorName: ID.AddInteger(Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: ID.AddString(Name.getCXXLiteralIdentifier()->getName()); case DeclarationName::CXXUsingDirective: break; } return ID.ComputeHash(); } std::pair<unsigned,unsigned> EmitKeyDataLength(raw_ostream& Out, DeclarationName Name, data_type_ref Lookup) { using namespace llvm::support; endian::Writer<little> LE(Out); unsigned KeyLen = 1; switch (Name.getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXLiteralOperatorName: KeyLen += 4; break; case DeclarationName::CXXOperatorName: KeyLen += 1; break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: break; } LE.write<uint16_t>(KeyLen); // 2 bytes for num of decls and 4 for each DeclID. unsigned DataLen = 2 + 4 * Lookup.size(); LE.write<uint16_t>(DataLen); return std::make_pair(KeyLen, DataLen); } void EmitKey(raw_ostream& Out, DeclarationName Name, unsigned) { using namespace llvm::support; endian::Writer<little> LE(Out); LE.write<uint8_t>(Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: LE.write<uint32_t>(Writer.getIdentifierRef(Name.getAsIdentifierInfo())); return; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: LE.write<uint32_t>(Writer.getSelectorRef(Name.getObjCSelector())); return; case DeclarationName::CXXOperatorName: assert(Name.getCXXOverloadedOperator() < NUM_OVERLOADED_OPERATORS && "Invalid operator?"); LE.write<uint8_t>(Name.getCXXOverloadedOperator()); return; case DeclarationName::CXXLiteralOperatorName: LE.write<uint32_t>(Writer.getIdentifierRef(Name.getCXXLiteralIdentifier())); return; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: return; } llvm_unreachable("Invalid name kind?"); } void EmitData(raw_ostream& Out, key_type_ref, data_type Lookup, unsigned DataLen) { using namespace llvm::support; endian::Writer<little> LE(Out); uint64_t Start = Out.tell(); (void)Start; LE.write<uint16_t>(Lookup.size()); for (DeclContext::lookup_iterator I = Lookup.begin(), E = Lookup.end(); I != E; ++I) LE.write<uint32_t>(Writer.GetDeclRef(*I)); assert(Out.tell() - Start == DataLen && "Data length is wrong"); } }; } // end anonymous namespace template<typename Visitor> static void visitLocalLookupResults(const DeclContext *ConstDC, bool NeedToReconcileExternalVisibleStorage, Visitor AddLookupResult) { // FIXME: We need to build the lookups table, which is logically const. DeclContext *DC = const_cast<DeclContext*>(ConstDC); assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table"); SmallVector<DeclarationName, 16> ExternalNames; for (auto &Lookup : *DC->buildLookup()) { if (Lookup.second.hasExternalDecls() || NeedToReconcileExternalVisibleStorage) { // We don't know for sure what declarations are found by this name, // because the external source might have a different set from the set // that are in the lookup map, and we can't update it now without // risking invalidating our lookup iterator. So add it to a queue to // deal with later. ExternalNames.push_back(Lookup.first); continue; } AddLookupResult(Lookup.first, Lookup.second.getLookupResult()); } // Add the names we needed to defer. Note, this shouldn't add any new decls // to the list we need to serialize: any new declarations we find here should // be imported from an external source. // FIXME: What if the external source isn't an ASTReader? for (const auto &Name : ExternalNames) AddLookupResult(Name, DC->lookup(Name)); } void ASTWriter::AddUpdatedDeclContext(const DeclContext *DC) { if (UpdatedDeclContexts.insert(DC) && WritingAST) { // Ensure we emit all the visible declarations. visitLocalLookupResults(DC, DC->NeedToReconcileExternalVisibleStorage, [&](DeclarationName Name, DeclContext::lookup_const_result Result) { for (auto *Decl : Result) GetDeclRef(Decl); }); } } uint32_t ASTWriter::GenerateNameLookupTable(const DeclContext *DC, llvm::SmallVectorImpl<char> &LookupTable) { assert(!DC->LookupPtr.getInt() && "must call buildLookups first"); llvm::OnDiskChainedHashTableGenerator<ASTDeclContextNameLookupTrait> Generator; ASTDeclContextNameLookupTrait Trait(*this); // Create the on-disk hash table representation. DeclarationName ConstructorName; DeclarationName ConversionName; SmallVector<NamedDecl *, 8> ConstructorDecls; SmallVector<NamedDecl *, 4> ConversionDecls; visitLocalLookupResults(DC, DC->NeedToReconcileExternalVisibleStorage, [&](DeclarationName Name, DeclContext::lookup_result Result) { if (Result.empty()) return; // Different DeclarationName values of certain kinds are mapped to // identical serialized keys, because we don't want to use type // identifiers in the keys (since type ids are local to the module). switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: // There may be different CXXConstructorName DeclarationName values // in a DeclContext because a UsingDecl that inherits constructors // has the DeclarationName of the inherited constructors. if (!ConstructorName) ConstructorName = Name; ConstructorDecls.append(Result.begin(), Result.end()); return; case DeclarationName::CXXConversionFunctionName: if (!ConversionName) ConversionName = Name; ConversionDecls.append(Result.begin(), Result.end()); return; default: break; } Generator.insert(Name, Result, Trait); }); // Add the constructors. if (!ConstructorDecls.empty()) { Generator.insert(ConstructorName, DeclContext::lookup_result(ConstructorDecls.begin(), ConstructorDecls.end()), Trait); } // Add the conversion functions. if (!ConversionDecls.empty()) { Generator.insert(ConversionName, DeclContext::lookup_result(ConversionDecls.begin(), ConversionDecls.end()), Trait); } // Create the on-disk hash table in a buffer. llvm::raw_svector_ostream Out(LookupTable); // Make sure that no bucket is at offset 0 using namespace llvm::support; endian::Writer<little>(Out).write<uint32_t>(0); return Generator.Emit(Out, Trait); } /// \brief Write the block containing all of the declaration IDs /// visible from the given DeclContext. /// /// \returns the offset of the DECL_CONTEXT_VISIBLE block within the /// bitstream, or 0 if no block was written. uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context, DeclContext *DC) { if (DC->getPrimaryContext() != DC) return 0; // Since there is no name lookup into functions or methods, don't bother to // build a visible-declarations table for these entities. if (DC->isFunctionOrMethod()) return 0; // If not in C++, we perform name lookup for the translation unit via the // IdentifierInfo chains, don't bother to build a visible-declarations table. if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus) return 0; // Serialize the contents of the mapping used for lookup. Note that, // although we have two very different code paths, the serialized // representation is the same for both cases: a declaration name, // followed by a size, followed by references to the visible // declarations that have that name. uint64_t Offset = Stream.GetCurrentBitNo(); StoredDeclsMap *Map = DC->buildLookup(); if (!Map || Map->empty()) return 0; // Create the on-disk hash table in a buffer. SmallString<4096> LookupTable; uint32_t BucketOffset = GenerateNameLookupTable(DC, LookupTable); // Write the lookup table RecordData Record; Record.push_back(DECL_CONTEXT_VISIBLE); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record, LookupTable.str()); Stream.EmitRecord(DECL_CONTEXT_VISIBLE, Record); ++NumVisibleDeclContexts; return Offset; } /// \brief Write an UPDATE_VISIBLE block for the given context. /// /// UPDATE_VISIBLE blocks contain the declarations that are added to an existing /// DeclContext in a dependent AST file. As such, they only exist for the TU /// (in C++), for namespaces, and for classes with forward-declared unscoped /// enumeration members (in C++11). void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) { StoredDeclsMap *Map = DC->getLookupPtr(); if (!Map || Map->empty()) return; // Create the on-disk hash table in a buffer. SmallString<4096> LookupTable; uint32_t BucketOffset = GenerateNameLookupTable(DC, LookupTable); // Write the lookup table RecordData Record; Record.push_back(UPDATE_VISIBLE); Record.push_back(getDeclID(cast<Decl>(DC))); Record.push_back(BucketOffset); Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable.str()); } /// \brief Write an FP_PRAGMA_OPTIONS block for the given FPOptions. void ASTWriter::WriteFPPragmaOptions(const FPOptions &Opts) { RecordData Record; Record.push_back(Opts.fp_contract); Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record); } /// \brief Write an OPENCL_EXTENSIONS block for the given OpenCLOptions. void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) { if (!SemaRef.Context.getLangOpts().OpenCL) return; const OpenCLOptions &Opts = SemaRef.getOpenCLOptions(); RecordData Record; #define OPENCLEXT(nm) Record.push_back(Opts.nm); #include "clang/Basic/OpenCLExtensions.def" Stream.EmitRecord(OPENCL_EXTENSIONS, Record); } void ASTWriter::WriteRedeclarations() { RecordData LocalRedeclChains; SmallVector<serialization::LocalRedeclarationsInfo, 2> LocalRedeclsMap; for (unsigned I = 0, N = Redeclarations.size(); I != N; ++I) { Decl *First = Redeclarations[I]; assert(First->isFirstDecl() && "Not the first declaration?"); Decl *MostRecent = First->getMostRecentDecl(); // If we only have a single declaration, there is no point in storing // a redeclaration chain. if (First == MostRecent) continue; unsigned Offset = LocalRedeclChains.size(); unsigned Size = 0; LocalRedeclChains.push_back(0); // Placeholder for the size. // Collect the set of local redeclarations of this declaration. for (Decl *Prev = MostRecent; Prev != First; Prev = Prev->getPreviousDecl()) { if (!Prev->isFromASTFile()) { AddDeclRef(Prev, LocalRedeclChains); ++Size; } } if (!First->isFromASTFile() && Chain) { Decl *FirstFromAST = MostRecent; for (Decl *Prev = MostRecent; Prev; Prev = Prev->getPreviousDecl()) { if (Prev->isFromASTFile()) FirstFromAST = Prev; } Chain->MergedDecls[FirstFromAST].push_back(getDeclID(First)); } LocalRedeclChains[Offset] = Size; // Reverse the set of local redeclarations, so that we store them in // order (since we found them in reverse order). std::reverse(LocalRedeclChains.end() - Size, LocalRedeclChains.end()); // Add the mapping from the first ID from the AST to the set of local // declarations. LocalRedeclarationsInfo Info = { getDeclID(First), Offset }; LocalRedeclsMap.push_back(Info); assert(N == Redeclarations.size() && "Deserialized a declaration we shouldn't have"); } if (LocalRedeclChains.empty()) return; // Sort the local redeclarations map by the first declaration ID, // since the reader will be performing binary searches on this information. llvm::array_pod_sort(LocalRedeclsMap.begin(), LocalRedeclsMap.end()); // Emit the local redeclarations map. using namespace llvm; llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(LOCAL_REDECLARATIONS_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevID = Stream.EmitAbbrev(Abbrev); RecordData Record; Record.push_back(LOCAL_REDECLARATIONS_MAP); Record.push_back(LocalRedeclsMap.size()); Stream.EmitRecordWithBlob(AbbrevID, Record, reinterpret_cast<char*>(LocalRedeclsMap.data()), LocalRedeclsMap.size() * sizeof(LocalRedeclarationsInfo)); // Emit the redeclaration chains. Stream.EmitRecord(LOCAL_REDECLARATIONS, LocalRedeclChains); } void ASTWriter::WriteObjCCategories() { SmallVector<ObjCCategoriesInfo, 2> CategoriesMap; RecordData Categories; for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) { unsigned Size = 0; unsigned StartIndex = Categories.size(); ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I]; // Allocate space for the size. Categories.push_back(0); // Add the categories. for (ObjCInterfaceDecl::known_categories_iterator Cat = Class->known_categories_begin(), CatEnd = Class->known_categories_end(); Cat != CatEnd; ++Cat, ++Size) { assert(getDeclID(*Cat) != 0 && "Bogus category"); AddDeclRef(*Cat, Categories); } // Update the size. Categories[StartIndex] = Size; // Record this interface -> category map. ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex }; CategoriesMap.push_back(CatInfo); } // Sort the categories map by the definition ID, since the reader will be // performing binary searches on this information. llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end()); // Emit the categories map. using namespace llvm; llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned AbbrevID = Stream.EmitAbbrev(Abbrev); RecordData Record; Record.push_back(OBJC_CATEGORIES_MAP); Record.push_back(CategoriesMap.size()); Stream.EmitRecordWithBlob(AbbrevID, Record, reinterpret_cast<char*>(CategoriesMap.data()), CategoriesMap.size() * sizeof(ObjCCategoriesInfo)); // Emit the category lists. Stream.EmitRecord(OBJC_CATEGORIES, Categories); } void ASTWriter::WriteMergedDecls() { if (!Chain || Chain->MergedDecls.empty()) return; RecordData Record; for (ASTReader::MergedDeclsMap::iterator I = Chain->MergedDecls.begin(), IEnd = Chain->MergedDecls.end(); I != IEnd; ++I) { DeclID CanonID = I->first->isFromASTFile()? I->first->getGlobalID() : GetDeclRef(I->first); assert(CanonID && "Merged declaration not known?"); Record.push_back(CanonID); Record.push_back(I->second.size()); Record.append(I->second.begin(), I->second.end()); } Stream.EmitRecord(MERGED_DECLARATIONS, Record); } void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) { Sema::LateParsedTemplateMapT &LPTMap = SemaRef.LateParsedTemplateMap; if (LPTMap.empty()) return; RecordData Record; for (Sema::LateParsedTemplateMapT::iterator It = LPTMap.begin(), ItEnd = LPTMap.end(); It != ItEnd; ++It) { LateParsedTemplate *LPT = It->second; AddDeclRef(It->first, Record); AddDeclRef(LPT->D, Record); Record.push_back(LPT->Toks.size()); for (CachedTokens::iterator TokIt = LPT->Toks.begin(), TokEnd = LPT->Toks.end(); TokIt != TokEnd; ++TokIt) { AddToken(*TokIt, Record); } } Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record); } /// \brief Write the state of 'pragma clang optimize' at the end of the module. void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) { RecordData Record; SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation(); AddSourceLocation(PragmaLoc, Record); Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record); } //===----------------------------------------------------------------------===// // General Serialization Routines //===----------------------------------------------------------------------===// /// \brief Write a record containing the given attributes. void ASTWriter::WriteAttributes(ArrayRef<const Attr*> Attrs, RecordDataImpl &Record) { Record.push_back(Attrs.size()); for (ArrayRef<const Attr *>::iterator i = Attrs.begin(), e = Attrs.end(); i != e; ++i){ const Attr *A = *i; Record.push_back(A->getKind()); // FIXME: stable encoding, target attrs AddSourceRange(A->getRange(), Record); #include "clang/Serialization/AttrPCHWrite.inc" } } void ASTWriter::AddToken(const Token &Tok, RecordDataImpl &Record) { AddSourceLocation(Tok.getLocation(), Record); Record.push_back(Tok.getLength()); // FIXME: When reading literal tokens, reconstruct the literal pointer // if it is needed. AddIdentifierRef(Tok.getIdentifierInfo(), Record); // FIXME: Should translate token kind to a stable encoding. Record.push_back(Tok.getKind()); // FIXME: Should translate token flags to a stable encoding. Record.push_back(Tok.getFlags()); } void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) { Record.push_back(Str.size()); Record.insert(Record.end(), Str.begin(), Str.end()); } void ASTWriter::AddVersionTuple(const VersionTuple &Version, RecordDataImpl &Record) { Record.push_back(Version.getMajor()); if (Optional<unsigned> Minor = Version.getMinor()) Record.push_back(*Minor + 1); else Record.push_back(0); if (Optional<unsigned> Subminor = Version.getSubminor()) Record.push_back(*Subminor + 1); else Record.push_back(0); } /// \brief Note that the identifier II occurs at the given offset /// within the identifier table. void ASTWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) { IdentID ID = IdentifierIDs[II]; // Only store offsets new to this AST file. Other identifier names are looked // up earlier in the chain and thus don't need an offset. if (ID >= FirstIdentID) IdentifierOffsets[ID - FirstIdentID] = Offset; } /// \brief Note that the selector Sel occurs at the given offset /// within the method pool/selector table. void ASTWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) { unsigned ID = SelectorIDs[Sel]; assert(ID && "Unknown selector"); // Don't record offsets for selectors that are also available in a different // file. if (ID < FirstSelectorID) return; SelectorOffsets[ID - FirstSelectorID] = Offset; } ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream) : Stream(Stream), Context(nullptr), PP(nullptr), Chain(nullptr), WritingModule(nullptr), WritingAST(false), DoneWritingDeclsAndTypes(false), ASTHasCompilerErrors(false), FirstDeclID(NUM_PREDEF_DECL_IDS), NextDeclID(FirstDeclID), FirstTypeID(NUM_PREDEF_TYPE_IDS), NextTypeID(FirstTypeID), FirstIdentID(NUM_PREDEF_IDENT_IDS), NextIdentID(FirstIdentID), FirstMacroID(NUM_PREDEF_MACRO_IDS), NextMacroID(FirstMacroID), FirstSubmoduleID(NUM_PREDEF_SUBMODULE_IDS), NextSubmoduleID(FirstSubmoduleID), FirstSelectorID(NUM_PREDEF_SELECTOR_IDS), NextSelectorID(FirstSelectorID), CollectedStmts(&StmtsToEmit), NumStatements(0), NumMacros(0), NumLexicalDeclContexts(0), NumVisibleDeclContexts(0), NextCXXBaseSpecifiersID(1), DeclParmVarAbbrev(0), DeclContextLexicalAbbrev(0), DeclContextVisibleLookupAbbrev(0), UpdateVisibleAbbrev(0), DeclRefExprAbbrev(0), CharacterLiteralAbbrev(0), DeclRecordAbbrev(0), IntegerLiteralAbbrev(0), DeclTypedefAbbrev(0), DeclVarAbbrev(0), DeclFieldAbbrev(0), DeclEnumAbbrev(0), DeclObjCIvarAbbrev(0) { } ASTWriter::~ASTWriter() { llvm::DeleteContainerSeconds(FileDeclIDs); } void ASTWriter::WriteAST(Sema &SemaRef, const std::string &OutputFile, Module *WritingModule, StringRef isysroot, bool hasErrors) { WritingAST = true; ASTHasCompilerErrors = hasErrors; // Emit the file header. Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'P', 8); Stream.Emit((unsigned)'C', 8); Stream.Emit((unsigned)'H', 8); WriteBlockInfoBlock(); Context = &SemaRef.Context; PP = &SemaRef.PP; this->WritingModule = WritingModule; WriteASTCore(SemaRef, isysroot, OutputFile, WritingModule); Context = nullptr; PP = nullptr; this->WritingModule = nullptr; WritingAST = false; } template<typename Vector> static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec, ASTWriter::RecordData &Record) { for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end(); I != E; ++I) { Writer.AddDeclRef(*I, Record); } } void ASTWriter::WriteASTCore(Sema &SemaRef, StringRef isysroot, const std::string &OutputFile, Module *WritingModule) { using namespace llvm; bool isModule = WritingModule != nullptr; // Make sure that the AST reader knows to finalize itself. if (Chain) Chain->finalizeForWriting(); ASTContext &Context = SemaRef.Context; Preprocessor &PP = SemaRef.PP; // Set up predefined declaration IDs. DeclIDs[Context.getTranslationUnitDecl()] = PREDEF_DECL_TRANSLATION_UNIT_ID; if (Context.ObjCIdDecl) DeclIDs[Context.ObjCIdDecl] = PREDEF_DECL_OBJC_ID_ID; if (Context.ObjCSelDecl) DeclIDs[Context.ObjCSelDecl] = PREDEF_DECL_OBJC_SEL_ID; if (Context.ObjCClassDecl) DeclIDs[Context.ObjCClassDecl] = PREDEF_DECL_OBJC_CLASS_ID; if (Context.ObjCProtocolClassDecl) DeclIDs[Context.ObjCProtocolClassDecl] = PREDEF_DECL_OBJC_PROTOCOL_ID; if (Context.Int128Decl) DeclIDs[Context.Int128Decl] = PREDEF_DECL_INT_128_ID; if (Context.UInt128Decl) DeclIDs[Context.UInt128Decl] = PREDEF_DECL_UNSIGNED_INT_128_ID; if (Context.ObjCInstanceTypeDecl) DeclIDs[Context.ObjCInstanceTypeDecl] = PREDEF_DECL_OBJC_INSTANCETYPE_ID; if (Context.BuiltinVaListDecl) DeclIDs[Context.getBuiltinVaListDecl()] = PREDEF_DECL_BUILTIN_VA_LIST_ID; if (!Chain) { // Make sure that we emit IdentifierInfos (and any attached // declarations) for builtins. We don't need to do this when we're // emitting chained PCH files, because all of the builtins will be // in the original PCH file. // FIXME: Modules won't like this at all. IdentifierTable &Table = PP.getIdentifierTable(); SmallVector<const char *, 32> BuiltinNames; if (!Context.getLangOpts().NoBuiltin) { Context.BuiltinInfo.GetBuiltinNames(BuiltinNames); } for (unsigned I = 0, N = BuiltinNames.size(); I != N; ++I) getIdentifierRef(&Table.get(BuiltinNames[I])); } // If there are any out-of-date identifiers, bring them up to date. if (ExternalPreprocessorSource *ExtSource = PP.getExternalSource()) { // Find out-of-date identifiers. SmallVector<IdentifierInfo *, 4> OutOfDate; for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(), IDEnd = PP.getIdentifierTable().end(); ID != IDEnd; ++ID) { if (ID->second->isOutOfDate()) OutOfDate.push_back(ID->second); } // Update the out-of-date identifiers. for (unsigned I = 0, N = OutOfDate.size(); I != N; ++I) { ExtSource->updateOutOfDateIdentifier(*OutOfDate[I]); } } // If we saw any DeclContext updates before we started writing the AST file, // make sure all visible decls in those DeclContexts are written out. if (!UpdatedDeclContexts.empty()) { auto OldUpdatedDeclContexts = std::move(UpdatedDeclContexts); UpdatedDeclContexts.clear(); for (auto *DC : OldUpdatedDeclContexts) AddUpdatedDeclContext(DC); } // Build a record containing all of the tentative definitions in this file, in // TentativeDefinitions order. Generally, this record will be empty for // headers. RecordData TentativeDefinitions; AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions); // Build a record containing all of the file scoped decls in this file. RecordData UnusedFileScopedDecls; if (!isModule) AddLazyVectorDecls(*this, SemaRef.UnusedFileScopedDecls, UnusedFileScopedDecls); // Build a record containing all of the delegating constructors we still need // to resolve. RecordData DelegatingCtorDecls; if (!isModule) AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls); // Write the set of weak, undeclared identifiers. We always write the // entire table, since later PCH files in a PCH chain are only interested in // the results at the end of the chain. RecordData WeakUndeclaredIdentifiers; if (!SemaRef.WeakUndeclaredIdentifiers.empty()) { for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I = SemaRef.WeakUndeclaredIdentifiers.begin(), E = SemaRef.WeakUndeclaredIdentifiers.end(); I != E; ++I) { AddIdentifierRef(I->first, WeakUndeclaredIdentifiers); AddIdentifierRef(I->second.getAlias(), WeakUndeclaredIdentifiers); AddSourceLocation(I->second.getLocation(), WeakUndeclaredIdentifiers); WeakUndeclaredIdentifiers.push_back(I->second.getUsed()); } } // Build a record containing all of the locally-scoped extern "C" // declarations in this header file. Generally, this record will be // empty. RecordData LocallyScopedExternCDecls; // FIXME: This is filling in the AST file in densemap order which is // nondeterminstic! for (llvm::DenseMap<DeclarationName, NamedDecl *>::iterator TD = SemaRef.LocallyScopedExternCDecls.begin(), TDEnd = SemaRef.LocallyScopedExternCDecls.end(); TD != TDEnd; ++TD) { if (!TD->second->isFromASTFile()) AddDeclRef(TD->second, LocallyScopedExternCDecls); } // Build a record containing all of the ext_vector declarations. RecordData ExtVectorDecls; AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls); // Build a record containing all of the VTable uses information. RecordData VTableUses; if (!SemaRef.VTableUses.empty()) { for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) { AddDeclRef(SemaRef.VTableUses[I].first, VTableUses); AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses); VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]); } } // Build a record containing all of dynamic classes declarations. RecordData DynamicClasses; AddLazyVectorDecls(*this, SemaRef.DynamicClasses, DynamicClasses); // Build a record containing all of pending implicit instantiations. RecordData PendingInstantiations; for (std::deque<Sema::PendingImplicitInstantiation>::iterator I = SemaRef.PendingInstantiations.begin(), N = SemaRef.PendingInstantiations.end(); I != N; ++I) { AddDeclRef(I->first, PendingInstantiations); AddSourceLocation(I->second, PendingInstantiations); } assert(SemaRef.PendingLocalImplicitInstantiations.empty() && "There are local ones at end of translation unit!"); // Build a record containing some declaration references. RecordData SemaDeclRefs; if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) { AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs); AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs); } RecordData CUDASpecialDeclRefs; if (Context.getcudaConfigureCallDecl()) { AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs); } // Build a record containing all of the known namespaces. RecordData KnownNamespaces; for (llvm::MapVector<NamespaceDecl*, bool>::iterator I = SemaRef.KnownNamespaces.begin(), IEnd = SemaRef.KnownNamespaces.end(); I != IEnd; ++I) { if (!I->second) AddDeclRef(I->first, KnownNamespaces); } // Build a record of all used, undefined objects that require definitions. RecordData UndefinedButUsed; SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined; SemaRef.getUndefinedButUsed(Undefined); for (SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> >::iterator I = Undefined.begin(), E = Undefined.end(); I != E; ++I) { AddDeclRef(I->first, UndefinedButUsed); AddSourceLocation(I->second, UndefinedButUsed); } // Write the control block WriteControlBlock(PP, Context, isysroot, OutputFile); // Write the remaining AST contents. RecordData Record; Stream.EnterSubblock(AST_BLOCK_ID, 5); // This is so that older clang versions, before the introduction // of the control block, can read and reject the newer PCH format. Record.clear(); Record.push_back(VERSION_MAJOR); Stream.EmitRecord(METADATA_OLD_FORMAT, Record); // Create a lexical update block containing all of the declarations in the // translation unit that do not come from other AST files. const TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); SmallVector<KindDeclIDPair, 64> NewGlobalDecls; for (const auto *I : TU->noload_decls()) { if (!I->isFromASTFile()) NewGlobalDecls.push_back(std::make_pair(I->getKind(), GetDeclRef(I))); } llvm::BitCodeAbbrev *Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(Abv); Record.clear(); Record.push_back(TU_UPDATE_LEXICAL); Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record, data(NewGlobalDecls)); // And a visible updates block for the translation unit. Abv = new llvm::BitCodeAbbrev(); Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Fixed, 32)); Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob)); UpdateVisibleAbbrev = Stream.EmitAbbrev(Abv); WriteDeclContextVisibleUpdate(TU); // If the translation unit has an anonymous namespace, and we don't already // have an update block for it, write it as an update block. // FIXME: Why do we not do this if there's already an update block? if (NamespaceDecl *NS = TU->getAnonymousNamespace()) { ASTWriter::UpdateRecord &Record = DeclUpdates[TU]; if (Record.empty()) Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS)); } // Add update records for all mangling numbers and static local numbers. // These aren't really update records, but this is a convenient way of // tagging this rare extra data onto the declarations. for (const auto &Number : Context.MangleNumbers) if (!Number.first->isFromASTFile()) DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER, Number.second)); for (const auto &Number : Context.StaticLocalNumbers) if (!Number.first->isFromASTFile()) DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER, Number.second)); // Make sure visible decls, added to DeclContexts previously loaded from // an AST file, are registered for serialization. for (SmallVectorImpl<const Decl *>::iterator I = UpdatingVisibleDecls.begin(), E = UpdatingVisibleDecls.end(); I != E; ++I) { GetDeclRef(*I); } // Make sure all decls associated with an identifier are registered for // serialization. for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(), IDEnd = PP.getIdentifierTable().end(); ID != IDEnd; ++ID) { const IdentifierInfo *II = ID->second; if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization()) { for (IdentifierResolver::iterator D = SemaRef.IdResolver.begin(II), DEnd = SemaRef.IdResolver.end(); D != DEnd; ++D) { GetDeclRef(*D); } } } // Form the record of special types. RecordData SpecialTypes; AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes); AddTypeRef(Context.getFILEType(), SpecialTypes); AddTypeRef(Context.getjmp_bufType(), SpecialTypes); AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes); AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes); AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes); AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes); AddTypeRef(Context.getucontext_tType(), SpecialTypes); if (Chain) { // Write the mapping information describing our module dependencies and how // each of those modules were mapped into our own offset/ID space, so that // the reader can build the appropriate mapping to its own offset/ID space. // The map consists solely of a blob with the following format: // *(module-name-len:i16 module-name:len*i8 // source-location-offset:i32 // identifier-id:i32 // preprocessed-entity-id:i32 // macro-definition-id:i32 // submodule-id:i32 // selector-id:i32 // declaration-id:i32 // c++-base-specifiers-id:i32 // type-id:i32) // llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev(); Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP)); Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(Abbrev); SmallString<2048> Buffer; { llvm::raw_svector_ostream Out(Buffer); for (ModuleManager::ModuleConstIterator M = Chain->ModuleMgr.begin(), MEnd = Chain->ModuleMgr.end(); M != MEnd; ++M) { using namespace llvm::support; endian::Writer<little> LE(Out); StringRef FileName = (*M)->FileName; LE.write<uint16_t>(FileName.size()); Out.write(FileName.data(), FileName.size()); LE.write<uint32_t>((*M)->SLocEntryBaseOffset); LE.write<uint32_t>((*M)->BaseIdentifierID); LE.write<uint32_t>((*M)->BaseMacroID); LE.write<uint32_t>((*M)->BasePreprocessedEntityID); LE.write<uint32_t>((*M)->BaseSubmoduleID); LE.write<uint32_t>((*M)->BaseSelectorID); LE.write<uint32_t>((*M)->BaseDeclID); LE.write<uint32_t>((*M)->BaseTypeIndex); } } Record.clear(); Record.push_back(MODULE_OFFSET_MAP); Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record, Buffer.data(), Buffer.size()); } RecordData DeclUpdatesOffsetsRecord; // Keep writing types, declarations, and declaration update records // until we've emitted all of them. Stream.EnterSubblock(DECLTYPES_BLOCK_ID, NUM_ALLOWED_ABBREVS_SIZE); WriteDeclsBlockAbbrevs(); for (DeclsToRewriteTy::iterator I = DeclsToRewrite.begin(), E = DeclsToRewrite.end(); I != E; ++I) DeclTypesToEmit.push(const_cast<Decl*>(*I)); do { WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord); while (!DeclTypesToEmit.empty()) { DeclOrType DOT = DeclTypesToEmit.front(); DeclTypesToEmit.pop(); if (DOT.isType()) WriteType(DOT.getType()); else WriteDecl(Context, DOT.getDecl()); } } while (!DeclUpdates.empty()); Stream.ExitBlock(); DoneWritingDeclsAndTypes = true; // These things can only be done once we've written out decls and types. WriteTypeDeclOffsets(); if (!DeclUpdatesOffsetsRecord.empty()) Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord); WriteCXXBaseSpecifiersOffsets(); WriteFileDeclIDsMap(); WriteSourceManagerBlock(Context.getSourceManager(), PP, isysroot); WriteComments(); WritePreprocessor(PP, isModule); WriteHeaderSearch(PP.getHeaderSearchInfo(), isysroot); WriteSelectors(SemaRef); WriteReferencedSelectorsPool(SemaRef); WriteIdentifierTable(PP, SemaRef.IdResolver, isModule); WriteFPPragmaOptions(SemaRef.getFPOptions()); WriteOpenCLExtensions(SemaRef); WritePragmaDiagnosticMappings(Context.getDiagnostics(), isModule); // If we're emitting a module, write out the submodule information. if (WritingModule) WriteSubmodules(WritingModule); Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes); // Write the record containing external, unnamed definitions. if (!EagerlyDeserializedDecls.empty()) Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls); // Write the record containing tentative definitions. if (!TentativeDefinitions.empty()) Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions); // Write the record containing unused file scoped decls. if (!UnusedFileScopedDecls.empty()) Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls); // Write the record containing weak undeclared identifiers. if (!WeakUndeclaredIdentifiers.empty()) Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS, WeakUndeclaredIdentifiers); // Write the record containing locally-scoped extern "C" definitions. if (!LocallyScopedExternCDecls.empty()) Stream.EmitRecord(LOCALLY_SCOPED_EXTERN_C_DECLS, LocallyScopedExternCDecls); // Write the record containing ext_vector type names. if (!ExtVectorDecls.empty()) Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls); // Write the record containing VTable uses information. if (!VTableUses.empty()) Stream.EmitRecord(VTABLE_USES, VTableUses); // Write the record containing dynamic classes declarations. if (!DynamicClasses.empty()) Stream.EmitRecord(DYNAMIC_CLASSES, DynamicClasses); // Write the record containing pending implicit instantiations. if (!PendingInstantiations.empty()) Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations); // Write the record containing declaration references of Sema. if (!SemaDeclRefs.empty()) Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs); // Write the record containing CUDA-specific declaration references. if (!CUDASpecialDeclRefs.empty()) Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs); // Write the delegating constructors. if (!DelegatingCtorDecls.empty()) Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls); // Write the known namespaces. if (!KnownNamespaces.empty()) Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces); // Write the undefined internal functions and variables, and inline functions. if (!UndefinedButUsed.empty()) Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed); // Write the visible updates to DeclContexts. for (auto *DC : UpdatedDeclContexts) WriteDeclContextVisibleUpdate(DC); if (!WritingModule) { // Write the submodules that were imported, if any. struct ModuleInfo { uint64_t ID; Module *M; ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {} }; llvm::SmallVector<ModuleInfo, 64> Imports; for (const auto *I : Context.local_imports()) { assert(SubmoduleIDs.find(I->getImportedModule()) != SubmoduleIDs.end()); Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()], I->getImportedModule())); } if (!Imports.empty()) { auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) { return A.ID < B.ID; }; // Sort and deduplicate module IDs. std::sort(Imports.begin(), Imports.end(), Cmp); Imports.erase(std::unique(Imports.begin(), Imports.end(), Cmp), Imports.end()); RecordData ImportedModules; for (const auto &Import : Imports) { ImportedModules.push_back(Import.ID); // FIXME: If the module has macros imported then later has declarations // imported, this location won't be the right one as a location for the // declaration imports. AddSourceLocation(Import.M->MacroVisibilityLoc, ImportedModules); } Stream.EmitRecord(IMPORTED_MODULES, ImportedModules); } } WriteDeclReplacementsBlock(); WriteRedeclarations(); WriteMergedDecls(); WriteObjCCategories(); WriteLateParsedTemplates(SemaRef); if(!WritingModule) WriteOptimizePragmaOptions(SemaRef); // Some simple statistics Record.clear(); Record.push_back(NumStatements); Record.push_back(NumMacros); Record.push_back(NumLexicalDeclContexts); Record.push_back(NumVisibleDeclContexts); Stream.EmitRecord(STATISTICS, Record); Stream.ExitBlock(); } void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) { if (DeclUpdates.empty()) return; DeclUpdateMap LocalUpdates; LocalUpdates.swap(DeclUpdates); for (auto &DeclUpdate : LocalUpdates) { const Decl *D = DeclUpdate.first; if (isRewritten(D)) continue; // The decl will be written completely,no need to store updates. bool HasUpdatedBody = false; RecordData Record; for (auto &Update : DeclUpdate.second) { DeclUpdateKind Kind = (DeclUpdateKind)Update.getKind(); Record.push_back(Kind); switch (Kind) { case UPD_CXX_ADDED_IMPLICIT_MEMBER: case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION: case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: assert(Update.getDecl() && "no decl to add?"); Record.push_back(GetDeclRef(Update.getDecl())); break; case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER: AddSourceLocation(Update.getLoc(), Record); break; case UPD_CXX_INSTANTIATED_FUNCTION_DEFINITION: // An updated body is emitted last, so that the reader doesn't need // to skip over the lazy body to reach statements for other records. Record.pop_back(); HasUpdatedBody = true; break; case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: { auto *RD = cast<CXXRecordDecl>(D); AddUpdatedDeclContext(RD->getPrimaryContext()); AddCXXDefinitionData(RD, Record); Record.push_back(WriteDeclContextLexicalBlock( *Context, const_cast<CXXRecordDecl *>(RD))); // This state is sometimes updated by template instantiation, when we // switch from the specialization referring to the template declaration // to it referring to the template definition. if (auto *MSInfo = RD->getMemberSpecializationInfo()) { Record.push_back(MSInfo->getTemplateSpecializationKind()); AddSourceLocation(MSInfo->getPointOfInstantiation(), Record); } else { auto *Spec = cast<ClassTemplateSpecializationDecl>(RD); Record.push_back(Spec->getTemplateSpecializationKind()); AddSourceLocation(Spec->getPointOfInstantiation(), Record); // The instantiation might have been resolved to a partial // specialization. If so, record which one. auto From = Spec->getInstantiatedFrom(); if (auto PartialSpec = From.dyn_cast<ClassTemplatePartialSpecializationDecl*>()) { Record.push_back(true); AddDeclRef(PartialSpec, Record); AddTemplateArgumentList(&Spec->getTemplateInstantiationArgs(), Record); } else { Record.push_back(false); } } Record.push_back(RD->getTagKind()); AddSourceLocation(RD->getLocation(), Record); AddSourceLocation(RD->getLocStart(), Record); AddSourceLocation(RD->getRBraceLoc(), Record); // Instantiation may change attributes; write them all out afresh. Record.push_back(D->hasAttrs()); if (Record.back()) WriteAttributes(ArrayRef<const Attr*>(D->getAttrs().begin(), D->getAttrs().size()), Record); // FIXME: Ensure we don't get here for explicit instantiations. break; } case UPD_CXX_RESOLVED_EXCEPTION_SPEC: addExceptionSpec( *this, cast<FunctionDecl>(D)->getType()->castAs<FunctionProtoType>(), Record); break; case UPD_CXX_DEDUCED_RETURN_TYPE: Record.push_back(GetOrCreateTypeID(Update.getType())); break; case UPD_DECL_MARKED_USED: break; case UPD_MANGLING_NUMBER: case UPD_STATIC_LOCAL_NUMBER: Record.push_back(Update.getNumber()); break; } } if (HasUpdatedBody) { const FunctionDecl *Def = cast<FunctionDecl>(D); Record.push_back(UPD_CXX_INSTANTIATED_FUNCTION_DEFINITION); Record.push_back(Def->isInlined()); AddSourceLocation(Def->getInnerLocStart(), Record); AddFunctionDefinition(Def, Record); } OffsetsRecord.push_back(GetDeclRef(D)); OffsetsRecord.push_back(Stream.GetCurrentBitNo()); Stream.EmitRecord(DECL_UPDATES, Record); // Flush any statements that were written as part of this update record. FlushStmts(); // Flush C++ base specifiers, if there are any. FlushCXXBaseSpecifiers(); } } void ASTWriter::WriteDeclReplacementsBlock() { if (ReplacedDecls.empty()) return; RecordData Record; for (SmallVectorImpl<ReplacedDeclInfo>::iterator I = ReplacedDecls.begin(), E = ReplacedDecls.end(); I != E; ++I) { Record.push_back(I->ID); Record.push_back(I->Offset); Record.push_back(I->Loc); } Stream.EmitRecord(DECL_REPLACEMENTS, Record); } void ASTWriter::AddSourceLocation(SourceLocation Loc, RecordDataImpl &Record) { Record.push_back(Loc.getRawEncoding()); } void ASTWriter::AddSourceRange(SourceRange Range, RecordDataImpl &Record) { AddSourceLocation(Range.getBegin(), Record); AddSourceLocation(Range.getEnd(), Record); } void ASTWriter::AddAPInt(const llvm::APInt &Value, RecordDataImpl &Record) { Record.push_back(Value.getBitWidth()); const uint64_t *Words = Value.getRawData(); Record.append(Words, Words + Value.getNumWords()); } void ASTWriter::AddAPSInt(const llvm::APSInt &Value, RecordDataImpl &Record) { Record.push_back(Value.isUnsigned()); AddAPInt(Value, Record); } void ASTWriter::AddAPFloat(const llvm::APFloat &Value, RecordDataImpl &Record) { AddAPInt(Value.bitcastToAPInt(), Record); } void ASTWriter::AddIdentifierRef(const IdentifierInfo *II, RecordDataImpl &Record) { Record.push_back(getIdentifierRef(II)); } IdentID ASTWriter::getIdentifierRef(const IdentifierInfo *II) { if (!II) return 0; IdentID &ID = IdentifierIDs[II]; if (ID == 0) ID = NextIdentID++; return ID; } MacroID ASTWriter::getMacroRef(MacroInfo *MI, const IdentifierInfo *Name) { // Don't emit builtin macros like __LINE__ to the AST file unless they // have been redefined by the header (in which case they are not // isBuiltinMacro). if (!MI || MI->isBuiltinMacro()) return 0; MacroID &ID = MacroIDs[MI]; if (ID == 0) { ID = NextMacroID++; MacroInfoToEmitData Info = { Name, MI, ID }; MacroInfosToEmit.push_back(Info); } return ID; } MacroID ASTWriter::getMacroID(MacroInfo *MI) { if (!MI || MI->isBuiltinMacro()) return 0; assert(MacroIDs.find(MI) != MacroIDs.end() && "Macro not emitted!"); return MacroIDs[MI]; } uint64_t ASTWriter::getMacroDirectivesOffset(const IdentifierInfo *Name) { assert(IdentMacroDirectivesOffsetMap[Name] && "not set!"); return IdentMacroDirectivesOffsetMap[Name]; } void ASTWriter::AddSelectorRef(const Selector SelRef, RecordDataImpl &Record) { Record.push_back(getSelectorRef(SelRef)); } SelectorID ASTWriter::getSelectorRef(Selector Sel) { if (Sel.getAsOpaquePtr() == nullptr) { return 0; } SelectorID SID = SelectorIDs[Sel]; if (SID == 0 && Chain) { // This might trigger a ReadSelector callback, which will set the ID for // this selector. Chain->LoadSelector(Sel); SID = SelectorIDs[Sel]; } if (SID == 0) { SID = NextSelectorID++; SelectorIDs[Sel] = SID; } return SID; } void ASTWriter::AddCXXTemporary(const CXXTemporary *Temp, RecordDataImpl &Record) { AddDeclRef(Temp->getDestructor(), Record); } void ASTWriter::AddCXXBaseSpecifiersRef(CXXBaseSpecifier const *Bases, CXXBaseSpecifier const *BasesEnd, RecordDataImpl &Record) { assert(Bases != BasesEnd && "Empty base-specifier sets are not recorded"); CXXBaseSpecifiersToWrite.push_back( QueuedCXXBaseSpecifiers(NextCXXBaseSpecifiersID, Bases, BasesEnd)); Record.push_back(NextCXXBaseSpecifiersID++); } void ASTWriter::AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind, const TemplateArgumentLocInfo &Arg, RecordDataImpl &Record) { switch (Kind) { case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Type: AddTypeSourceInfo(Arg.getAsTypeSourceInfo(), Record); break; case TemplateArgument::Template: AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record); AddSourceLocation(Arg.getTemplateNameLoc(), Record); break; case TemplateArgument::TemplateExpansion: AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record); AddSourceLocation(Arg.getTemplateNameLoc(), Record); AddSourceLocation(Arg.getTemplateEllipsisLoc(), Record); break; case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: case TemplateArgument::Pack: // FIXME: Is this right? break; } } void ASTWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg, RecordDataImpl &Record) { AddTemplateArgument(Arg.getArgument(), Record); if (Arg.getArgument().getKind() == TemplateArgument::Expression) { bool InfoHasSameExpr = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr(); Record.push_back(InfoHasSameExpr); if (InfoHasSameExpr) return; // Avoid storing the same expr twice. } AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo(), Record); } void ASTWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo, RecordDataImpl &Record) { if (!TInfo) { AddTypeRef(QualType(), Record); return; } AddTypeLoc(TInfo->getTypeLoc(), Record); } void ASTWriter::AddTypeLoc(TypeLoc TL, RecordDataImpl &Record) { AddTypeRef(TL.getType(), Record); TypeLocWriter TLW(*this, Record); for (; !TL.isNull(); TL = TL.getNextTypeLoc()) TLW.Visit(TL); } void ASTWriter::AddTypeRef(QualType T, RecordDataImpl &Record) { Record.push_back(GetOrCreateTypeID(T)); } TypeID ASTWriter::GetOrCreateTypeID( QualType T) { assert(Context); return MakeTypeID(*Context, T, std::bind1st(std::mem_fun(&ASTWriter::GetOrCreateTypeIdx), this)); } TypeID ASTWriter::getTypeID(QualType T) const { assert(Context); return MakeTypeID(*Context, T, std::bind1st(std::mem_fun(&ASTWriter::getTypeIdx), this)); } TypeIdx ASTWriter::GetOrCreateTypeIdx(QualType T) { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdx &Idx = TypeIdxs[T]; if (Idx.getIndex() == 0) { if (DoneWritingDeclsAndTypes) { assert(0 && "New type seen after serializing all the types to emit!"); return TypeIdx(); } // We haven't seen this type before. Assign it a new ID and put it // into the queue of types to emit. Idx = TypeIdx(NextTypeID++); DeclTypesToEmit.push(T); } return Idx; } TypeIdx ASTWriter::getTypeIdx(QualType T) const { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdxMap::const_iterator I = TypeIdxs.find(T); assert(I != TypeIdxs.end() && "Type not emitted!"); return I->second; } void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) { Record.push_back(GetDeclRef(D)); } DeclID ASTWriter::GetDeclRef(const Decl *D) { assert(WritingAST && "Cannot request a declaration ID before AST writing"); if (!D) { return 0; } // If D comes from an AST file, its declaration ID is already known and // fixed. if (D->isFromASTFile()) return D->getGlobalID(); assert(!(reinterpret_cast<uintptr_t>(D) & 0x01) && "Invalid decl pointer"); DeclID &ID = DeclIDs[D]; if (ID == 0) { if (DoneWritingDeclsAndTypes) { assert(0 && "New decl seen after serializing all the decls to emit!"); return 0; } // We haven't seen this declaration before. Give it a new ID and // enqueue it in the list of declarations to emit. ID = NextDeclID++; DeclTypesToEmit.push(const_cast<Decl *>(D)); } return ID; } DeclID ASTWriter::getDeclID(const Decl *D) { if (!D) return 0; // If D comes from an AST file, its declaration ID is already known and // fixed. if (D->isFromASTFile()) return D->getGlobalID(); assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!"); return DeclIDs[D]; } void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) { assert(ID); assert(D); SourceLocation Loc = D->getLocation(); if (Loc.isInvalid()) return; // We only keep track of the file-level declarations of each file. if (!D->getLexicalDeclContext()->isFileContext()) return; // FIXME: ParmVarDecls that are part of a function type of a parameter of // a function/objc method, should not have TU as lexical context. if (isa<ParmVarDecl>(D)) return; SourceManager &SM = Context->getSourceManager(); SourceLocation FileLoc = SM.getFileLoc(Loc); assert(SM.isLocalSourceLocation(FileLoc)); FileID FID; unsigned Offset; std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc); if (FID.isInvalid()) return; assert(SM.getSLocEntry(FID).isFile()); DeclIDInFileInfo *&Info = FileDeclIDs[FID]; if (!Info) Info = new DeclIDInFileInfo(); std::pair<unsigned, serialization::DeclID> LocDecl(Offset, ID); LocDeclIDsTy &Decls = Info->DeclIDs; if (Decls.empty() || Decls.back().first <= Offset) { Decls.push_back(LocDecl); return; } LocDeclIDsTy::iterator I = std::upper_bound(Decls.begin(), Decls.end(), LocDecl, llvm::less_first()); Decls.insert(I, LocDecl); } void ASTWriter::AddDeclarationName(DeclarationName Name, RecordDataImpl &Record) { // FIXME: Emit a stable enum for NameKind. 0 = Identifier etc. Record.push_back(Name.getNameKind()); switch (Name.getNameKind()) { case DeclarationName::Identifier: AddIdentifierRef(Name.getAsIdentifierInfo(), Record); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: AddSelectorRef(Name.getObjCSelector(), Record); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: AddTypeRef(Name.getCXXNameType(), Record); break; case DeclarationName::CXXOperatorName: Record.push_back(Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: AddIdentifierRef(Name.getCXXLiteralIdentifier(), Record); break; case DeclarationName::CXXUsingDirective: // No extra data to emit break; } } void ASTWriter::AddDeclarationNameLoc(const DeclarationNameLoc &DNLoc, DeclarationName Name, RecordDataImpl &Record) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: AddTypeSourceInfo(DNLoc.NamedType.TInfo, Record); break; case DeclarationName::CXXOperatorName: AddSourceLocation( SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.BeginOpNameLoc), Record); AddSourceLocation( SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.EndOpNameLoc), Record); break; case DeclarationName::CXXLiteralOperatorName: AddSourceLocation( SourceLocation::getFromRawEncoding(DNLoc.CXXLiteralOperatorName.OpNameLoc), Record); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: break; } } void ASTWriter::AddDeclarationNameInfo(const DeclarationNameInfo &NameInfo, RecordDataImpl &Record) { AddDeclarationName(NameInfo.getName(), Record); AddSourceLocation(NameInfo.getLoc(), Record); AddDeclarationNameLoc(NameInfo.getInfo(), NameInfo.getName(), Record); } void ASTWriter::AddQualifierInfo(const QualifierInfo &Info, RecordDataImpl &Record) { AddNestedNameSpecifierLoc(Info.QualifierLoc, Record); Record.push_back(Info.NumTemplParamLists); for (unsigned i=0, e=Info.NumTemplParamLists; i != e; ++i) AddTemplateParameterList(Info.TemplParamLists[i], Record); } void ASTWriter::AddNestedNameSpecifier(NestedNameSpecifier *NNS, RecordDataImpl &Record) { // Nested name specifiers usually aren't too long. I think that 8 would // typically accommodate the vast majority. SmallVector<NestedNameSpecifier *, 8> NestedNames; // Push each of the NNS's onto a stack for serialization in reverse order. while (NNS) { NestedNames.push_back(NNS); NNS = NNS->getPrefix(); } Record.push_back(NestedNames.size()); while(!NestedNames.empty()) { NNS = NestedNames.pop_back_val(); NestedNameSpecifier::SpecifierKind Kind = NNS->getKind(); Record.push_back(Kind); switch (Kind) { case NestedNameSpecifier::Identifier: AddIdentifierRef(NNS->getAsIdentifier(), Record); break; case NestedNameSpecifier::Namespace: AddDeclRef(NNS->getAsNamespace(), Record); break; case NestedNameSpecifier::NamespaceAlias: AddDeclRef(NNS->getAsNamespaceAlias(), Record); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: AddTypeRef(QualType(NNS->getAsType(), 0), Record); Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate); break; case NestedNameSpecifier::Global: // Don't need to write an associated value. break; } } } void ASTWriter::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, RecordDataImpl &Record) { // Nested name specifiers usually aren't too long. I think that 8 would // typically accommodate the vast majority. SmallVector<NestedNameSpecifierLoc , 8> NestedNames; // Push each of the nested-name-specifiers's onto a stack for // serialization in reverse order. while (NNS) { NestedNames.push_back(NNS); NNS = NNS.getPrefix(); } Record.push_back(NestedNames.size()); while(!NestedNames.empty()) { NNS = NestedNames.pop_back_val(); NestedNameSpecifier::SpecifierKind Kind = NNS.getNestedNameSpecifier()->getKind(); Record.push_back(Kind); switch (Kind) { case NestedNameSpecifier::Identifier: AddIdentifierRef(NNS.getNestedNameSpecifier()->getAsIdentifier(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; case NestedNameSpecifier::Namespace: AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespace(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; case NestedNameSpecifier::NamespaceAlias: AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespaceAlias(), Record); AddSourceRange(NNS.getLocalSourceRange(), Record); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate); AddTypeLoc(NNS.getTypeLoc(), Record); AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record); break; case NestedNameSpecifier::Global: AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record); break; } } } void ASTWriter::AddTemplateName(TemplateName Name, RecordDataImpl &Record) { TemplateName::NameKind Kind = Name.getKind(); Record.push_back(Kind); switch (Kind) { case TemplateName::Template: AddDeclRef(Name.getAsTemplateDecl(), Record); break; case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *OvT = Name.getAsOverloadedTemplate(); Record.push_back(OvT->size()); for (OverloadedTemplateStorage::iterator I = OvT->begin(), E = OvT->end(); I != E; ++I) AddDeclRef(*I, Record); break; } case TemplateName::QualifiedTemplate: { QualifiedTemplateName *QualT = Name.getAsQualifiedTemplateName(); AddNestedNameSpecifier(QualT->getQualifier(), Record); Record.push_back(QualT->hasTemplateKeyword()); AddDeclRef(QualT->getTemplateDecl(), Record); break; } case TemplateName::DependentTemplate: { DependentTemplateName *DepT = Name.getAsDependentTemplateName(); AddNestedNameSpecifier(DepT->getQualifier(), Record); Record.push_back(DepT->isIdentifier()); if (DepT->isIdentifier()) AddIdentifierRef(DepT->getIdentifier(), Record); else Record.push_back(DepT->getOperator()); break; } case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = Name.getAsSubstTemplateTemplateParm(); AddDeclRef(subst->getParameter(), Record); AddTemplateName(subst->getReplacement(), Record); break; } case TemplateName::SubstTemplateTemplateParmPack: { SubstTemplateTemplateParmPackStorage *SubstPack = Name.getAsSubstTemplateTemplateParmPack(); AddDeclRef(SubstPack->getParameterPack(), Record); AddTemplateArgument(SubstPack->getArgumentPack(), Record); break; } } } void ASTWriter::AddTemplateArgument(const TemplateArgument &Arg, RecordDataImpl &Record) { Record.push_back(Arg.getKind()); switch (Arg.getKind()) { case TemplateArgument::Null: break; case TemplateArgument::Type: AddTypeRef(Arg.getAsType(), Record); break; case TemplateArgument::Declaration: AddDeclRef(Arg.getAsDecl(), Record); Record.push_back(Arg.isDeclForReferenceParam()); break; case TemplateArgument::NullPtr: AddTypeRef(Arg.getNullPtrType(), Record); break; case TemplateArgument::Integral: AddAPSInt(Arg.getAsIntegral(), Record); AddTypeRef(Arg.getIntegralType(), Record); break; case TemplateArgument::Template: AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record); break; case TemplateArgument::TemplateExpansion: AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record); if (Optional<unsigned> NumExpansions = Arg.getNumTemplateExpansions()) Record.push_back(*NumExpansions + 1); else Record.push_back(0); break; case TemplateArgument::Expression: AddStmt(Arg.getAsExpr()); break; case TemplateArgument::Pack: Record.push_back(Arg.pack_size()); for (TemplateArgument::pack_iterator I=Arg.pack_begin(), E=Arg.pack_end(); I != E; ++I) AddTemplateArgument(*I, Record); break; } } void ASTWriter::AddTemplateParameterList(const TemplateParameterList *TemplateParams, RecordDataImpl &Record) { assert(TemplateParams && "No TemplateParams!"); AddSourceLocation(TemplateParams->getTemplateLoc(), Record); AddSourceLocation(TemplateParams->getLAngleLoc(), Record); AddSourceLocation(TemplateParams->getRAngleLoc(), Record); Record.push_back(TemplateParams->size()); for (TemplateParameterList::const_iterator P = TemplateParams->begin(), PEnd = TemplateParams->end(); P != PEnd; ++P) AddDeclRef(*P, Record); } /// \brief Emit a template argument list. void ASTWriter::AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs, RecordDataImpl &Record) { assert(TemplateArgs && "No TemplateArgs!"); Record.push_back(TemplateArgs->size()); for (int i=0, e = TemplateArgs->size(); i != e; ++i) AddTemplateArgument(TemplateArgs->get(i), Record); } void ASTWriter::AddASTTemplateArgumentListInfo (const ASTTemplateArgumentListInfo *ASTTemplArgList, RecordDataImpl &Record) { assert(ASTTemplArgList && "No ASTTemplArgList!"); AddSourceLocation(ASTTemplArgList->LAngleLoc, Record); AddSourceLocation(ASTTemplArgList->RAngleLoc, Record); Record.push_back(ASTTemplArgList->NumTemplateArgs); const TemplateArgumentLoc *TemplArgs = ASTTemplArgList->getTemplateArgs(); for (int i=0, e = ASTTemplArgList->NumTemplateArgs; i != e; ++i) AddTemplateArgumentLoc(TemplArgs[i], Record); } void ASTWriter::AddUnresolvedSet(const ASTUnresolvedSet &Set, RecordDataImpl &Record) { Record.push_back(Set.size()); for (ASTUnresolvedSet::const_iterator I = Set.begin(), E = Set.end(); I != E; ++I) { AddDeclRef(I.getDecl(), Record); Record.push_back(I.getAccess()); } } void ASTWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base, RecordDataImpl &Record) { Record.push_back(Base.isVirtual()); Record.push_back(Base.isBaseOfClass()); Record.push_back(Base.getAccessSpecifierAsWritten()); Record.push_back(Base.getInheritConstructors()); AddTypeSourceInfo(Base.getTypeSourceInfo(), Record); AddSourceRange(Base.getSourceRange(), Record); AddSourceLocation(Base.isPackExpansion()? Base.getEllipsisLoc() : SourceLocation(), Record); } void ASTWriter::FlushCXXBaseSpecifiers() { RecordData Record; for (unsigned I = 0, N = CXXBaseSpecifiersToWrite.size(); I != N; ++I) { Record.clear(); // Record the offset of this base-specifier set. unsigned Index = CXXBaseSpecifiersToWrite[I].ID - 1; if (Index == CXXBaseSpecifiersOffsets.size()) CXXBaseSpecifiersOffsets.push_back(Stream.GetCurrentBitNo()); else { if (Index > CXXBaseSpecifiersOffsets.size()) CXXBaseSpecifiersOffsets.resize(Index + 1); CXXBaseSpecifiersOffsets[Index] = Stream.GetCurrentBitNo(); } const CXXBaseSpecifier *B = CXXBaseSpecifiersToWrite[I].Bases, *BEnd = CXXBaseSpecifiersToWrite[I].BasesEnd; Record.push_back(BEnd - B); for (; B != BEnd; ++B) AddCXXBaseSpecifier(*B, Record); Stream.EmitRecord(serialization::DECL_CXX_BASE_SPECIFIERS, Record); // Flush any expressions that were written as part of the base specifiers. FlushStmts(); } CXXBaseSpecifiersToWrite.clear(); } void ASTWriter::AddCXXCtorInitializers( const CXXCtorInitializer * const *CtorInitializers, unsigned NumCtorInitializers, RecordDataImpl &Record) { Record.push_back(NumCtorInitializers); for (unsigned i=0; i != NumCtorInitializers; ++i) { const CXXCtorInitializer *Init = CtorInitializers[i]; if (Init->isBaseInitializer()) { Record.push_back(CTOR_INITIALIZER_BASE); AddTypeSourceInfo(Init->getTypeSourceInfo(), Record); Record.push_back(Init->isBaseVirtual()); } else if (Init->isDelegatingInitializer()) { Record.push_back(CTOR_INITIALIZER_DELEGATING); AddTypeSourceInfo(Init->getTypeSourceInfo(), Record); } else if (Init->isMemberInitializer()){ Record.push_back(CTOR_INITIALIZER_MEMBER); AddDeclRef(Init->getMember(), Record); } else { Record.push_back(CTOR_INITIALIZER_INDIRECT_MEMBER); AddDeclRef(Init->getIndirectMember(), Record); } AddSourceLocation(Init->getMemberLocation(), Record); AddStmt(Init->getInit()); AddSourceLocation(Init->getLParenLoc(), Record); AddSourceLocation(Init->getRParenLoc(), Record); Record.push_back(Init->isWritten()); if (Init->isWritten()) { Record.push_back(Init->getSourceOrder()); } else { Record.push_back(Init->getNumArrayIndices()); for (unsigned i=0, e=Init->getNumArrayIndices(); i != e; ++i) AddDeclRef(Init->getArrayIndex(i), Record); } } } void ASTWriter::AddCXXDefinitionData(const CXXRecordDecl *D, RecordDataImpl &Record) { auto &Data = D->data(); Record.push_back(Data.IsLambda); Record.push_back(Data.UserDeclaredConstructor); Record.push_back(Data.UserDeclaredSpecialMembers); Record.push_back(Data.Aggregate); Record.push_back(Data.PlainOldData); Record.push_back(Data.Empty); Record.push_back(Data.Polymorphic); Record.push_back(Data.Abstract); Record.push_back(Data.IsStandardLayout); Record.push_back(Data.HasNoNonEmptyBases); Record.push_back(Data.HasPrivateFields); Record.push_back(Data.HasProtectedFields); Record.push_back(Data.HasPublicFields); Record.push_back(Data.HasMutableFields); Record.push_back(Data.HasVariantMembers); Record.push_back(Data.HasOnlyCMembers); Record.push_back(Data.HasInClassInitializer); Record.push_back(Data.HasUninitializedReferenceMember); Record.push_back(Data.NeedOverloadResolutionForMoveConstructor); Record.push_back(Data.NeedOverloadResolutionForMoveAssignment); Record.push_back(Data.NeedOverloadResolutionForDestructor); Record.push_back(Data.DefaultedMoveConstructorIsDeleted); Record.push_back(Data.DefaultedMoveAssignmentIsDeleted); Record.push_back(Data.DefaultedDestructorIsDeleted); Record.push_back(Data.HasTrivialSpecialMembers); Record.push_back(Data.DeclaredNonTrivialSpecialMembers); Record.push_back(Data.HasIrrelevantDestructor); Record.push_back(Data.HasConstexprNonCopyMoveConstructor); Record.push_back(Data.DefaultedDefaultConstructorIsConstexpr); Record.push_back(Data.HasConstexprDefaultConstructor); Record.push_back(Data.HasNonLiteralTypeFieldsOrBases); Record.push_back(Data.ComputedVisibleConversions); Record.push_back(Data.UserProvidedDefaultConstructor); Record.push_back(Data.DeclaredSpecialMembers); Record.push_back(Data.ImplicitCopyConstructorHasConstParam); Record.push_back(Data.ImplicitCopyAssignmentHasConstParam); Record.push_back(Data.HasDeclaredCopyConstructorWithConstParam); Record.push_back(Data.HasDeclaredCopyAssignmentWithConstParam); // IsLambda bit is already saved. Record.push_back(Data.NumBases); if (Data.NumBases > 0) AddCXXBaseSpecifiersRef(Data.getBases(), Data.getBases() + Data.NumBases, Record); // FIXME: Make VBases lazily computed when needed to avoid storing them. Record.push_back(Data.NumVBases); if (Data.NumVBases > 0) AddCXXBaseSpecifiersRef(Data.getVBases(), Data.getVBases() + Data.NumVBases, Record); AddUnresolvedSet(Data.Conversions.get(*Context), Record); AddUnresolvedSet(Data.VisibleConversions.get(*Context), Record); // Data.Definition is the owning decl, no need to write it. AddDeclRef(D->getFirstFriend(), Record); // Add lambda-specific data. if (Data.IsLambda) { auto &Lambda = D->getLambdaData(); Record.push_back(Lambda.Dependent); Record.push_back(Lambda.IsGenericLambda); Record.push_back(Lambda.CaptureDefault); Record.push_back(Lambda.NumCaptures); Record.push_back(Lambda.NumExplicitCaptures); Record.push_back(Lambda.ManglingNumber); AddDeclRef(Lambda.ContextDecl, Record); AddTypeSourceInfo(Lambda.MethodTyInfo, Record); for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) { const LambdaCapture &Capture = Lambda.Captures[I]; AddSourceLocation(Capture.getLocation(), Record); Record.push_back(Capture.isImplicit()); Record.push_back(Capture.getCaptureKind()); switch (Capture.getCaptureKind()) { case LCK_This: break; case LCK_ByCopy: case LCK_ByRef: VarDecl *Var = Capture.capturesVariable() ? Capture.getCapturedVar() : nullptr; AddDeclRef(Var, Record); AddSourceLocation(Capture.isPackExpansion() ? Capture.getEllipsisLoc() : SourceLocation(), Record); break; } } } } void ASTWriter::ReaderInitialized(ASTReader *Reader) { assert(Reader && "Cannot remove chain"); assert((!Chain || Chain == Reader) && "Cannot replace chain"); assert(FirstDeclID == NextDeclID && FirstTypeID == NextTypeID && FirstIdentID == NextIdentID && FirstMacroID == NextMacroID && FirstSubmoduleID == NextSubmoduleID && FirstSelectorID == NextSelectorID && "Setting chain after writing has started."); Chain = Reader; FirstDeclID = NUM_PREDEF_DECL_IDS + Chain->getTotalNumDecls(); FirstTypeID = NUM_PREDEF_TYPE_IDS + Chain->getTotalNumTypes(); FirstIdentID = NUM_PREDEF_IDENT_IDS + Chain->getTotalNumIdentifiers(); FirstMacroID = NUM_PREDEF_MACRO_IDS + Chain->getTotalNumMacros(); FirstSubmoduleID = NUM_PREDEF_SUBMODULE_IDS + Chain->getTotalNumSubmodules(); FirstSelectorID = NUM_PREDEF_SELECTOR_IDS + Chain->getTotalNumSelectors(); NextDeclID = FirstDeclID; NextTypeID = FirstTypeID; NextIdentID = FirstIdentID; NextMacroID = FirstMacroID; NextSelectorID = FirstSelectorID; NextSubmoduleID = FirstSubmoduleID; } void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) { // Always keep the highest ID. See \p TypeRead() for more information. IdentID &StoredID = IdentifierIDs[II]; if (ID > StoredID) StoredID = ID; } void ASTWriter::MacroRead(serialization::MacroID ID, MacroInfo *MI) { // Always keep the highest ID. See \p TypeRead() for more information. MacroID &StoredID = MacroIDs[MI]; if (ID > StoredID) StoredID = ID; } void ASTWriter::TypeRead(TypeIdx Idx, QualType T) { // Always take the highest-numbered type index. This copes with an interesting // case for chained AST writing where we schedule writing the type and then, // later, deserialize the type from another AST. In this case, we want to // keep the higher-numbered entry so that we can properly write it out to // the AST file. TypeIdx &StoredIdx = TypeIdxs[T]; if (Idx.getIndex() >= StoredIdx.getIndex()) StoredIdx = Idx; } void ASTWriter::SelectorRead(SelectorID ID, Selector S) { // Always keep the highest ID. See \p TypeRead() for more information. SelectorID &StoredID = SelectorIDs[S]; if (ID > StoredID) StoredID = ID; } void ASTWriter::MacroDefinitionRead(serialization::PreprocessedEntityID ID, MacroDefinition *MD) { assert(MacroDefinitions.find(MD) == MacroDefinitions.end()); MacroDefinitions[MD] = ID; } void ASTWriter::ModuleRead(serialization::SubmoduleID ID, Module *Mod) { assert(SubmoduleIDs.find(Mod) == SubmoduleIDs.end()); SubmoduleIDs[Mod] = ID; } void ASTWriter::CompletedTagDefinition(const TagDecl *D) { assert(D->isCompleteDefinition()); assert(!WritingAST && "Already writing the AST!"); if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { // We are interested when a PCH decl is modified. if (RD->isFromASTFile()) { // A forward reference was mutated into a definition. Rewrite it. // FIXME: This happens during template instantiation, should we // have created a new definition decl instead ? assert(isTemplateInstantiation(RD->getTemplateSpecializationKind()) && "completed a tag from another module but not by instantiation?"); DeclUpdates[RD].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_CLASS_DEFINITION)); } } } void ASTWriter::AddedVisibleDecl(const DeclContext *DC, const Decl *D) { assert(!WritingAST && "Already writing the AST!"); // TU and namespaces are handled elsewhere. if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC)) return; if (!(!D->isFromASTFile() && cast<Decl>(DC)->isFromASTFile())) return; // Not a source decl added to a DeclContext from PCH. assert(!getDefinitiveDeclContext(DC) && "DeclContext not definitive!"); AddUpdatedDeclContext(DC); UpdatingVisibleDecls.push_back(D); } void ASTWriter::AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) { assert(!WritingAST && "Already writing the AST!"); assert(D->isImplicit()); if (!(!D->isFromASTFile() && RD->isFromASTFile())) return; // Not a source member added to a class from PCH. if (!isa<CXXMethodDecl>(D)) return; // We are interested in lazily declared implicit methods. // A decl coming from PCH was modified. assert(RD->isCompleteDefinition()); DeclUpdates[RD].push_back(DeclUpdate(UPD_CXX_ADDED_IMPLICIT_MEMBER, D)); } void ASTWriter::AddedCXXTemplateSpecialization(const ClassTemplateDecl *TD, const ClassTemplateSpecializationDecl *D) { // The specializations set is kept in the canonical template. assert(!WritingAST && "Already writing the AST!"); TD = TD->getCanonicalDecl(); if (!(!D->isFromASTFile() && TD->isFromASTFile())) return; // Not a source specialization added to a template from PCH. DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION, D)); } void ASTWriter::AddedCXXTemplateSpecialization( const VarTemplateDecl *TD, const VarTemplateSpecializationDecl *D) { // The specializations set is kept in the canonical template. assert(!WritingAST && "Already writing the AST!"); TD = TD->getCanonicalDecl(); if (!(!D->isFromASTFile() && TD->isFromASTFile())) return; // Not a source specialization added to a template from PCH. DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION, D)); } void ASTWriter::AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD, const FunctionDecl *D) { // The specializations set is kept in the canonical template. assert(!WritingAST && "Already writing the AST!"); TD = TD->getCanonicalDecl(); if (!(!D->isFromASTFile() && TD->isFromASTFile())) return; // Not a source specialization added to a template from PCH. DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION, D)); } void ASTWriter::ResolvedExceptionSpec(const FunctionDecl *FD) { assert(!WritingAST && "Already writing the AST!"); FD = FD->getCanonicalDecl(); if (!FD->isFromASTFile()) return; // Not a function declared in PCH and defined outside. DeclUpdates[FD].push_back(UPD_CXX_RESOLVED_EXCEPTION_SPEC); } void ASTWriter::DeducedReturnType(const FunctionDecl *FD, QualType ReturnType) { assert(!WritingAST && "Already writing the AST!"); FD = FD->getCanonicalDecl(); if (!FD->isFromASTFile()) return; // Not a function declared in PCH and defined outside. DeclUpdates[FD].push_back(DeclUpdate(UPD_CXX_DEDUCED_RETURN_TYPE, ReturnType)); } void ASTWriter::CompletedImplicitDefinition(const FunctionDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Declaration not imported from PCH. // Implicit decl from a PCH was defined. // FIXME: Should implicit definition be a separate FunctionDecl? RewriteDecl(D); } void ASTWriter::FunctionDefinitionInstantiated(const FunctionDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Since the actual instantiation is delayed, this really means that we need // to update the instantiation location. DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_FUNCTION_DEFINITION)); } void ASTWriter::StaticDataMemberInstantiated(const VarDecl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Since the actual instantiation is delayed, this really means that we need // to update the instantiation location. DeclUpdates[D].push_back( DeclUpdate(UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER, D->getMemberSpecializationInfo()->getPointOfInstantiation())); } void ASTWriter::AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD, const ObjCInterfaceDecl *IFD) { assert(!WritingAST && "Already writing the AST!"); if (!IFD->isFromASTFile()) return; // Declaration not imported from PCH. assert(IFD->getDefinition() && "Category on a class without a definition?"); ObjCClassesWithCategories.insert( const_cast<ObjCInterfaceDecl *>(IFD->getDefinition())); } void ASTWriter::AddedObjCPropertyInClassExtension(const ObjCPropertyDecl *Prop, const ObjCPropertyDecl *OrigProp, const ObjCCategoryDecl *ClassExt) { const ObjCInterfaceDecl *D = ClassExt->getClassInterface(); if (!D) return; assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; // Declaration not imported from PCH. RewriteDecl(D); } void ASTWriter::DeclarationMarkedUsed(const Decl *D) { assert(!WritingAST && "Already writing the AST!"); if (!D->isFromASTFile()) return; DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_USED)); }