//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This provides C++ code generation targeting the Microsoft Visual C++ ABI. // The class in this file generates structures that follow the Microsoft // Visual C++ ABI, which is actually not very well documented at all outside // of Microsoft. // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGVTables.h" #include "CodeGenModule.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/VTableBuilder.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/IR/CallSite.h" using namespace clang; using namespace CodeGen; namespace { /// Holds all the vbtable globals for a given class. struct VBTableGlobals { const VPtrInfoVector *VBTables; SmallVector<llvm::GlobalVariable *, 2> Globals; }; class MicrosoftCXXABI : public CGCXXABI { public: MicrosoftCXXABI(CodeGenModule &CGM) : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), ClassHierarchyDescriptorType(nullptr), CompleteObjectLocatorType(nullptr) {} bool HasThisReturn(GlobalDecl GD) const override; bool classifyReturnType(CGFunctionInfo &FI) const override; RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; bool isSRetParameterAfterThis() const override { return true; } StringRef GetPureVirtualCallName() override { return "_purecall"; } // No known support for deleted functions in MSVC yet, so this choice is // arbitrary. StringRef GetDeletedVirtualCallName() override { return "_purecall"; } bool isInlineInitializedStaticDataMemberLinkOnce() override { return true; } llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, llvm::Value *ptr, QualType type) override; llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, const VPtrInfo *Info); llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; void EmitBadTypeidCall(CodeGenFunction &CGF) override; llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, llvm::Value *ThisPtr, llvm::Type *StdTypeInfoPtrTy) override; bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, QualType SrcRecordTy) override; llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) override; llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy, QualType DestTy) override; bool EmitBadCastCall(CodeGenFunction &CGF) override; llvm::Value * GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) override; void BuildConstructorSignature(const CXXConstructorDecl *Ctor, CXXCtorType Type, CanQualType &ResTy, SmallVectorImpl<CanQualType> &ArgTys) override; llvm::BasicBlock * EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, const CXXRecordDecl *RD) override; void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, const CXXRecordDecl *RD) override; void EmitCXXConstructors(const CXXConstructorDecl *D) override; // Background on MSVC destructors // ============================== // // Both Itanium and MSVC ABIs have destructor variants. The variant names // roughly correspond in the following way: // Itanium Microsoft // Base -> no name, just ~Class // Complete -> vbase destructor // Deleting -> scalar deleting destructor // vector deleting destructor // // The base and complete destructors are the same as in Itanium, although the // complete destructor does not accept a VTT parameter when there are virtual // bases. A separate mechanism involving vtordisps is used to ensure that // virtual methods of destroyed subobjects are not called. // // The deleting destructors accept an i32 bitfield as a second parameter. Bit // 1 indicates if the memory should be deleted. Bit 2 indicates if the this // pointer points to an array. The scalar deleting destructor assumes that // bit 2 is zero, and therefore does not contain a loop. // // For virtual destructors, only one entry is reserved in the vftable, and it // always points to the vector deleting destructor. The vector deleting // destructor is the most general, so it can be used to destroy objects in // place, delete single heap objects, or delete arrays. // // A TU defining a non-inline destructor is only guaranteed to emit a base // destructor, and all of the other variants are emitted on an as-needed basis // in COMDATs. Because a non-base destructor can be emitted in a TU that // lacks a definition for the destructor, non-base destructors must always // delegate to or alias the base destructor. void BuildDestructorSignature(const CXXDestructorDecl *Dtor, CXXDtorType Type, CanQualType &ResTy, SmallVectorImpl<CanQualType> &ArgTys) override; /// Non-base dtors should be emitted as delegating thunks in this ABI. bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, CXXDtorType DT) const override { return DT != Dtor_Base; } void EmitCXXDestructors(const CXXDestructorDecl *D) override; const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { MD = MD->getCanonicalDecl(); if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { MicrosoftVTableContext::MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); // The vbases might be ordered differently in the final overrider object // and the complete object, so the "this" argument may sometimes point to // memory that has no particular type (e.g. past the complete object). // In this case, we just use a generic pointer type. // FIXME: might want to have a more precise type in the non-virtual // multiple inheritance case. if (ML.VBase || !ML.VFPtrOffset.isZero()) return nullptr; } return MD->getParent(); } llvm::Value * adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) override; void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) override; llvm::Value *adjustThisParameterInVirtualFunctionPrologue( CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override; void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; unsigned addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, CallArgList &Args) override; void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, llvm::Value *This) override; void emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) override; llvm::Value *getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) override; llvm::Constant * getVTableAddressPointForConstExpr(BaseSubobject Base, const CXXRecordDecl *VTableClass) override; llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) override; llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, llvm::Type *Ty) override; void EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, SourceLocation CallLoc, llvm::Value *This) override; void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, CallArgList &CallArgs) override { assert(GD.getDtorType() == Dtor_Deleting && "Only deleting destructor thunks are available in this ABI"); CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), CGM.getContext().IntTy); } void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; llvm::GlobalVariable * getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable::LinkageTypes Linkage); void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable *GV) const; void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, bool ReturnAdjustment) override { // Never dllimport/dllexport thunks. Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); GVALinkage Linkage = getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); if (Linkage == GVA_Internal) Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); else if (ReturnAdjustment) Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); else Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); } llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This, const ThisAdjustment &TA) override; llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret, const ReturnAdjustment &RA) override; void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit) override; // ==== Notes on array cookies ========= // // MSVC seems to only use cookies when the class has a destructor; a // two-argument usual array deallocation function isn't sufficient. // // For example, this code prints "100" and "1": // struct A { // char x; // void *operator new[](size_t sz) { // printf("%u\n", sz); // return malloc(sz); // } // void operator delete[](void *p, size_t sz) { // printf("%u\n", sz); // free(p); // } // }; // int main() { // A *p = new A[100]; // delete[] p; // } // Whereas it prints "104" and "104" if you give A a destructor. bool requiresArrayCookie(const CXXDeleteExpr *expr, QualType elementType) override; bool requiresArrayCookie(const CXXNewExpr *expr) override; CharUnits getArrayCookieSizeImpl(QualType type) override; llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, llvm::Value *NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType) override; llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, CharUnits cookieSize) override; friend struct MSRTTIBuilder; bool isImageRelative() const { return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64; } // 5 routines for constructing the llvm types for MS RTTI structs. llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); TDTypeName += llvm::utostr(TypeInfoString.size()); llvm::StructType *&TypeDescriptorType = TypeDescriptorTypeMap[TypeInfoString.size()]; if (TypeDescriptorType) return TypeDescriptorType; llvm::Type *FieldTypes[] = { CGM.Int8PtrPtrTy, CGM.Int8PtrTy, llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; TypeDescriptorType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); return TypeDescriptorType; } llvm::Type *getImageRelativeType(llvm::Type *PtrType) { if (!isImageRelative()) return PtrType; return CGM.IntTy; } llvm::StructType *getBaseClassDescriptorType() { if (BaseClassDescriptorType) return BaseClassDescriptorType; llvm::Type *FieldTypes[] = { getImageRelativeType(CGM.Int8PtrTy), CGM.IntTy, CGM.IntTy, CGM.IntTy, CGM.IntTy, CGM.IntTy, getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), }; BaseClassDescriptorType = llvm::StructType::create( CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); return BaseClassDescriptorType; } llvm::StructType *getClassHierarchyDescriptorType() { if (ClassHierarchyDescriptorType) return ClassHierarchyDescriptorType; // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. ClassHierarchyDescriptorType = llvm::StructType::create( CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); llvm::Type *FieldTypes[] = { CGM.IntTy, CGM.IntTy, CGM.IntTy, getImageRelativeType( getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), }; ClassHierarchyDescriptorType->setBody(FieldTypes); return ClassHierarchyDescriptorType; } llvm::StructType *getCompleteObjectLocatorType() { if (CompleteObjectLocatorType) return CompleteObjectLocatorType; CompleteObjectLocatorType = llvm::StructType::create( CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); llvm::Type *FieldTypes[] = { CGM.IntTy, CGM.IntTy, CGM.IntTy, getImageRelativeType(CGM.Int8PtrTy), getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), getImageRelativeType(CompleteObjectLocatorType), }; llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); if (!isImageRelative()) FieldTypesRef = FieldTypesRef.drop_back(); CompleteObjectLocatorType->setBody(FieldTypesRef); return CompleteObjectLocatorType; } llvm::GlobalVariable *getImageBase() { StringRef Name = "__ImageBase"; if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) return GV; return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, Name); } llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { if (!isImageRelative()) return PtrVal; llvm::Constant *ImageBaseAsInt = llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); llvm::Constant *PtrValAsInt = llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); llvm::Constant *Diff = llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, /*HasNUW=*/true, /*HasNSW=*/true); return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); } private: MicrosoftMangleContext &getMangleContext() { return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); } llvm::Constant *getZeroInt() { return llvm::ConstantInt::get(CGM.IntTy, 0); } llvm::Constant *getAllOnesInt() { return llvm::Constant::getAllOnesValue(CGM.IntTy); } llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) { return C ? C : getZeroInt(); } llvm::Value *getValueOrZeroInt(llvm::Value *C) { return C ? C : getZeroInt(); } CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD); void GetNullMemberPointerFields(const MemberPointerType *MPT, llvm::SmallVectorImpl<llvm::Constant *> &fields); /// \brief Shared code for virtual base adjustment. Returns the offset from /// the vbptr to the virtual base. Optionally returns the address of the /// vbptr itself. llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, llvm::Value *Base, llvm::Value *VBPtrOffset, llvm::Value *VBTableOffset, llvm::Value **VBPtr = nullptr); llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, llvm::Value *Base, int32_t VBPtrOffset, int32_t VBTableOffset, llvm::Value **VBPtr = nullptr) { llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); } /// \brief Performs a full virtual base adjustment. Used to dereference /// pointers to members of virtual bases. llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, llvm::Value *Base, llvm::Value *VirtualBaseAdjustmentOffset, llvm::Value *VBPtrOffset /* optional */); /// \brief Emits a full member pointer with the fields common to data and /// function member pointers. llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, bool IsMemberFunction, const CXXRecordDecl *RD, CharUnits NonVirtualBaseAdjustment); llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD, const CXXMethodDecl *MD, CharUnits NonVirtualBaseAdjustment); bool MemberPointerConstantIsNull(const MemberPointerType *MPT, llvm::Constant *MP); /// \brief - Initialize all vbptrs of 'this' with RD as the complete type. void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables(). const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); /// \brief Generate a thunk for calling a virtual member function MD. llvm::Function *EmitVirtualMemPtrThunk( const CXXMethodDecl *MD, const MicrosoftVTableContext::MethodVFTableLocation &ML); public: llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; bool isZeroInitializable(const MemberPointerType *MPT) override; llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) override; llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override; llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) override; llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT) override; llvm::Value * EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr, const MemberPointerType *MPT) override; llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src) override; llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *Src) override; llvm::Value * EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, llvm::Value *&This, llvm::Value *MemPtr, const MemberPointerType *MPT) override; private: typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; /// \brief All the vftables that have been referenced. VFTablesMapTy VFTablesMap; VTablesMapTy VTablesMap; /// \brief This set holds the record decls we've deferred vtable emission for. llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; /// \brief All the vbtables which have been referenced. llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; /// Info on the global variable used to guard initialization of static locals. /// The BitIndex field is only used for externally invisible declarations. struct GuardInfo { GuardInfo() : Guard(nullptr), BitIndex(0) {} llvm::GlobalVariable *Guard; unsigned BitIndex; }; /// Map from DeclContext to the current guard variable. We assume that the /// AST is visited in source code order. llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; llvm::StructType *BaseClassDescriptorType; llvm::StructType *ClassHierarchyDescriptorType; llvm::StructType *CompleteObjectLocatorType; }; } CGCXXABI::RecordArgABI MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { switch (CGM.getTarget().getTriple().getArch()) { default: // FIXME: Implement for other architectures. return RAA_Default; case llvm::Triple::x86: // All record arguments are passed in memory on x86. Decide whether to // construct the object directly in argument memory, or to construct the // argument elsewhere and copy the bytes during the call. // If C++ prohibits us from making a copy, construct the arguments directly // into argument memory. if (!canCopyArgument(RD)) return RAA_DirectInMemory; // Otherwise, construct the argument into a temporary and copy the bytes // into the outgoing argument memory. return RAA_Default; case llvm::Triple::x86_64: // Win64 passes objects with non-trivial copy ctors indirectly. if (RD->hasNonTrivialCopyConstructor()) return RAA_Indirect; // Win64 passes objects larger than 8 bytes indirectly. if (getContext().getTypeSize(RD->getTypeForDecl()) > 64) return RAA_Indirect; // We have a trivial copy constructor or no copy constructors, but we have // to make sure it isn't deleted. bool CopyDeleted = false; for (const CXXConstructorDecl *CD : RD->ctors()) { if (CD->isCopyConstructor()) { assert(CD->isTrivial()); // We had at least one undeleted trivial copy ctor. Return directly. if (!CD->isDeleted()) return RAA_Default; CopyDeleted = true; } } // The trivial copy constructor was deleted. Return indirectly. if (CopyDeleted) return RAA_Indirect; // There were no copy ctors. Return in RAX. return RAA_Default; } llvm_unreachable("invalid enum"); } llvm::Value *MicrosoftCXXABI::adjustToCompleteObject(CodeGenFunction &CGF, llvm::Value *ptr, QualType type) { // FIXME: implement return ptr; } /// \brief Gets the offset to the virtual base that contains the vfptr for /// MS-ABI polymorphic types. static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF, const CXXRecordDecl *RD, llvm::Value *Value) { const ASTContext &Context = RD->getASTContext(); for (const CXXBaseSpecifier &Base : RD->vbases()) if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl()) .hasExtendableVFPtr()) return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset( CGF, Value, RD, Base.getType()->getAsCXXRecordDecl()); llvm_unreachable("One of our vbases should be polymorphic."); } static std::pair<llvm::Value *, llvm::Value *> performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy) { Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0)); // Perform a base adjustment. llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value); Value = CGF.Builder.CreateInBoundsGEP(Value, Offset); Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); return std::make_pair(Value, Offset); } bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) { const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); return IsDeref && !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); } static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF, llvm::Value *Argument) { llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); llvm::Value *Args[] = {Argument}; llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); return CGF.EmitRuntimeCallOrInvoke(Fn, Args); } void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { llvm::CallSite Call = emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); Call.setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, llvm::Value *ThisPtr, llvm::Type *StdTypeInfoPtrTy) { llvm::Value *Offset; std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); return CGF.Builder.CreateBitCast( emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy); } bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, QualType SrcRecordTy) { const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); return SrcIsPtr && !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); } llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { llvm::Type *DestLTy = CGF.ConvertType(DestTy); llvm::Value *SrcRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); llvm::Value *DestRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); llvm::Value *Offset; std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy); // PVOID __RTDynamicCast( // PVOID inptr, // LONG VfDelta, // PVOID SrcType, // PVOID TargetType, // BOOL isReference) llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int32Ty}; llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction( llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), "__RTDynamicCast"); llvm::Value *Args[] = { Value, Offset, SrcRTTI, DestRTTI, llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction(); return CGF.Builder.CreateBitCast(Value, DestLTy); } llvm::Value * MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy, QualType DestTy) { llvm::Value *Offset; std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy); // PVOID __RTCastToVoid( // PVOID inptr) llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction( llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), "__RTCastToVoid"); llvm::Value *Args[] = {Value}; return CGF.EmitRuntimeCall(Function, Args); } bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { return false; } llvm::Value * MicrosoftCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) { int64_t VBPtrChars = getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy); CharUnits VBTableChars = IntSize * CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); llvm::Value *VBTableOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); llvm::Value *VBPtrToNewBase = GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); VBPtrToNewBase = CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); } bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { return isa<CXXConstructorDecl>(GD.getDecl()); } bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); if (!RD) return false; if (FI.isInstanceMethod()) { // If it's an instance method, aggregates are always returned indirectly via // the second parameter. FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false); FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); return true; } else if (!RD->isPOD()) { // If it's a free function, non-POD types are returned indirectly. FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false); return true; } // Otherwise, use the C ABI rules. return false; } void MicrosoftCXXABI::BuildConstructorSignature( const CXXConstructorDecl *Ctor, CXXCtorType Type, CanQualType &ResTy, SmallVectorImpl<CanQualType> &ArgTys) { // All parameters are already in place except is_most_derived, which goes // after 'this' if it's variadic and last if it's not. const CXXRecordDecl *Class = Ctor->getParent(); const FunctionProtoType *FPT = Ctor->getType()->castAs<FunctionProtoType>(); if (Class->getNumVBases()) { if (FPT->isVariadic()) ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy); else ArgTys.push_back(CGM.getContext().IntTy); } } llvm::BasicBlock * MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, const CXXRecordDecl *RD) { llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); assert(IsMostDerivedClass && "ctor for a class with virtual bases must have an implicit parameter"); llvm::Value *IsCompleteObject = CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); CGF.Builder.CreateCondBr(IsCompleteObject, CallVbaseCtorsBB, SkipVbaseCtorsBB); CGF.EmitBlock(CallVbaseCtorsBB); // Fill in the vbtable pointers here. EmitVBPtrStores(CGF, RD); // CGF will put the base ctor calls in this basic block for us later. return SkipVbaseCtorsBB; } void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( CodeGenFunction &CGF, const CXXRecordDecl *RD) { // In most cases, an override for a vbase virtual method can adjust // the "this" parameter by applying a constant offset. // However, this is not enough while a constructor or a destructor of some // class X is being executed if all the following conditions are met: // - X has virtual bases, (1) // - X overrides a virtual method M of a vbase Y, (2) // - X itself is a vbase of the most derived class. // // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X // which holds the extra amount of "this" adjustment we must do when we use // the X vftables (i.e. during X ctor or dtor). // Outside the ctors and dtors, the values of vtorDisps are zero. const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); CGBuilderTy &Builder = CGF.Builder; unsigned AS = cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace(); llvm::Value *Int8This = nullptr; // Initialize lazily. for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end(); I != E; ++I) { if (!I->second.hasVtorDisp()) continue; llvm::Value *VBaseOffset = GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first); // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset() // just to Trunc back immediately. VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty); uint64_t ConstantVBaseOffset = Layout.getVBaseClassOffset(I->first).getQuantity(); // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). llvm::Value *VtorDispValue = Builder.CreateSub( VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset), "vtordisp.value"); if (!Int8This) Int8This = Builder.CreateBitCast(getThisValue(CGF), CGF.Int8Ty->getPointerTo(AS)); llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); // vtorDisp is always the 32-bits before the vbase in the class layout. VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); VtorDispPtr = Builder.CreateBitCast( VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); Builder.CreateStore(VtorDispValue, VtorDispPtr); } } void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { // There's only one constructor type in this ABI. CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); } void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD) { llvm::Value *ThisInt8Ptr = CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8"); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); const VBTableGlobals &VBGlobals = enumerateVBTables(RD); for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { const VPtrInfo *VBT = (*VBGlobals.VBTables)[I]; llvm::GlobalVariable *GV = VBGlobals.Globals[I]; const ASTRecordLayout &SubobjectLayout = CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr); CharUnits Offs = VBT->NonVirtualOffset; Offs += SubobjectLayout.getVBPtrOffset(); if (VBT->getVBaseWithVPtr()) Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); llvm::Value *VBPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity()); VBPtr = CGF.Builder.CreateBitCast(VBPtr, GV->getType()->getPointerTo(0), "vbptr." + VBT->ReusingBase->getName()); CGF.Builder.CreateStore(GV, VBPtr); } } void MicrosoftCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, CXXDtorType Type, CanQualType &ResTy, SmallVectorImpl<CanQualType> &ArgTys) { // 'this' is already in place // TODO: 'for base' flag if (Type == Dtor_Deleting) { // The scalar deleting destructor takes an implicit int parameter. ArgTys.push_back(CGM.getContext().IntTy); } } void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { // The TU defining a dtor is only guaranteed to emit a base destructor. All // other destructor variants are delegating thunks. CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); } CharUnits MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { GD = GD.getCanonicalDecl(); const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); GlobalDecl LookupGD = GD; if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { // Complete destructors take a pointer to the complete object as a // parameter, thus don't need this adjustment. if (GD.getDtorType() == Dtor_Complete) return CharUnits(); // There's no Dtor_Base in vftable but it shares the this adjustment with // the deleting one, so look it up instead. LookupGD = GlobalDecl(DD, Dtor_Deleting); } MicrosoftVTableContext::MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); CharUnits Adjustment = ML.VFPtrOffset; // Normal virtual instance methods need to adjust from the vfptr that first // defined the virtual method to the virtual base subobject, but destructors // do not. The vector deleting destructor thunk applies this adjustment for // us if necessary. if (isa<CXXDestructorDecl>(MD)) Adjustment = CharUnits::Zero(); if (ML.VBase) { const ASTRecordLayout &DerivedLayout = CGM.getContext().getASTRecordLayout(MD->getParent()); Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); } return Adjustment; } llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) { if (!VirtualCall) { // If the call of a virtual function is not virtual, we just have to // compensate for the adjustment the virtual function does in its prologue. CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); if (Adjustment.isZero()) return This; unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS); This = CGF.Builder.CreateBitCast(This, charPtrTy); assert(Adjustment.isPositive()); return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity()); } GD = GD.getCanonicalDecl(); const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); GlobalDecl LookupGD = GD; if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { // Complete dtors take a pointer to the complete object, // thus don't need adjustment. if (GD.getDtorType() == Dtor_Complete) return This; // There's only Dtor_Deleting in vftable but it shares the this adjustment // with the base one, so look up the deleting one instead. LookupGD = GlobalDecl(DD, Dtor_Deleting); } MicrosoftVTableContext::MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS); CharUnits StaticOffset = ML.VFPtrOffset; // Base destructors expect 'this' to point to the beginning of the base // subobject, not the first vfptr that happens to contain the virtual dtor. // However, we still need to apply the virtual base adjustment. if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) StaticOffset = CharUnits::Zero(); if (ML.VBase) { This = CGF.Builder.CreateBitCast(This, charPtrTy); llvm::Value *VBaseOffset = GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase); This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset); } if (!StaticOffset.isZero()) { assert(StaticOffset.isPositive()); This = CGF.Builder.CreateBitCast(This, charPtrTy); if (ML.VBase) { // Non-virtual adjustment might result in a pointer outside the allocated // object, e.g. if the final overrider class is laid out after the virtual // base that declares a method in the most derived class. // FIXME: Update the code that emits this adjustment in thunks prologues. This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity()); } else { This = CGF.Builder.CreateConstInBoundsGEP1_32(This, StaticOffset.getQuantity()); } } return This; } static bool IsDeletingDtor(GlobalDecl GD) { const CXXMethodDecl* MD = cast<CXXMethodDecl>(GD.getDecl()); if (isa<CXXDestructorDecl>(MD)) { return GD.getDtorType() == Dtor_Deleting; } return false; } void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) { ASTContext &Context = getContext(); const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { ImplicitParamDecl *IsMostDerived = ImplicitParamDecl::Create(Context, nullptr, CGF.CurGD.getDecl()->getLocation(), &Context.Idents.get("is_most_derived"), Context.IntTy); // The 'most_derived' parameter goes second if the ctor is variadic and last // if it's not. Dtors can't be variadic. const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); if (FPT->isVariadic()) Params.insert(Params.begin() + 1, IsMostDerived); else Params.push_back(IsMostDerived); getStructorImplicitParamDecl(CGF) = IsMostDerived; } else if (IsDeletingDtor(CGF.CurGD)) { ImplicitParamDecl *ShouldDelete = ImplicitParamDecl::Create(Context, nullptr, CGF.CurGD.getDecl()->getLocation(), &Context.Idents.get("should_call_delete"), Context.IntTy); Params.push_back(ShouldDelete); getStructorImplicitParamDecl(CGF) = ShouldDelete; } } llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue( CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) { // In this ABI, every virtual function takes a pointer to one of the // subobjects that first defines it as the 'this' parameter, rather than a // pointer to the final overrider subobject. Thus, we need to adjust it back // to the final overrider subobject before use. // See comments in the MicrosoftVFTableContext implementation for the details. CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); if (Adjustment.isZero()) return This; unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), *thisTy = This->getType(); This = CGF.Builder.CreateBitCast(This, charPtrTy); assert(Adjustment.isPositive()); This = CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity()); return CGF.Builder.CreateBitCast(This, thisTy); } void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { EmitThisParam(CGF); /// If this is a function that the ABI specifies returns 'this', initialize /// the return slot to 'this' at the start of the function. /// /// Unlike the setting of return types, this is done within the ABI /// implementation instead of by clients of CGCXXABI because: /// 1) getThisValue is currently protected /// 2) in theory, an ABI could implement 'this' returns some other way; /// HasThisReturn only specifies a contract, not the implementation if (HasThisReturn(CGF.CurGD)) CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { assert(getStructorImplicitParamDecl(CGF) && "no implicit parameter for a constructor with virtual bases?"); getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "is_most_derived"); } if (IsDeletingDtor(CGF.CurGD)) { assert(getStructorImplicitParamDecl(CGF) && "no implicit parameter for a deleting destructor?"); getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "should_call_delete"); } } unsigned MicrosoftCXXABI::addImplicitConstructorArgs( CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, CallArgList &Args) { assert(Type == Ctor_Complete || Type == Ctor_Base); // Check if we need a 'most_derived' parameter. if (!D->getParent()->getNumVBases()) return 0; // Add the 'most_derived' argument second if we are variadic or last if not. const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); llvm::Value *MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); RValue RV = RValue::get(MostDerivedArg); if (MostDerivedArg) { if (FPT->isVariadic()) Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy, /*needscopy=*/false)); else Args.add(RV, getContext().IntTy); } return 1; // Added one arg. } void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, llvm::Value *This) { llvm::Value *Callee = CGM.GetAddrOfCXXDestructor(DD, Type); if (DD->isVirtual()) { assert(Type != CXXDtorType::Dtor_Deleting && "The deleting destructor should only be called via a virtual call"); This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), This, false); } // FIXME: Provide a source location here. CGF.EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This, /*ImplicitParam=*/nullptr, /*ImplicitParamTy=*/QualType(), nullptr, nullptr); } void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) { MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); VPtrInfoVector VFPtrs = VFTContext.getVFPtrOffsets(RD); for (VPtrInfo *Info : VFPtrs) { llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); if (VTable->hasInitializer()) continue; llvm::Constant *RTTI = getMSCompleteObjectLocator(RD, Info); const VTableLayout &VTLayout = VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); llvm::Constant *Init = CGVT.CreateVTableInitializer( RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks(), RTTI); VTable->setInitializer(Init); } } llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) { NeedsVirtualOffset = (NearestVBase != nullptr); (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); VFTableIdTy ID(VTableClass, Base.getBaseOffset()); llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID]; if (!VTableAddressPoint) { assert(Base.getBase()->getNumVBases() && !CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); } return VTableAddressPoint; } static void mangleVFTableName(MicrosoftMangleContext &MangleContext, const CXXRecordDecl *RD, const VPtrInfo *VFPtr, SmallString<256> &Name) { llvm::raw_svector_ostream Out(Name); MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out); } llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( BaseSubobject Base, const CXXRecordDecl *VTableClass) { (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); VFTableIdTy ID(VTableClass, Base.getBaseOffset()); llvm::GlobalValue *VFTable = VFTablesMap[ID]; assert(VFTable && "Couldn't find a vftable for the given base?"); return VFTable; } llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) { // getAddrOfVTable may return 0 if asked to get an address of a vtable which // shouldn't be used in the given record type. We want to cache this result in // VFTablesMap, thus a simple zero check is not sufficient. VFTableIdTy ID(RD, VPtrOffset); VTablesMapTy::iterator I; bool Inserted; std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); if (!Inserted) return I->second; llvm::GlobalVariable *&VTable = I->second; MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); if (DeferredVFTables.insert(RD)) { // We haven't processed this record type before. // Queue up this v-table for possible deferred emission. CGM.addDeferredVTable(RD); #ifndef NDEBUG // Create all the vftables at once in order to make sure each vftable has // a unique mangled name. llvm::StringSet<> ObservedMangledNames; for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { SmallString<256> Name; mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name); if (!ObservedMangledNames.insert(Name.str())) llvm_unreachable("Already saw this mangling before?"); } #endif } for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset) continue; SmallString<256> VFTableName; mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName); StringRef VTableName = VFTableName; uint64_t NumVTableSlots = VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC) .getNumVTableComponents(); llvm::GlobalValue::LinkageTypes VTableLinkage = llvm::GlobalValue::ExternalLinkage; llvm::ArrayType *VTableType = llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots); if (getContext().getLangOpts().RTTIData) { VTableLinkage = llvm::GlobalValue::PrivateLinkage; VTableName = ""; } VTable = CGM.getModule().getNamedGlobal(VFTableName); if (!VTable) { // Create a backing variable for the contents of VTable. The VTable may // or may not include space for a pointer to RTTI data. llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable( CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage, /*Initializer=*/nullptr, VTableName); VTable->setUnnamedAddr(true); // Only insert a pointer into the VFTable for RTTI data if we are not // importing it. We never reference the RTTI data directly so there is no // need to make room for it. if (getContext().getLangOpts().RTTIData && !RD->hasAttr<DLLImportAttr>()) { llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), llvm::ConstantInt::get(CGM.IntTy, 1)}; // Create a GEP which points just after the first entry in the VFTable, // this should be the location of the first virtual method. llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices); // The symbol for the VFTable is an alias to the GEP. It is // transparent, to other modules, what the nature of this symbol is; all // that matters is that the alias be the address of the first virtual // method. VFTable = llvm::GlobalAlias::create( cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(), /*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage, VFTableName.str(), VTableGEP, &CGM.getModule()); } else { // We don't need a GlobalAlias to be a symbol for the VTable if we won't // be referencing any RTTI data. The GlobalVariable will end up being // an appropriate definition of the VFTable. VTable->setName(VFTableName.str()); } VFTable->setUnnamedAddr(true); if (RD->hasAttr<DLLImportAttr>()) VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); else if (RD->hasAttr<DLLExportAttr>()) VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD); if (VFTable != VTable) { if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) { // AvailableExternally implies that we grabbed the data from another // executable. No need to stick the alias in a Comdat. } else if (llvm::GlobalValue::isLocalLinkage(VFTableLinkage)) { // If it's local, it means that the virtual function table can't be // referenced in another translation unit. No need to stick the alias // in a Comdat. } else if (llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) || llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) { // The alias is going to be dropped into a Comdat, no need to make it // weak. VFTableLinkage = llvm::GlobalValue::ExternalLinkage; llvm::Comdat *C = CGM.getModule().getOrInsertComdat(VFTable->getName()); // We must indicate which VFTable is larger to support linking between // translation units which do and do not have RTTI data. The largest // VFTable contains the RTTI data; translation units which reference // the smaller VFTable always reference it relative to the first // virtual method. C->setSelectionKind(llvm::Comdat::Largest); VTable->setComdat(C); } else { llvm_unreachable("unexpected linkage for vftable!"); } } VFTable->setLinkage(VFTableLinkage); CGM.setGlobalVisibility(VFTable, RD); VFTablesMap[ID] = VFTable; } break; } return VTable; } llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, llvm::Type *Ty) { GD = GD.getCanonicalDecl(); CGBuilderTy &Builder = CGF.Builder; Ty = Ty->getPointerTo()->getPointerTo(); llvm::Value *VPtr = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty); MicrosoftVTableContext::MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); llvm::Value *VFuncPtr = Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); return Builder.CreateLoad(VFuncPtr); } void MicrosoftCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, SourceLocation CallLoc, llvm::Value *This) { assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); // We have only one destructor in the vftable but can get both behaviors // by passing an implicit int parameter. GlobalDecl GD(Dtor, Dtor_Deleting); const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, Dtor_Deleting); llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty); ASTContext &Context = CGF.getContext(); llvm::Value *ImplicitParam = llvm::ConstantInt::get(llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), DtorType == Dtor_Deleting); This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This, ImplicitParam, Context.IntTy, nullptr, nullptr); } const VBTableGlobals & MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { // At this layer, we can key the cache off of a single class, which is much // easier than caching each vbtable individually. llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; bool Added; std::tie(Entry, Added) = VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); VBTableGlobals &VBGlobals = Entry->second; if (!Added) return VBGlobals; MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); VBGlobals.VBTables = &Context.enumerateVBTables(RD); // Cache the globals for all vbtables so we don't have to recompute the // mangled names. llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), E = VBGlobals.VBTables->end(); I != E; ++I) { VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); } return VBGlobals; } llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk( const CXXMethodDecl *MD, const MicrosoftVTableContext::MethodVFTableLocation &ML) { // Calculate the mangled name. SmallString<256> ThunkName; llvm::raw_svector_ostream Out(ThunkName); getMangleContext().mangleVirtualMemPtrThunk(MD, Out); Out.flush(); // If the thunk has been generated previously, just return it. if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) return cast<llvm::Function>(GV); // Create the llvm::Function. const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(MD); llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); llvm::Function *ThunkFn = llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, ThunkName.str(), &CGM.getModule()); assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); ThunkFn->setLinkage(MD->isExternallyVisible() ? llvm::GlobalValue::LinkOnceODRLinkage : llvm::GlobalValue::InternalLinkage); CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); // Start codegen. CodeGenFunction CGF(CGM); CGF.StartThunk(ThunkFn, MD, FnInfo); // Load the vfptr and then callee from the vftable. The callee should have // adjusted 'this' so that the vfptr is at offset zero. llvm::Value *This = CGF.LoadCXXThis(); llvm::Value *VTable = CGF.GetVTablePtr(This, ThunkTy->getPointerTo()->getPointerTo()); llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr); unsigned CallingConv; CodeGen::AttributeListType AttributeList; CGM.ConstructAttributeList(FnInfo, MD, AttributeList, CallingConv, true); llvm::AttributeSet Attrs = llvm::AttributeSet::get(CGF.getLLVMContext(), AttributeList); // Do a musttail call with perfect argument forwarding. Any inalloca argument // will be forwarded in place without any copy. SmallVector<llvm::Value *, 8> Args; for (llvm::Argument &A : ThunkFn->args()) Args.push_back(&A); llvm::CallInst *Call = CGF.Builder.CreateCall(Callee, Args); Call->setTailCallKind(llvm::CallInst::TCK_MustTail); Call->setAttributes(Attrs); Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); if (Call->getType()->isVoidTy()) CGF.Builder.CreateRetVoid(); else CGF.Builder.CreateRet(Call); // Finish the function to maintain CodeGenFunction invariants. // FIXME: Don't emit unreachable code. CGF.EmitBlock(CGF.createBasicBlock()); CGF.FinishFunction(); return ThunkFn; } void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { const VBTableGlobals &VBGlobals = enumerateVBTables(RD); for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { const VPtrInfo *VBT = (*VBGlobals.VBTables)[I]; llvm::GlobalVariable *GV = VBGlobals.Globals[I]; emitVBTableDefinition(*VBT, RD, GV); } } llvm::GlobalVariable * MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable::LinkageTypes Linkage) { SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); Out.flush(); StringRef Name = OutName.str(); llvm::ArrayType *VBTableType = llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases()); assert(!CGM.getModule().getNamedGlobal(Name) && "vbtable with this name already exists: mangling bug?"); llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage); GV->setUnnamedAddr(true); if (RD->hasAttr<DLLImportAttr>()) GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); else if (RD->hasAttr<DLLExportAttr>()) GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); return GV; } void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable *GV) const { const CXXRecordDecl *ReusingBase = VBT.ReusingBase; assert(RD->getNumVBases() && ReusingBase->getNumVBases() && "should only emit vbtables for classes with vbtables"); const ASTRecordLayout &BaseLayout = CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr); const ASTRecordLayout &DerivedLayout = CGM.getContext().getASTRecordLayout(RD); SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(), nullptr); // The offset from ReusingBase's vbptr to itself always leads. CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); for (const auto &I : ReusingBase->vbases()) { const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); assert(!Offset.isNegative()); // Make it relative to the subobject vbptr. CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; if (VBT.getVBaseWithVPtr()) CompleteVBPtrOffset += DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); Offset -= CompleteVBPtrOffset; unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase); assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); } assert(Offsets.size() == cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) ->getElementType())->getNumElements()); llvm::ArrayType *VBTableType = llvm::ArrayType::get(CGM.IntTy, Offsets.size()); llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); GV->setInitializer(Init); // Set the right visibility. CGM.setGlobalVisibility(GV, RD); } llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This, const ThisAdjustment &TA) { if (TA.isEmpty()) return This; llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy); if (!TA.Virtual.isEmpty()) { assert(TA.Virtual.Microsoft.VtordispOffset < 0); // Adjust the this argument based on the vtordisp value. llvm::Value *VtorDispPtr = CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset); VtorDispPtr = CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo()); llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp)); if (TA.Virtual.Microsoft.VBPtrOffset) { // If the final overrider is defined in a virtual base other than the one // that holds the vfptr, we have to use a vtordispex thunk which looks up // the vbtable of the derived class. assert(TA.Virtual.Microsoft.VBPtrOffset > 0); assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); llvm::Value *VBPtr; llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset, TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); } } if (TA.NonVirtual) { // Non-virtual adjustment might result in a pointer outside the allocated // object, e.g. if the final overrider class is laid out after the virtual // base that declares a method in the most derived class. V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); } // Don't need to bitcast back, the call CodeGen will handle this. return V; } llvm::Value * MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret, const ReturnAdjustment &RA) { if (RA.isEmpty()) return Ret; llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy); if (RA.Virtual.Microsoft.VBIndex) { assert(RA.Virtual.Microsoft.VBIndex > 0); int32_t IntSize = getContext().getTypeSizeInChars(getContext().IntTy).getQuantity(); llvm::Value *VBPtr; llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset, IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); } if (RA.NonVirtual) V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual); // Cast back to the original type. return CGF.Builder.CreateBitCast(V, Ret->getType()); } bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, QualType elementType) { // Microsoft seems to completely ignore the possibility of a // two-argument usual deallocation function. return elementType.isDestructedType(); } bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { // Microsoft seems to completely ignore the possibility of a // two-argument usual deallocation function. return expr->getAllocatedType().isDestructedType(); } CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { // The array cookie is always a size_t; we then pad that out to the // alignment of the element type. ASTContext &Ctx = getContext(); return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), Ctx.getTypeAlignInChars(type)); } llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, CharUnits cookieSize) { unsigned AS = allocPtr->getType()->getPointerAddressSpace(); llvm::Value *numElementsPtr = CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS)); return CGF.Builder.CreateLoad(numElementsPtr); } llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, llvm::Value *newPtr, llvm::Value *numElements, const CXXNewExpr *expr, QualType elementType) { assert(requiresArrayCookie(expr)); // The size of the cookie. CharUnits cookieSize = getArrayCookieSizeImpl(elementType); // Compute an offset to the cookie. llvm::Value *cookiePtr = newPtr; // Write the number of elements into the appropriate slot. unsigned AS = newPtr->getType()->getPointerAddressSpace(); llvm::Value *numElementsPtr = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS)); CGF.Builder.CreateStore(numElements, numElementsPtr); // Finally, compute a pointer to the actual data buffer by skipping // over the cookie completely. return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr, cookieSize.getQuantity()); } void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *GV, bool PerformInit) { // MSVC only uses guards for static locals. if (!D.isStaticLocal()) { assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); return; } // MSVC always uses an i32 bitfield to guard initialization, which is *not* // threadsafe. Since the user may be linking in inline functions compiled by // cl.exe, there's no reason to provide a false sense of security by using // critical sections here. if (D.getTLSKind()) CGM.ErrorUnsupported(&D, "dynamic TLS initialization"); CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *GuardTy = CGF.Int32Ty; llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); // Get the guard variable for this function if we have one already. GuardInfo *GI = &GuardVariableMap[D.getDeclContext()]; unsigned BitIndex; if (D.isStaticLocal() && D.isExternallyVisible()) { // Externally visible variables have to be numbered in Sema to properly // handle unreachable VarDecls. BitIndex = getContext().getStaticLocalNumber(&D); assert(BitIndex > 0); BitIndex--; } else { // Non-externally visible variables are numbered here in CodeGen. BitIndex = GI->BitIndex++; } if (BitIndex >= 32) { if (D.isExternallyVisible()) ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); BitIndex %= 32; GI->Guard = nullptr; } // Lazily create the i32 bitfield for this function. if (!GI->Guard) { // Mangle the name for the guard. SmallString<256> GuardName; { llvm::raw_svector_ostream Out(GuardName); getMangleContext().mangleStaticGuardVariable(&D, Out); Out.flush(); } // Create the guard variable with a zero-initializer. Just absorb linkage, // visibility and dll storage class from the guarded variable. GI->Guard = new llvm::GlobalVariable(CGM.getModule(), GuardTy, false, GV->getLinkage(), Zero, GuardName.str()); GI->Guard->setVisibility(GV->getVisibility()); GI->Guard->setDLLStorageClass(GV->getDLLStorageClass()); } else { assert(GI->Guard->getLinkage() == GV->getLinkage() && "static local from the same function had different linkage"); } // Pseudo code for the test: // if (!(GuardVar & MyGuardBit)) { // GuardVar |= MyGuardBit; // ... initialize the object ...; // } // Test our bit from the guard variable. llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex); llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard); llvm::Value *IsInitialized = Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero); llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock); // Set our bit in the guard variable and emit the initializer and add a global // destructor if appropriate. CGF.EmitBlock(InitBlock); Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard); CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); Builder.CreateBr(EndBlock); // Continue. CGF.EmitBlock(EndBlock); } bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { // Null-ness for function memptrs only depends on the first field, which is // the function pointer. The rest don't matter, so we can zero initialize. if (MPT->isMemberFunctionPointer()) return true; // The virtual base adjustment field is always -1 for null, so if we have one // we can't zero initialize. The field offset is sometimes also -1 if 0 is a // valid field offset. const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) && RD->nullFieldOffsetIsZero()); } llvm::Type * MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); llvm::SmallVector<llvm::Type *, 4> fields; if (MPT->isMemberFunctionPointer()) fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk else fields.push_back(CGM.IntTy); // FieldOffset if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), Inheritance)) fields.push_back(CGM.IntTy); if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) fields.push_back(CGM.IntTy); if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset if (fields.size() == 1) return fields[0]; return llvm::StructType::get(CGM.getLLVMContext(), fields); } void MicrosoftCXXABI:: GetNullMemberPointerFields(const MemberPointerType *MPT, llvm::SmallVectorImpl<llvm::Constant *> &fields) { assert(fields.empty()); const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); if (MPT->isMemberFunctionPointer()) { // FunctionPointerOrVirtualThunk fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); } else { if (RD->nullFieldOffsetIsZero()) fields.push_back(getZeroInt()); // FieldOffset else fields.push_back(getAllOnesInt()); // FieldOffset } if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), Inheritance)) fields.push_back(getZeroInt()); if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) fields.push_back(getZeroInt()); if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) fields.push_back(getAllOnesInt()); } llvm::Constant * MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { llvm::SmallVector<llvm::Constant *, 4> fields; GetNullMemberPointerFields(MPT, fields); if (fields.size() == 1) return fields[0]; llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); assert(Res->getType() == ConvertMemberPointerType(MPT)); return Res; } llvm::Constant * MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, bool IsMemberFunction, const CXXRecordDecl *RD, CharUnits NonVirtualBaseAdjustment) { MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); // Single inheritance class member pointer are represented as scalars instead // of aggregates. if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance)) return FirstField; llvm::SmallVector<llvm::Constant *, 4> fields; fields.push_back(FirstField); if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance)) fields.push_back(llvm::ConstantInt::get( CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) { CharUnits Offs = CharUnits::Zero(); if (RD->getNumVBases()) Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); } // The rest of the fields are adjusted by conversions to a more derived class. if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) fields.push_back(getZeroInt()); return llvm::ConstantStruct::getAnon(fields); } llvm::Constant * MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) { const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); llvm::Constant *FirstField = llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, CharUnits::Zero()); } llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero()); } llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, QualType MPType) { const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); const ValueDecl *MPD = MP.getMemberPointerDecl(); if (!MPD) return EmitNullMemberPointer(MPT); CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); // FIXME PR15713: Support virtual inheritance paths. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD, ThisAdjustment); CharUnits FieldOffset = getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); } llvm::Constant * MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD, const CXXMethodDecl *MD, CharUnits NonVirtualBaseAdjustment) { assert(MD->isInstance() && "Member function must not be static!"); MD = MD->getCanonicalDecl(); RD = RD->getMostRecentDecl(); CodeGenTypes &Types = CGM.getTypes(); llvm::Constant *FirstField; if (!MD->isVirtual()) { const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); llvm::Type *Ty; // Check whether the function has a computable LLVM signature. if (Types.isFuncTypeConvertible(FPT)) { // The function has a computable LLVM signature; use the correct type. Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); } else { // Use an arbitrary non-function type to tell GetAddrOfFunction that the // function type is incomplete. Ty = CGM.PtrDiffTy; } FirstField = CGM.GetAddrOfFunction(MD, Ty); FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); } else { MicrosoftVTableContext::MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); if (MD->isVariadic()) { CGM.ErrorUnsupported(MD, "pointer to variadic virtual member function"); FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy); } else if (!CGM.getTypes().isFuncTypeConvertible( MD->getType()->castAs<FunctionType>())) { CGM.ErrorUnsupported(MD, "pointer to virtual member function with " "incomplete return or parameter type"); FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy); } else if (ML.VBase) { CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding " "member function in virtual base class"); FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy); } else { llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML); FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy); // Include the vfptr adjustment if the method is in a non-primary vftable. NonVirtualBaseAdjustment += ML.VFPtrOffset; } } // The rest of the fields are common with data member pointers. return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, NonVirtualBaseAdjustment); } /// Member pointers are the same if they're either bitwise identical *or* both /// null. Null-ness for function members is determined by the first field, /// while for data member pointers we must compare all fields. llvm::Value * MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) { CGBuilderTy &Builder = CGF.Builder; // Handle != comparisons by switching the sense of all boolean operations. llvm::ICmpInst::Predicate Eq; llvm::Instruction::BinaryOps And, Or; if (Inequality) { Eq = llvm::ICmpInst::ICMP_NE; And = llvm::Instruction::Or; Or = llvm::Instruction::And; } else { Eq = llvm::ICmpInst::ICMP_EQ; And = llvm::Instruction::And; Or = llvm::Instruction::Or; } // If this is a single field member pointer (single inheritance), this is a // single icmp. const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(), Inheritance)) return Builder.CreateICmp(Eq, L, R); // Compare the first field. llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); // Compare everything other than the first field. llvm::Value *Res = nullptr; llvm::StructType *LType = cast<llvm::StructType>(L->getType()); for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { llvm::Value *LF = Builder.CreateExtractValue(L, I); llvm::Value *RF = Builder.CreateExtractValue(R, I); llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); if (Res) Res = Builder.CreateBinOp(And, Res, Cmp); else Res = Cmp; } // Check if the first field is 0 if this is a function pointer. if (MPT->isMemberFunctionPointer()) { // (l1 == r1 && ...) || l0 == 0 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); Res = Builder.CreateBinOp(Or, Res, IsZero); } // Combine the comparison of the first field, which must always be true for // this comparison to succeeed. return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); } llvm::Value * MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT) { CGBuilderTy &Builder = CGF.Builder; llvm::SmallVector<llvm::Constant *, 4> fields; // We only need one field for member functions. if (MPT->isMemberFunctionPointer()) fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); else GetNullMemberPointerFields(MPT, fields); assert(!fields.empty()); llvm::Value *FirstField = MemPtr; if (MemPtr->getType()->isStructTy()) FirstField = Builder.CreateExtractValue(MemPtr, 0); llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); // For function member pointers, we only need to test the function pointer // field. The other fields if any can be garbage. if (MPT->isMemberFunctionPointer()) return Res; // Otherwise, emit a series of compares and combine the results. for (int I = 1, E = fields.size(); I < E; ++I) { llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); Res = Builder.CreateOr(Res, Next, "memptr.tobool"); } return Res; } bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, llvm::Constant *Val) { // Function pointers are null if the pointer in the first field is null. if (MPT->isMemberFunctionPointer()) { llvm::Constant *FirstField = Val->getType()->isStructTy() ? Val->getAggregateElement(0U) : Val; return FirstField->isNullValue(); } // If it's not a function pointer and it's zero initializable, we can easily // check zero. if (isZeroInitializable(MPT) && Val->isNullValue()) return true; // Otherwise, break down all the fields for comparison. Hopefully these // little Constants are reused, while a big null struct might not be. llvm::SmallVector<llvm::Constant *, 4> Fields; GetNullMemberPointerFields(MPT, Fields); if (Fields.size() == 1) { assert(Val->getType()->isIntegerTy()); return Val == Fields[0]; } unsigned I, E; for (I = 0, E = Fields.size(); I != E; ++I) { if (Val->getAggregateElement(I) != Fields[I]) break; } return I == E; } llvm::Value * MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, llvm::Value *This, llvm::Value *VBPtrOffset, llvm::Value *VBTableOffset, llvm::Value **VBPtrOut) { CGBuilderTy &Builder = CGF.Builder; // Load the vbtable pointer from the vbptr in the instance. This = Builder.CreateBitCast(This, CGM.Int8PtrTy); llvm::Value *VBPtr = Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr"); if (VBPtrOut) *VBPtrOut = VBPtr; VBPtr = Builder.CreateBitCast(VBPtr, CGM.Int8PtrTy->getPointerTo(0)); llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable"); // Load an i32 offset from the vb-table. llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableOffset); VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); return Builder.CreateLoad(VBaseOffs, "vbase_offs"); } // Returns an adjusted base cast to i8*, since we do more address arithmetic on // it. llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { CGBuilderTy &Builder = CGF.Builder; Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy); llvm::BasicBlock *OriginalBB = nullptr; llvm::BasicBlock *SkipAdjustBB = nullptr; llvm::BasicBlock *VBaseAdjustBB = nullptr; // In the unspecified inheritance model, there might not be a vbtable at all, // in which case we need to skip the virtual base lookup. If there is a // vbtable, the first entry is a no-op entry that gives back the original // base, so look for a virtual base adjustment offset of zero. if (VBPtrOffset) { OriginalBB = Builder.GetInsertBlock(); VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); llvm::Value *IsVirtual = Builder.CreateICmpNE(VBTableOffset, getZeroInt(), "memptr.is_vbase"); Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); CGF.EmitBlock(VBaseAdjustBB); } // If we weren't given a dynamic vbptr offset, RD should be complete and we'll // know the vbptr offset. if (!VBPtrOffset) { CharUnits offs = CharUnits::Zero(); if (!RD->hasDefinition()) { DiagnosticsEngine &Diags = CGF.CGM.getDiags(); unsigned DiagID = Diags.getCustomDiagID( DiagnosticsEngine::Error, "member pointer representation requires a " "complete class type for %0 to perform this expression"); Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); } else if (RD->getNumVBases()) offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); } llvm::Value *VBPtr = nullptr; llvm::Value *VBaseOffs = GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); // Merge control flow with the case where we didn't have to adjust. if (VBaseAdjustBB) { Builder.CreateBr(SkipAdjustBB); CGF.EmitBlock(SkipAdjustBB); llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); Phi->addIncoming(Base, OriginalBB); Phi->addIncoming(AdjustedBase, VBaseAdjustBB); return Phi; } return AdjustedBase; } llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr, const MemberPointerType *MPT) { assert(MPT->isMemberDataPointer()); unsigned AS = Base->getType()->getPointerAddressSpace(); llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); CGBuilderTy &Builder = CGF.Builder; const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); // Extract the fields we need, regardless of model. We'll apply them if we // have them. llvm::Value *FieldOffset = MemPtr; llvm::Value *VirtualBaseAdjustmentOffset = nullptr; llvm::Value *VBPtrOffset = nullptr; if (MemPtr->getType()->isStructTy()) { // We need to extract values. unsigned I = 0; FieldOffset = Builder.CreateExtractValue(MemPtr, I++); if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); } if (VirtualBaseAdjustmentOffset) { Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, VBPtrOffset); } // Cast to char*. Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); // Apply the offset, which we assume is non-null. llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset"); // Cast the address to the appropriate pointer type, adopting the address // space of the base pointer. return Builder.CreateBitCast(Addr, PType); } static MSInheritanceAttr::Spelling getInheritanceFromMemptr(const MemberPointerType *MPT) { return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel(); } llvm::Value * MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src) { assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || E->getCastKind() == CK_BaseToDerivedMemberPointer || E->getCastKind() == CK_ReinterpretMemberPointer); // Use constant emission if we can. if (isa<llvm::Constant>(Src)) return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); // We may be adding or dropping fields from the member pointer, so we need // both types and the inheritance models of both records. const MemberPointerType *SrcTy = E->getSubExpr()->getType()->castAs<MemberPointerType>(); const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); bool IsFunc = SrcTy->isMemberFunctionPointer(); // If the classes use the same null representation, reinterpret_cast is a nop. bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; if (IsReinterpret && IsFunc) return Src; CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); if (IsReinterpret && SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) return Src; CGBuilderTy &Builder = CGF.Builder; // Branch past the conversion if Src is null. llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); // C++ 5.2.10p9: The null member pointer value is converted to the null member // pointer value of the destination type. if (IsReinterpret) { // For reinterpret casts, sema ensures that src and dst are both functions // or data and have the same size, which means the LLVM types should match. assert(Src->getType() == DstNull->getType()); return Builder.CreateSelect(IsNotNull, Src, DstNull); } llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); CGF.EmitBlock(ConvertBB); // Decompose src. llvm::Value *FirstField = Src; llvm::Value *NonVirtualBaseAdjustment = nullptr; llvm::Value *VirtualBaseAdjustmentOffset = nullptr; llvm::Value *VBPtrOffset = nullptr; MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel(); if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { // We need to extract values. unsigned I = 0; FirstField = Builder.CreateExtractValue(Src, I++); if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) VBPtrOffset = Builder.CreateExtractValue(Src, I++); if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); } // For data pointers, we adjust the field offset directly. For functions, we // have a separate field. llvm::Constant *Adj = getMemberPointerAdjustment(E); if (Adj) { Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy); llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); if (!NVAdjustField) // If this field didn't exist in src, it's zero. NVAdjustField = getZeroInt(); if (isDerivedToBase) NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj"); else NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj"); } // FIXME PR15713: Support conversions through virtually derived classes. // Recompose dst from the null struct and the adjusted fields from src. MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel(); llvm::Value *Dst; if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) { Dst = FirstField; } else { Dst = llvm::UndefValue::get(DstNull->getType()); unsigned Idx = 0; Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) Dst = Builder.CreateInsertValue( Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++); if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) Dst = Builder.CreateInsertValue( Dst, getValueOrZeroInt(VBPtrOffset), Idx++); if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) Dst = Builder.CreateInsertValue( Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++); } Builder.CreateBr(ContinueBB); // In the continuation, choose between DstNull and Dst. CGF.EmitBlock(ContinueBB); llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); Phi->addIncoming(DstNull, OriginalBB); Phi->addIncoming(Dst, ConvertBB); return Phi; } llvm::Constant * MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *Src) { const MemberPointerType *SrcTy = E->getSubExpr()->getType()->castAs<MemberPointerType>(); const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); // If src is null, emit a new null for dst. We can't return src because dst // might have a new representation. if (MemberPointerConstantIsNull(SrcTy, Src)) return EmitNullMemberPointer(DstTy); // We don't need to do anything for reinterpret_casts of non-null member // pointers. We should only get here when the two type representations have // the same size. if (E->getCastKind() == CK_ReinterpretMemberPointer) return Src; MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy); MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy); // Decompose src. llvm::Constant *FirstField = Src; llvm::Constant *NonVirtualBaseAdjustment = nullptr; llvm::Constant *VirtualBaseAdjustmentOffset = nullptr; llvm::Constant *VBPtrOffset = nullptr; bool IsFunc = SrcTy->isMemberFunctionPointer(); if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { // We need to extract values. unsigned I = 0; FirstField = Src->getAggregateElement(I++); if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) NonVirtualBaseAdjustment = Src->getAggregateElement(I++); if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) VBPtrOffset = Src->getAggregateElement(I++); if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++); } // For data pointers, we adjust the field offset directly. For functions, we // have a separate field. llvm::Constant *Adj = getMemberPointerAdjustment(E); if (Adj) { Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy); llvm::Constant *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); if (!NVAdjustField) // If this field didn't exist in src, it's zero. NVAdjustField = getZeroInt(); if (IsDerivedToBase) NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj); else NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj); } // FIXME PR15713: Support conversions through virtually derived classes. // Recompose dst from the null struct and the adjusted fields from src. if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) return FirstField; llvm::SmallVector<llvm::Constant *, 4> Fields; Fields.push_back(FirstField); if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment)); if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) Fields.push_back(getConstantOrZeroInt(VBPtrOffset)); if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset)); return llvm::ConstantStruct::getAnon(Fields); } llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( CodeGenFunction &CGF, const Expr *E, llvm::Value *&This, llvm::Value *MemPtr, const MemberPointerType *MPT) { assert(MPT->isMemberFunctionPointer()); const FunctionProtoType *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( CGM.getTypes().arrangeCXXMethodType(RD, FPT)); CGBuilderTy &Builder = CGF.Builder; MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); // Extract the fields we need, regardless of model. We'll apply them if we // have them. llvm::Value *FunctionPointer = MemPtr; llvm::Value *NonVirtualBaseAdjustment = nullptr; llvm::Value *VirtualBaseAdjustmentOffset = nullptr; llvm::Value *VBPtrOffset = nullptr; if (MemPtr->getType()->isStructTy()) { // We need to extract values. unsigned I = 0; FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance)) NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); } if (VirtualBaseAdjustmentOffset) { This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset, VBPtrOffset); } if (NonVirtualBaseAdjustment) { // Apply the adjustment and cast back to the original struct type. llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); } return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); } CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { return new MicrosoftCXXABI(CGM); } // MS RTTI Overview: // The run time type information emitted by cl.exe contains 5 distinct types of // structures. Many of them reference each other. // // TypeInfo: Static classes that are returned by typeid. // // CompleteObjectLocator: Referenced by vftables. They contain information // required for dynamic casting, including OffsetFromTop. They also contain // a reference to the TypeInfo for the type and a reference to the // CompleteHierarchyDescriptor for the type. // // ClassHieararchyDescriptor: Contains information about a class hierarchy. // Used during dynamic_cast to walk a class hierarchy. References a base // class array and the size of said array. // // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is // somewhat of a misnomer because the most derived class is also in the list // as well as multiple copies of virtual bases (if they occur multiple times // in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for // every path in the hierarchy, in pre-order depth first order. Note, we do // not declare a specific llvm type for BaseClassArray, it's merely an array // of BaseClassDescriptor pointers. // // BaseClassDescriptor: Contains information about a class in a class hierarchy. // BaseClassDescriptor is also somewhat of a misnomer for the same reason that // BaseClassArray is. It contains information about a class within a // hierarchy such as: is this base is ambiguous and what is its offset in the // vbtable. The names of the BaseClassDescriptors have all of their fields // mangled into them so they can be aggressively deduplicated by the linker. static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { StringRef MangledName("\01??_7type_info@@6B@"); if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) return VTable; return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, /*Constant=*/true, llvm::GlobalVariable::ExternalLinkage, /*Initializer=*/nullptr, MangledName); } namespace { /// \brief A Helper struct that stores information about a class in a class /// hierarchy. The information stored in these structs struct is used during /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. // During RTTI creation, MSRTTIClasses are stored in a contiguous array with // implicit depth first pre-order tree connectivity. getFirstChild and // getNextSibling allow us to walk the tree efficiently. struct MSRTTIClass { enum { IsPrivateOnPath = 1 | 8, IsAmbiguous = 2, IsPrivate = 4, IsVirtual = 16, HasHierarchyDescriptor = 64 }; MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} uint32_t initialize(const MSRTTIClass *Parent, const CXXBaseSpecifier *Specifier); MSRTTIClass *getFirstChild() { return this + 1; } static MSRTTIClass *getNextChild(MSRTTIClass *Child) { return Child + 1 + Child->NumBases; } const CXXRecordDecl *RD, *VirtualRoot; uint32_t Flags, NumBases, OffsetInVBase; }; /// \brief Recursively initialize the base class array. uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, const CXXBaseSpecifier *Specifier) { Flags = HasHierarchyDescriptor; if (!Parent) { VirtualRoot = nullptr; OffsetInVBase = 0; } else { if (Specifier->getAccessSpecifier() != AS_public) Flags |= IsPrivate | IsPrivateOnPath; if (Specifier->isVirtual()) { Flags |= IsVirtual; VirtualRoot = RD; OffsetInVBase = 0; } else { if (Parent->Flags & IsPrivateOnPath) Flags |= IsPrivateOnPath; VirtualRoot = Parent->VirtualRoot; OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); } } NumBases = 0; MSRTTIClass *Child = getFirstChild(); for (const CXXBaseSpecifier &Base : RD->bases()) { NumBases += Child->initialize(this, &Base) + 1; Child = getNextChild(Child); } return NumBases; } static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { switch (Ty->getLinkage()) { case NoLinkage: case InternalLinkage: case UniqueExternalLinkage: return llvm::GlobalValue::InternalLinkage; case VisibleNoLinkage: case ExternalLinkage: return llvm::GlobalValue::LinkOnceODRLinkage; } llvm_unreachable("Invalid linkage!"); } /// \brief An ephemeral helper class for building MS RTTI types. It caches some /// calls to the module and information about the most derived class in a /// hierarchy. struct MSRTTIBuilder { enum { HasBranchingHierarchy = 1, HasVirtualBranchingHierarchy = 2, HasAmbiguousBases = 4 }; MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) : CGM(ABI.CGM), Context(CGM.getContext()), VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), ABI(ABI) {} llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); llvm::GlobalVariable * getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); llvm::GlobalVariable *getClassHierarchyDescriptor(); llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info); CodeGenModule &CGM; ASTContext &Context; llvm::LLVMContext &VMContext; llvm::Module &Module; const CXXRecordDecl *RD; llvm::GlobalVariable::LinkageTypes Linkage; MicrosoftCXXABI &ABI; }; } // namespace /// \brief Recursively serializes a class hierarchy in pre-order depth first /// order. static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, const CXXRecordDecl *RD) { Classes.push_back(MSRTTIClass(RD)); for (const CXXBaseSpecifier &Base : RD->bases()) serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); } /// \brief Find ambiguity among base classes. static void detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { if ((Class->Flags & MSRTTIClass::IsVirtual) && !VirtualBases.insert(Class->RD)) { Class = MSRTTIClass::getNextChild(Class); continue; } if (!UniqueBases.insert(Class->RD)) AmbiguousBases.insert(Class->RD); Class++; } if (AmbiguousBases.empty()) return; for (MSRTTIClass &Class : Classes) if (AmbiguousBases.count(Class.RD)) Class.Flags |= MSRTTIClass::IsAmbiguous; } llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); } // Check to see if we've already declared this ClassHierarchyDescriptor. if (auto CHD = Module.getNamedGlobal(MangledName)) return CHD; // Serialize the class hierarchy and initialize the CHD Fields. SmallVector<MSRTTIClass, 8> Classes; serializeClassHierarchy(Classes, RD); Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); detectAmbiguousBases(Classes); int Flags = 0; for (auto Class : Classes) { if (Class.RD->getNumBases() > 1) Flags |= HasBranchingHierarchy; // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We // believe the field isn't actually used. if (Class.Flags & MSRTTIClass::IsAmbiguous) Flags |= HasAmbiguousBases; } if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) Flags |= HasVirtualBranchingHierarchy; // These gep indices are used to get the address of the first element of the // base class array. llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), llvm::ConstantInt::get(CGM.IntTy, 0)}; // Forward-declare the class hierarchy descriptor auto Type = ABI.getClassHierarchyDescriptorType(); auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str()); // Initialize the base class ClassHierarchyDescriptor. llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown llvm::ConstantInt::get(CGM.IntTy, Flags), llvm::ConstantInt::get(CGM.IntTy, Classes.size()), ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( getBaseClassArray(Classes), llvm::ArrayRef<llvm::Value *>(GEPIndices))), }; CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); return CHD; } llvm::GlobalVariable * MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); } // Forward-declare the base class array. // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit // mode) bytes of padding. We provide a pointer sized amount of padding by // adding +1 to Classes.size(). The sections have pointer alignment and are // marked pick-any so it shouldn't matter. llvm::Type *PtrType = ABI.getImageRelativeType( ABI.getBaseClassDescriptorType()->getPointerTo()); auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); auto *BCA = new llvm::GlobalVariable( Module, ArrType, /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str()); // Initialize the BaseClassArray. SmallVector<llvm::Constant *, 8> BaseClassArrayData; for (MSRTTIClass &Class : Classes) BaseClassArrayData.push_back( ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); return BCA; } llvm::GlobalVariable * MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { // Compute the fields for the BaseClassDescriptor. They are computed up front // because they are mangled into the name of the object. uint32_t OffsetInVBTable = 0; int32_t VBPtrOffset = -1; if (Class.VirtualRoot) { auto &VTableContext = CGM.getMicrosoftVTableContext(); OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); } SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, Class.Flags, Out); } // Check to see if we've already declared this object. if (auto BCD = Module.getNamedGlobal(MangledName)) return BCD; // Forward-declare the base class descriptor. auto Type = ABI.getBaseClassDescriptorType(); auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str()); // Initialize the BaseClassDescriptor. llvm::Constant *Fields[] = { ABI.getImageRelativeConstant( ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), llvm::ConstantInt::get(CGM.IntTy, Class.Flags), ABI.getImageRelativeConstant( MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), }; BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); return BCD; } llvm::GlobalVariable * MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out); } // Check to see if we've already computed this complete object locator. if (auto COL = Module.getNamedGlobal(MangledName)) return COL; // Compute the fields of the complete object locator. int OffsetToTop = Info->FullOffsetInMDC.getQuantity(); int VFPtrOffset = 0; // The offset includes the vtordisp if one exists. if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr()) if (Context.getASTRecordLayout(RD) .getVBaseOffsetsMap() .find(VBase) ->second.hasVtorDisp()) VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4; // Forward-declare the complete object locator. llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str()); // Initialize the CompleteObjectLocator. llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), ABI.getImageRelativeConstant( CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), ABI.getImageRelativeConstant(COL), }; llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); if (!ABI.isImageRelative()) FieldsRef = FieldsRef.drop_back(); COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); return COL; } /// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a /// llvm::GlobalVariable * because different type descriptors have different /// types, and need to be abstracted. They are abstracting by casting the /// address to an Int8PtrTy. llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { SmallString<256> MangledName, TypeInfoString; { llvm::raw_svector_ostream Out(MangledName); getMangleContext().mangleCXXRTTI(Type, Out); } // Check to see if we've already declared this TypeDescriptor. if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); // Compute the fields for the TypeDescriptor. { llvm::raw_svector_ostream Out(TypeInfoString); getMangleContext().mangleCXXRTTIName(Type, Out); } // Declare and initialize the TypeDescriptor. llvm::Constant *Fields[] = { getTypeInfoVTable(CGM), // VFPtr llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; llvm::StructType *TypeDescriptorType = getTypeDescriptorType(TypeInfoString); return llvm::ConstantExpr::getBitCast( new llvm::GlobalVariable( CGM.getModule(), TypeDescriptorType, /*Constant=*/false, getLinkageForRTTI(Type), llvm::ConstantStruct::get(TypeDescriptorType, Fields), MangledName.c_str()), CGM.Int8PtrTy); } /// \brief Gets or a creates a Microsoft CompleteObjectLocator. llvm::GlobalVariable * MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, const VPtrInfo *Info) { return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); }