//===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_CGRECORDLAYOUT_H #define CLANG_CODEGEN_CGRECORDLAYOUT_H #include "clang/AST/CharUnits.h" #include "clang/AST/Decl.h" #include "clang/Basic/LLVM.h" #include "llvm/ADT/DenseMap.h" #include "llvm/IR/DerivedTypes.h" namespace llvm { class StructType; } namespace clang { namespace CodeGen { /// \brief Structure with information about how a bitfield should be accessed. /// /// Often we layout a sequence of bitfields as a contiguous sequence of bits. /// When the AST record layout does this, we represent it in the LLVM IR's type /// as either a sequence of i8 members or a byte array to reserve the number of /// bytes touched without forcing any particular alignment beyond the basic /// character alignment. /// /// Then accessing a particular bitfield involves converting this byte array /// into a single integer of that size (i24 or i40 -- may not be power-of-two /// size), loading it, and shifting and masking to extract the particular /// subsequence of bits which make up that particular bitfield. This structure /// encodes the information used to construct the extraction code sequences. /// The CGRecordLayout also has a field index which encodes which byte-sequence /// this bitfield falls within. Let's assume the following C struct: /// /// struct S { /// char a, b, c; /// unsigned bits : 3; /// unsigned more_bits : 4; /// unsigned still_more_bits : 7; /// }; /// /// This will end up as the following LLVM type. The first array is the /// bitfield, and the second is the padding out to a 4-byte alignmnet. /// /// %t = type { i8, i8, i8, i8, i8, [3 x i8] } /// /// When generating code to access more_bits, we'll generate something /// essentially like this: /// /// define i32 @foo(%t* %base) { /// %0 = gep %t* %base, i32 0, i32 3 /// %2 = load i8* %1 /// %3 = lshr i8 %2, 3 /// %4 = and i8 %3, 15 /// %5 = zext i8 %4 to i32 /// ret i32 %i /// } /// struct CGBitFieldInfo { /// The offset within a contiguous run of bitfields that are represented as /// a single "field" within the LLVM struct type. This offset is in bits. unsigned Offset : 16; /// The total size of the bit-field, in bits. unsigned Size : 15; /// Whether the bit-field is signed. unsigned IsSigned : 1; /// The storage size in bits which should be used when accessing this /// bitfield. unsigned StorageSize; /// The alignment which should be used when accessing the bitfield. unsigned StorageAlignment; CGBitFieldInfo() : Offset(), Size(), IsSigned(), StorageSize(), StorageAlignment() {} CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned, unsigned StorageSize, unsigned StorageAlignment) : Offset(Offset), Size(Size), IsSigned(IsSigned), StorageSize(StorageSize), StorageAlignment(StorageAlignment) {} void print(raw_ostream &OS) const; void dump() const; /// \brief Given a bit-field decl, build an appropriate helper object for /// accessing that field (which is expected to have the given offset and /// size). static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, const FieldDecl *FD, uint64_t Offset, uint64_t Size, uint64_t StorageSize, uint64_t StorageAlignment); }; /// CGRecordLayout - This class handles struct and union layout info while /// lowering AST types to LLVM types. /// /// These layout objects are only created on demand as IR generation requires. class CGRecordLayout { friend class CodeGenTypes; CGRecordLayout(const CGRecordLayout &) LLVM_DELETED_FUNCTION; void operator=(const CGRecordLayout &) LLVM_DELETED_FUNCTION; private: /// The LLVM type corresponding to this record layout; used when /// laying it out as a complete object. llvm::StructType *CompleteObjectType; /// The LLVM type for the non-virtual part of this record layout; /// used when laying it out as a base subobject. llvm::StructType *BaseSubobjectType; /// Map from (non-bit-field) struct field to the corresponding llvm struct /// type field no. This info is populated by record builder. llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo; /// Map from (bit-field) struct field to the corresponding llvm struct type /// field no. This info is populated by record builder. llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single // map for both virtual and non-virtual bases. llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; /// Map from virtual bases to their field index in the complete object. llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases; /// False if any direct or indirect subobject of this class, when /// considered as a complete object, requires a non-zero bitpattern /// when zero-initialized. bool IsZeroInitializable : 1; /// False if any direct or indirect subobject of this class, when /// considered as a base subobject, requires a non-zero bitpattern /// when zero-initialized. bool IsZeroInitializableAsBase : 1; public: CGRecordLayout(llvm::StructType *CompleteObjectType, llvm::StructType *BaseSubobjectType, bool IsZeroInitializable, bool IsZeroInitializableAsBase) : CompleteObjectType(CompleteObjectType), BaseSubobjectType(BaseSubobjectType), IsZeroInitializable(IsZeroInitializable), IsZeroInitializableAsBase(IsZeroInitializableAsBase) {} /// \brief Return the "complete object" LLVM type associated with /// this record. llvm::StructType *getLLVMType() const { return CompleteObjectType; } /// \brief Return the "base subobject" LLVM type associated with /// this record. llvm::StructType *getBaseSubobjectLLVMType() const { return BaseSubobjectType; } /// \brief Check whether this struct can be C++ zero-initialized /// with a zeroinitializer. bool isZeroInitializable() const { return IsZeroInitializable; } /// \brief Check whether this struct can be C++ zero-initialized /// with a zeroinitializer when considered as a base subobject. bool isZeroInitializableAsBase() const { return IsZeroInitializableAsBase; } /// \brief Return llvm::StructType element number that corresponds to the /// field FD. unsigned getLLVMFieldNo(const FieldDecl *FD) const { FD = FD->getCanonicalDecl(); assert(FieldInfo.count(FD) && "Invalid field for record!"); return FieldInfo.lookup(FD); } unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const { assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!"); return NonVirtualBases.lookup(RD); } /// \brief Return the LLVM field index corresponding to the given /// virtual base. Only valid when operating on the complete object. unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const { assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!"); return CompleteObjectVirtualBases.lookup(base); } /// \brief Return the BitFieldInfo that corresponds to the field FD. const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const { FD = FD->getCanonicalDecl(); assert(FD->isBitField() && "Invalid call for non-bit-field decl!"); llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator it = BitFields.find(FD); assert(it != BitFields.end() && "Unable to find bitfield info"); return it->second; } void print(raw_ostream &OS) const; void dump() const; }; } // end namespace CodeGen } // end namespace clang #endif